
在電廠正常運轉期間,從反應器燃料丸傳熱至燃料護套的情形,即是____熱傳的例子。

- A. 傳導(conduction)
- B. 對流
- C. 輻射
- D. 雙相流

請參照下圖中,處於爐心壽命初期的燃料棒和冷卻水流通道(channel)。

下列何者為在反應器燃料和燃料護套之間隙熱傳的主要方法?

- A. 傳導
- B. 對流
- C. 輻射
- D. 自然循環

發生冷卻水流失事故時,下列哪項熱傳機制能在燃料元件未接觸冷卻水時,提供最大的爐心冷卻效果?

- A. 輻射
- B. 放射
- C. 對流
- D. 傳導

燃料棒一般會充______氣以改善燃料丸至護套的_____熱傳。

A. 氦; 對流

B. 氦; 傳導

C. 氮;對流

D. 氮; 傳導

已知核能電廠以 60%功率運轉。下列何者為從蒸汽產生器 U 形管外表面傳熱至飼水的主要熱傳機制?

- A. 輻射分解
- B. 輻射
- C. 傳導
- D. 對流

答案: D.

下面敘述的哪項熱傳過程中,對流是最明顯的熱傳機制?

- A. 爐心外露時,從反應器燃料到爐心筒(core barrel)。
- B. 以100%功率正常運轉時,從蒸汽產生器管壁傳出。
- C. 所有反應器冷卻水泵(RCP)失效後,從反應器燃料至蒸汽產生器。
- D. 以100%功率正常運轉時,從燃料丸中心到燃料護套。

在下列熱傳流徑中,那一項的主要熱傳機制為傳導?

- A. 爐心外露時,從反應器燃料到爐心筒(core barrel)。
- B. 正常運轉時,從主汽機排出的蒸汽,經由主冷凝器冷卻水及冷卻塔至大氣中。
- C. 核能電廠全黑時,從反應器燃料到蒸汽產生器的蒸汽出口。
- D. 正常運轉時,從燃料丸經由燃料棒之充氣到燃料護套。

答案: D.

若有過量氣體夾帶/混入通過單相(液體)熱交換器的冷卻水,該熱交換器的整體熱傳係數將降低,因為......

- A. 層流水膜(laminar layer)厚度將減少。
- B. 層流水膜(laminar layer)厚度將增加。
- C. 冷卻水的熱傳導性將降低。
- D. 冷卻水的熱傳導性將增加。

為何單相熱交換器的管內,不希望發生整體沸騰(bulk boiling)?

- A. 形成的泡泡將破壞熱交換器管內的薄片層。
- B. 擾流(turbulence)將限制熱交換器管內的液體流動。
- C. 熱交換器管兩端的ΔT將減少。
- D. 熱交換器管的熱傳導性將降低。

下列哪組液體在典型的交流型(cross-flow)熱交換器進行熱傳時,其熱交換器整體熱傳係數將最大?

- A. 潤滑油冷卻器內油至水的熱傳。
- B. 空壓機後冷卻器內空氣至水的熱傳。
- C. 汽機排汽冷凝器內蒸汽至水的熱傳。
- D. 冷卻水熱交換器內水至水的熱傳。

下列哪組液體在典型的交流型(cross-flow)熱交換器進行熱傳時,其熱交換器整體熱傳係數將最小?

- A. 潤滑油冷卻器內油至水的熱傳。
- B. 空壓機後冷卻器(after-cooler)內空氣至水的熱傳。
- C. 汽機排汽冷凝器內蒸汽至水的熱傳。
- D. 冷卻水熱交換器內水至水的熱傳。

核能電廠以穩態功率運轉時,主冷凝器的參數如下:

主冷凝器壓力: 1.2 psia 冷卻水進口溫度: 60°F 冷卻水出口溫度: 84°F

冷凝器的滲入空氣增加,導致主冷凝器的整體熱傳係數降低25%。主冷凝器熱傳率和冷卻水溫度若不變,改變後的主冷凝器壓力約為多少?

- A. 1.7 psia
- B. 2.3 psia
- C. 3.0 psia
- D. 4.6 psia

下列哪組液體在典型的交流型(cross-flow)熱交換器進行熱傳時,熱交換器的整體熱傳係數將最大(假設熱交換器尺寸和液體流量相似)?

- A. 潤滑油冷卻器內油至水的熱傳。
- B. 飼水加熱器內蒸汽至水的熱傳。
- C. 空調箱內水至空氣的熱傳。
- D. 冷卻水熱交換器內水至水的熱傳。

核子反應器以穩態功率運轉時,利用下列何者決定出來的爐心熱功率最準確?

- A. 反應器冷卻水的總質量流率,乘以爐心兩端的溫度變化。
- B. 反應器冷卻水的總質量流率,乘以蒸汽產生器的焓變化。
- C. 飼水的總質量流率,乘以蒸汽產生器的焓變化。
- D. 飼水的總質量流率,乘以爐心兩端的溫度變化。

一部核子反應器產生 200 MW 的爐心熱功率。根據熱平衡算式,反應器冷卻水泵加入 10 MW 熱功率至冷卻水系統。爐心的額定熱功率為 1,330 MW。

下列何者為爐心熱功率百分比?

- A. 14.0%
- B. 14.3%
- C. 15.0%
- D. 15.8%

功率階核能儀器按照算出的熱平衡調整至 100%。下列何者將導致反應器功率指示值<u>大</u>於實際功率?

- A. 計算熱平衡時,忽略了反應器冷卻水泵的熱輸入值。
- B. 計算熱平衡所用的水流率,較實際流率低 10%。
- C. 計算熱平衡所用的蒸汽壓力,較實際蒸汽壓力高 50 psi。
- D. 飼水熱焓誤算成較實際飼水熱焓高出 10 Btu/lbm。

蒸汽管路出現小破裂(3%)時,反應器燃料傳出的熱傳率初步增加,請問下列方程式:Q = UA(T1-T2)之中,哪一項受此破裂影響最大,所以對熱傳率增加的影響最大?(假設反應器初始功率沒有改變)

- A. U
- B. A
- C. T1
- D. T2
- 答案: D.

功率階核能儀器按照算出的熱量(二次側熱平衡)調整為100%。下列何者將導致反應器功率指示值大於實際功率?

- A. 計算熱量所用的飼水溫度,比實際飼水溫度高。
- B. 計算熱量時,遺漏了反應器冷卻水泵的熱輸入。
- C. 用來計算熱量的飼水流率比實際飼水流率低。
- D. 用來計算熱量的蒸汽壓力比實際蒸汽壓力高。

一部核子反應器以 80%功率運轉,其爐心 ΔT 為 $48^{\circ}F$,此時發生電廠全黑。建立自然循環後,爐心 ΔT 穩定在 $40^{\circ}F$ 。如果質量流率為 3%,目前的衰變熱為多少?

- A. 1%
- B. 2%
- C. 3%
- D. 4%

核能電廠以100%功率運轉,其反應器冷卻水系統(RCS)和蒸汽產生器(S/G)的參數如下:

RCS 冷卻水平均溫度: 575°F

RCS 熱端溫度: 600°F RCS 冷端溫度: 550°F

S/G 壓力: 885 psig

反應器停機以進行大修,每部 S/G 均有 7%的管子被塞管。接著重新啟動反應器,功率亦攀升至 100%。欲在 100%功率下,建立相同的 S/G 壓力,RCS 冷卻水的平均溫度,必須升高至......

- A. 584°F
- B. 582°F
- C. 580°F
- D. 578°F

答案: D.

根據反應器功率為90%的狀況來計算二次側熱平衡,藉此校正反應器功率儀器。下列何者將導致算出的反應器功率<u>少於</u>實際功率?

- A. 蒸汽產生器壓力指示值,較實際壓力高 20 psi。
- B. 蒸汽產生器水位指示值,較實際水位低3%。
- C. 飼水流率指示值較實際流率高 3%。
- D. 飼水溫度指示值較實際溫度低 20°F。

裝有兩部蒸汽產生器(S/G)的核能電廠以90%功率運轉,其S/G與反應器冷卻水系統(RCS)的參數如下:

RCS 冷卻水平均溫度: 575°F RCS 熱端溫度: 600°F RCS 冷端溫度: 550°F S/G 壓力: 885 psig

反應器停機以進行大修,每部 S/G 有數根管子被塞管。重新啟動反應器後的 RCS 流量維持於 98%額定流率,與大修前流率相同。

在90%功率下,RCS 熱端的溫度若維持在600°F,RCS冷端溫度為......

- A. 546°F
- B. 547°F
- C. 548°F
- D. 549°F

答案:D.

功率階核能儀器依據算出的熱平衡調整到100%。下列何者將導致反應器功率指示值<u>小</u> 於實際功率?

- A. 用來計算熱平衡的飼水溫度比實際飼水溫度高20°F。
- B. 計算熱平衡時遺漏了反應器冷卻水泵的熱輸入。
- C. 用來計算熱平衡的飼水流率比實際飼水流率高10%。
- D. 用來計算熱平衡的蒸汽壓力比實際蒸汽壓力低50 psi。

功率階核能儀器依據算出的熱平衡調整到100%。下列何者將導致反應器功率指示值高於實際功率?

- A. 用來計算熱平衡的飼水溫度比實際飼水溫度高20°F。
- B. 計算熱平衡時遺漏了反應器冷卻水泵的熱輸入。
- C. 用來計算熱平衡的飼水流率比實際飼水流率低10%。
- D. 計算熱平衡時遺漏了周圍熱損失的項目。

功率階核能儀器依據算出的熱平衡調整到100%。下列何者將導致反應器功率指示值<u>小</u>於實際功率?

- A. 用來計算熱平衡的飼水溫度比實際飼水溫度高20°F。
- B. 計算熱平衡時,遺漏了反應器冷卻水泵的熱輸入。
- C. 用來計算熱平衡的飼水流率比實際流率高10%。
- D. 運轉員誤算了離開蒸汽產生器的蒸汽焓,讓其較實際數值高出10 Btu/lbm。

功率階核能儀器依據算出的熱平衡調整到100%。下列何者將導致反應器功率指示值<u>小</u>於實際功率?

- A. 用來計算熱平衡的飼水溫度比實際飼水溫度低20°F。
- B. 計算熱平衡時遺漏了反應器冷卻水泵的熱輸入。
- C. 計算熱平衡時使用的周圍熱損失值,只有實際周圍熱損失值的一半。
- D. 用來計算熱平衡的飼水流率比實際飼水流率高10%。

一座多迴路核能電廠以50%功率運轉,控制棒處於手動模式,此時,一部蒸汽產生器的主蒸汽隔離閥(MSIV)意外關閉。假設反應器沒有急停,亦無發生其他保護動作,運轉員也沒有採取行動。

就在 MSIV 關閉後,在 MSIV 關閉的反應器冷卻水迴路冷端溫度(Tc),將立刻_____;至於 MSIV 維持<u>開啟</u>的迴路中的 Tc 將立刻_____。

A. 升高;升高

B. 升高;降低

C. 降低;升高

D. 降低;降低

功率階核能儀器依據算出的熱平衡調整到100%。下列何者將導致反應器功率指示值小於實際功率?

- A. 用來計算熱平衡的飼水溫度比實際飼水溫度低10°F。
- B. 計算熱平衡時遺漏了反應器冷卻水泵的熱輸入。
- C. 用來計算熱平衡的飼水流率比實際飼水流率低10%。
- D. 用來計算熱平衡的蒸汽壓力比實際蒸汽壓力低50 psi。

在二迴路壓水式反應器(PWR)核能電廠內,進入各蒸汽產生器(S/G)的飼水流率指示值為 3.3×10^6 lbm/hr,熱焓為 419 Btu/lbm。離開各蒸汽產生器的蒸汽壓力為 800 psia,蒸汽 乾度為 100%。

請問爐心熱功率為多少(忽略沖放和泵熱)?

- A. 677 MWt
- B. 755 MWt
- C. 1,334 MWt
- D. 1,510 MWt

答案: D.

進入核子反應器爐心的反應器冷卻水溫為 $545^{\circ}F$,離開時的水溫為 $595^{\circ}F$ 。如果反應器冷卻水流率為 6.6×10^7 lbm/hr,該冷卻水的比熱容量為 1.3 Btu/lbm- $^{\circ}F$,爐心熱功率為多少(1 瓦特 = 3.4127 Btu/hr)?

- A. 100.6 MWt
- B. 125.7 MWt
- C. 1005.7 MWt
- D. 1257.1 MWt

答案:D.

一部核子反應器的運轉參數如下:

反應器功率 = 100% 爐心ΔT = 42°F 反應器冷卻水系統流率= 100% 冷卻水平均溫度 = 587°F

電廠全黑且建立自然循環後,穩定參數如下:

衰變熱 = 2% 爐心ΔT = 28°F 冷卻水平均溫度= 572°F

爐心的質量流率百分比為多少?

- A. 2.0%
- B. 2.5%
- C. 3.0%
- D. 4.0%

核能電廠大修期間,基於管壁變薄,所有蒸汽產生器(S/G)的5%管子被塞管。全功率反應器冷卻水系統流率和冷卻水平均溫度(Tave)維持不變。已知大修前的100%功率運轉條件如下:

$$T_{ave} = 578^{\circ}F$$

 $T_{S/G} = 538^{\circ}F$

大修後,電廠恢復至100%功率時,蒸汽產生器的壓力約為多少?

- A. 960 psia
- B. 930 psia
- C. 900 psia
- D. 870 psia

核能電廠的運轉參數如下:

反應器功率100%爐心ΔT:60°F反應器冷卻水系統流率: 100%587°F

電廠全黑且建立自然循環後,穩定參數如下:

衰變熱: 1% 爐心ΔT: 30°F 冷卻水平均溫度: 572°F

爐心的質量流率百分比為多少?

- A. 2.0%
- B. 2.5%
- C. 3.0%
- D. 4.0%

核能電廠大修期間,所有蒸汽產生器(S/G)的 6%的管子被塞管。全功率反應器冷卻水系統流量和冷卻水平均溫度 (T_{ave}) 維持不變。已知大修<u>前</u> 100%功率運轉條件如下:

$$T_{ave} = 584^{\circ}F$$

 $T_{S/G} = 544^{\circ}F$

大修後,電廠恢復至100%功率時,蒸汽產生器的壓力約為多少?

- A. 974 psia
- B. 954 psia
- C. 934 psia
- D. 914 psia

核能電廠大修期間,所有蒸汽產生器(S/G)的 5%的管子被塞管。全功率反應器冷卻水系統流量和冷卻水平均溫度 (T_{ave}) 維持不變。已知大修<u>前</u>的=100%功率運轉條件如下:

 $T_{ave} = 588.0$ °F $T_{S/G} = 542.0$ °F

大修後,電廠恢復至100%功率時,蒸汽產生器的壓力約為多少?

- A. 998 psia
- B. 979 psia
- C. 961 psia
- D. 944 psia

核能電廠功率運轉中。進入所有蒸汽產生器的總飼水流率為 7.0×10^6 lbm/hr,溫度為 $440^\circ F$ 。離開蒸汽產生器的蒸汽壓力為1000 psia、蒸汽乾度為100%。

若忽略其它的熱損益機制,請問爐心熱功率為多少?

- A. 1335 MWt
- B. 1359 MWt
- C. 1589 MWt
- D. 1612 MWt

科目/題號:193007/1 (2016新增)

知能類: K1.04 [2.8/3.0]

序號: P3084 (B3084)

核能電廠以近100%功率運轉,主汽機的抽汽供給至一飼水加熱器。抽汽的參數如下:

蒸汽壓力= 414 psia

蒸汽流量率=7.5×105 lbm/hr

蒸汽熱焓=1,150 Btu/lbm

抽汽在414 psia冷凝成飽和水,然後經洩水管離開飼水加熱器。在飼水加熱器內從抽汽至飼水的熱傳率為多少?

A. $3.8 \times 10^7 \,\text{Btu/hr}$

B. 8.6 x 10⁷ Btu/hr

C. 5.4 x 10⁸ Btu/hr

D. 7.2 x 10⁸ Btu/hr

科目/題號:193007/2 (2016新增)

知能類: K1.04 [2.8/3.0]

序號: P5144 (B5143)

核能電廠以近100%功率運轉,主汽機的抽汽供給至一飼水加熱器。抽汽的參數如下:

蒸汽壓力= 500 psia

蒸汽流量率=7.0×105 lbm/hr

蒸汽熱焓=1135 Btu/lbm

抽汽在500 psia冷凝成飽和水,然後經洩水管離開飼水加熱器。在飼水加熱器內從抽汽至飼水的熱傳率為多少?

A. 3.2 x 10⁸ Btu/hr

B. 4.8 x 10⁸ Btu/hr

C. 5.3 x 10⁸ Btu/hr

D. 7.9 x 10⁸ Btu/hr

科目/題號: 193007/3 (2016新增)

知能類: K1.06 [3.1/3.3]

序號: P5044

有兩個參數用於標準熱平衡計算法計算爐心熱功率。下列何者界定該兩參數?

	反應器冷卻水	飼水	蒸汽產生器	蒸汽產生器
	質量流量率	溫度	壓力	水位
A.	Yes	No	Yes	No
B.	No	Yes	Yes	No
C.	Yes	No	No	Yes
D.	No	Yes	No	Yes

科目/題號:193007/4 (2016新增)

知能類: K1.06 [3.1/3.3]

序號: P6044 (B6043)

以熱平衡功率計算為基準,將核儀功率階調整至100%,以下何者會使指示的反應爐功率比實際反應爐功率高?

- A.熱平衡計算時,使用的蒸汽壓力比實際蒸汽壓力高50 psi.
- B.熱平衡計算時,使用的環境熱損失值是實際環境的熱損失的兩倍
- C.熱平衡計算時,使用的飼水流量率比實際飼水流量率低10%
- D.熱平衡計算時,使用的飼水溫度,比實際的飼水溫度高20°F

科目/題號:193007/5 (2016新增)

知能類: K1.06 [3.1/3.3]

序號: P6844

當進行熱平衡計算來決定爐心熱功率時,所量測到的熱功率須 與反應器 冷卻水泵(RCPs)相關的值;必須調整的原因,係因RCPs加到反應器冷卻水之流 動能量, 轉換成冷卻水熱能。

A.减少;幾乎全部

B.减少;一小部分

C.增加;幾乎全部

D.增加;一小部分

答案: A

科目/題號: 193007/6 (2016新增)

知能類:: K1.08 [3.1/3.4

序號: P685

核能電廠最初以48°F爐心ΔT,80%功率運轉,此時電廠發生全黑,已建立自然循環且爐心ΔT穩定在40°F。如果反應器冷卻水的質量流量率是3%,下列何者是目前爐心衰變熱量?

- A. 1 %
- B. 2 %
- C. 3 %
- D. 4%

科目/題號: 193007/7 (2016新增)

知能類: K1.08 [3.1/3.4]

序號: P7639

核能電廠正以下列穩定的蒸汽產生器(SG)及飼水(FW)參數運轉:

SG壓力=1,000 psia

總SG蒸汽流量率=1.0×107 lbm/hr(乾飽和蒸汽)

飼水進□溫度=470°F

依據上述數據,反應器的輸出熱功率是多少?

A. 740 MW

B. 1,328 MW

C. 2,169 MW

D. 3,497 MW