
核二廠反應爐錨定螺栓事故

安全是核電唯一的共識 如果不能保證安全,核電廠就不應運轉

錯定螺栓的肇因分析與修復 至少必須考慮事項

- 肇因分析 造成失效(斷裂)與爐心熔毀的 肇始原因
- 失效後果分析 失效有多嚴重、失效的機率
- 修復計畫 有效的排除失效原因,使反應爐 安全運轉
- 反應計畫 如果修復計畫未能達到設計效果,如何事先偵測,防止失效發生;或發生時能夠扼止事故擴大在輻射不外洩的範圍內

最壞的情況 The Worst Case Scenario

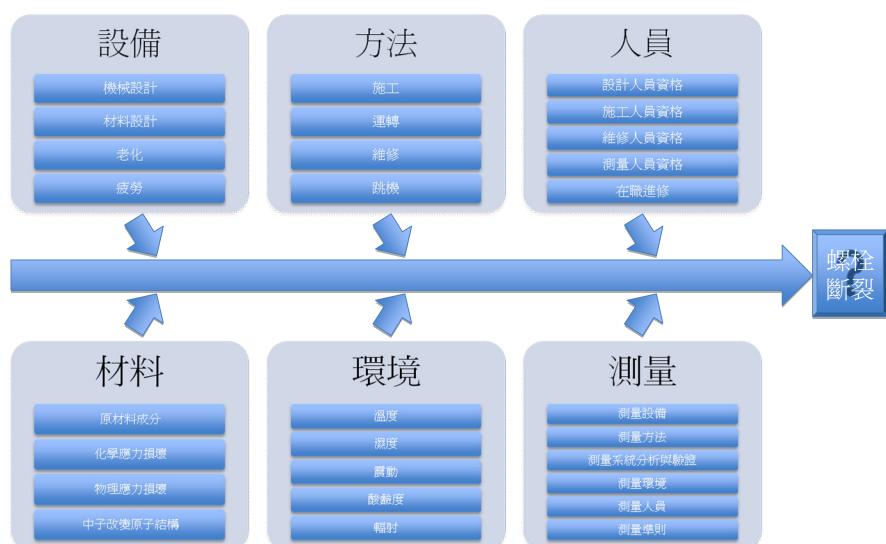
2. 反應爐重大管線洩漏

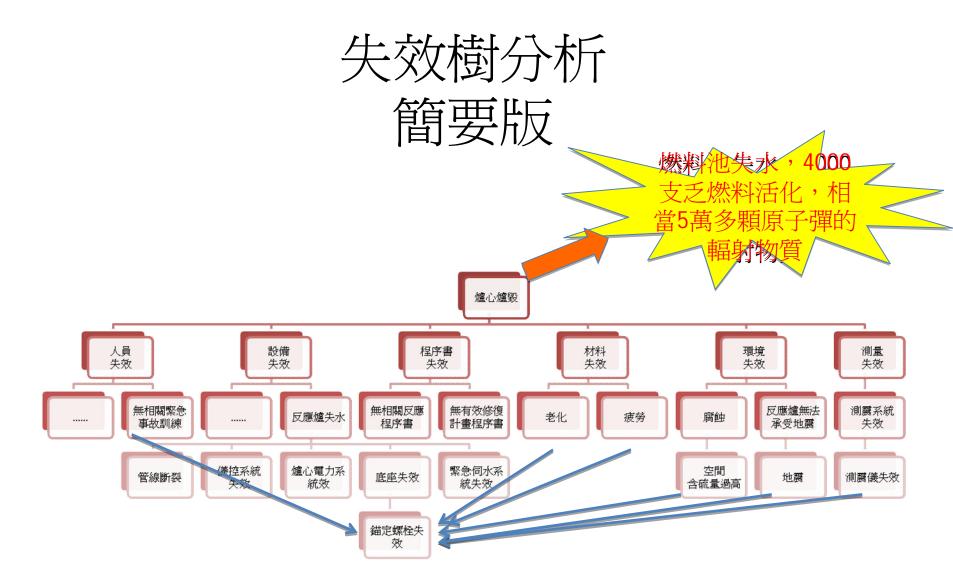
3. 爐心熔毀

BWR 核子爐底部的厚度為 18cm,其下呈現蜂巢式的格子狀結構。其中鋪設著被稱為「控制棒驅動機組 (CRD) housing」的配管群,其間還穿雜著計測用配管。這些計測用配管的管壁僅有 6mm,因此極端地說,核子爐的底部其實只有 6mm 的防禦厚度。-- 菊地洋一,日本核工專家,美國奇異公司企劃工程管理主任

1. 底座無法固定反應爐

肇因分析

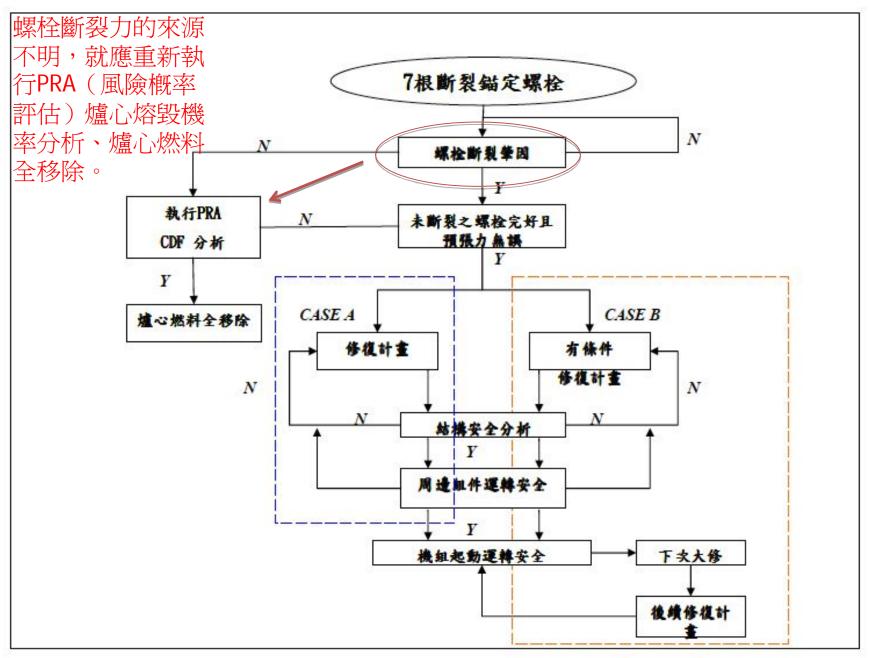

事實


- 運轉超過30年
- 螺栓斷裂
- 材質、安裝、環境不→・ 金相分析
 良
 斷型代表
- 螺栓能夠承受極大的 拉力
- 斷裂位置分布

需要分析

- → ・ 老化與疲勞
- → ・ 化學應力與機械應力
 - 斷裂代表極大的力量 造成
 - 某種系統性巨大的力量造成

螺栓斷裂魚骨圖分析



PRA或失效模式要找出「肇始事件(Initial Event/Top Event)」

金相分析不是肇因分析

- 4月25日的專案審查會上,核管處長陳宜彬 說: 今天就螺栓做的金相檢查等等,但是 他不代表是所謂的肇因分析,先要講清 楚,不能把(核研所)的報告當作是你們 的肇因分析,因爲所謂的肇因分析的話, 你要找出來力的來源是什麼?
- 至5月14日的專案會議,台電所謂的肇因分析,仍是核研所的金相分析,力的來源是 什麼?仍然一無所知。

四、肇因分析

1. 金相/裂紋形貌觀察摘要:

編號	裂紋起始	裂紋深度	裂紋形貌	起始區形貌	成長區形貌	其他	備註
A2	螺桿區	斷裂	平坦	表面損傷 沿晶裂縫 腐蝕破壞形貌	疲勞裂紋	熱處理不良 硫化物夾雜	金相分析
C6	螺牙	斷裂	平坦斜面	牙根部起始 沿晶裂縫 腐蝕破壞形貌	疲勞裂紋	熱處理不良 硫化物夾雜	金相分析
D14	螺牙	幾近斷裂	平坦斜面	表面損傷 沿晶裂縫 腐蝕破壞形貌	疲勞裂紋	熱處理不良 硫化物夾雜	金相分析
B10	螺牙	5~6mm	由螺紋向螺 栓內部及向 下延伸	牙面起始 沿晶裂縫 腐蝕破壞形貌	疲勞裂紋	硫化物夾雜	金相分析 /Phased Array
B13	螺牙	4mm	無明確方向			由 Phased Array超音	Phased Array
C9	螺牙	1mm	無明確方向			波檢測其裂 紋形貌與 B10類同, 判斷起始區 與B10相同	Phased Array
D11	螺牙	8mm	由螺紋向螺栓內部及向				Phased Array
1	C 150 To		下延伸			240104414	

台電的肇因分析,只有斷裂金相/裂紋形貌,沒有造成斷裂的「力」的來源

不符合肇因分析的 基本要求!

四、肇因分析(續)

材料瑕疵(如:硫化 物夾雜) 30多年前的材料全部都不合格,即為「普遍原因」,並應 追究當年採購、驗收責任。

安裝不當->應力集 中或表面缺陷

階段性腐蝕環境

環境因素,亦為「普遍原因」。 為何不談核二廠基地的硫磺溫泉礦源問題? 應力腐蝕龜裂

不同長度之沿晶

多少安裝不當?當年報 刻 紋 告爲何?30多年各種的

的「力」已經造成老

化、疲勞的「普遍原

運轉中負荷

長裂紋,釋放大幅預力, 承受較高之疲勞負荷, △K大於門檻值疲勞性裂 紋成長至斷裂

大

短裂紋,些微預力釋放, 承受較低之疲勞負荷, △K小於門檻值或在門檻 值區域無裂紋成長或成長 速率極為緩慢

台湾重力公司

普遍原因 vs. 特殊原因 Common Cause vs. Special Cause

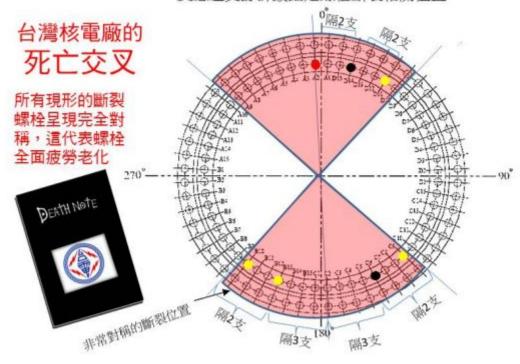
- 普遍原因來自系統、全面的,除了全面系統性的設計變更外,沒有辦法以局部方式來改善或控制。
- 特殊原因來自局部的,可以消除特殊原因而獲 得改善或控制。
- 今天造成螺栓斷裂的「力」的來源爲何?台電報告都沒有說明,但從上述台電的報告,顯示造成斷裂形貌是來自系統原因,但是卻刻意避開了「疲勞」、「老化」這兩個事實,亦即來自於系統性的「普遍原因」

核二廠1號機反應爐支撐裙板錨定 螺栓破壞及疲勞評估報告

台灣電力公司 101.5.14

五、結論

- ✓ 反應爐支撐裙板錨定螺栓承受設計基準最嚴苛之 故障狀況(SSE+LOCA)之負載時,受力最嚴重之 螺栓發生脆斷時之臨界裂縫深度為0.397 in (10.08 mm),因此,假設目前錨定螺栓有現存2.5mm之 裂縫深度,在發生SSE+LOCA時,不致有發生立 即斷裂之疑慮。
- ✓ 錨定螺栓承受地震力(包括SRV沖放)交變應力, 裂縫之疲勞壽命為3.84×10⁵ cycles。估計每次強震 歷時1分鐘,則應力循環數為498 cycles (8.29×60), 保守估計每年發生1次,則運轉40年發生上列交變 應力循環數不超過19896 cycles (<<3.84×10⁵),換 言之,此項負載對反應爐支撐裙板錨定螺栓之疲 勞破壞沒有威脅性。


這是一份自相矛盾的報告 唯一的功能,就是證明台電說謊

- 如果按照這份報告所稱,即使現在螺栓裂了 2.5mm,40年運轉也不會有問題。
- 但事實上,核二廠運轉30多年,就已經斷裂了 7根。
- 這份結論與事實完全不符的報告,原能會若能接受,代表台灣知識份子的沈淪!也是對人類智慧的侮辱!與宦官趙高在秦二世面前指鹿爲馬無異。原能會與專家是「秦二世」嗎?
- 三哩島、車諾堡、福島核災前1分鐘,相信所有核能專家都可以保證它們的安全性。但是核 災已是註定的。

貓定螺栓斷裂位置呈對稱分布, 顯示反應爐內的剪力應力無法否認。 這絕不可能是「巧合」

RPV SUPPORT SKIRT ANCHOR BOLTS

反應爐支撐群鈑錨定螺栓斷裂相關位置

● 断裂: A2

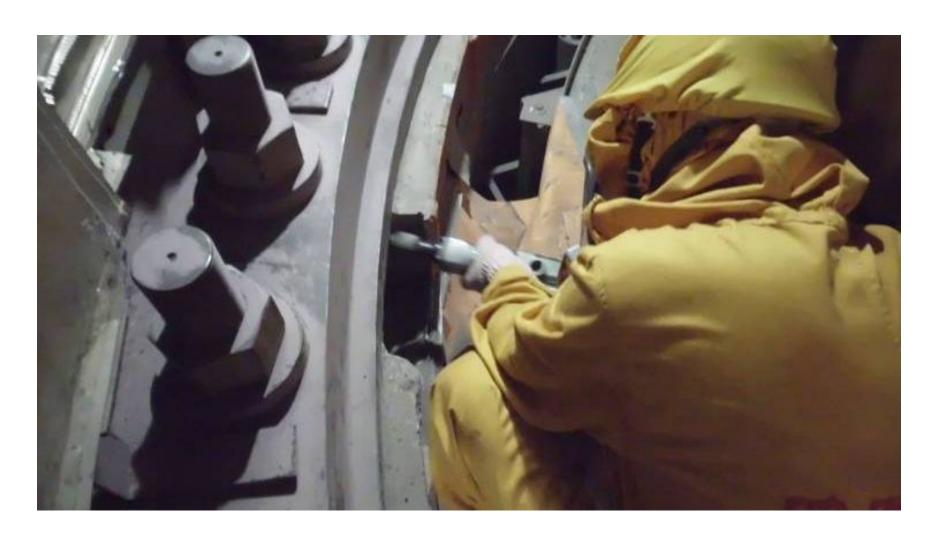
● 背波消失(No backwall reflection):C6, D14

裂痕跡象 (Indications): B10, B13, C9, D11

所謂「修復計畫」 至今仍未公審杳渦 奇異的計畫內容,以及 起碼的保固範圍。 何來一修復完成,安全 無虞」可言?

台電的錨定螺栓的修復計畫???

- 核二廠1號機反應爐基座錨定螺栓系統內圈斷裂7根,3月底,台電原稱更換3根錨定螺栓,後更換6根,最後更換7根。
- 這樣一月數變的「更換計畫」,如何是修復計畫?而台電在4月14日新聞稿:「核二廠一號機更換錨定螺栓作業」已完成更換修復,經奇異公司確認符合原設計要求,機組可安全運轉。」
- 「更換計畫」≠「修復計畫」!
- 原能會審查過台電花了300萬美金(約折合1億台幣)付給奇異的「修復計畫」嗎?
- 已經列爲廉政署偵辦的台電八大弊案之一。


台電所謂的原材料、原設計、原工法不需送原能會先行審查。 這說法通嗎?

- 這批材料和30多年前建廠的材料顯然不同,包括爐次、批號,以及「原」材料已受到30多年的輻射、溫度、濕度、化學、震動等交互應力反覆作用,新材料如何與原材料相符?
- 原材料 從核研所報告,已證明原材料有問題,不符合材料認證測試報告(Certified Material Testing Report, CMTR)內容,原材料本身都有問題。如果與原材料相符,豈不又有同樣的問題?

- 原設計是完整的支架,而現在核二廠已經 把底座支架的鋼板都焊開了,還是「原設 計」嗎?
- 原設計底座支架的完整性還存在嗎?這整 片完整的鋼板是分散螺栓的力的,現在其 功能如何?
- 這等於是把汽車底盤的大樑鋸斷,再焊回去,這樣的車誰敢坐?

施工時把基座鋼板焊斷

掏空原來的水泥 再填進去的水泥還會依然牢固嗎?

再把鋼板焊回去 還能保證原有的功能與強度嗎?

新螺栓與舊螺栓並列

- 「原工法」,為了平衡壓力,是用油壓平均分給正圓形底座四個象限的相對位的螺栓,而且是用不同間隔順序鎖上螺栓。當時反應爐沒有安裝上去,也沒有輻射,工人可以安全、有充裕時間安裝。
- 現在更換螺栓,已經是反應爐安裝上30多年,空間狹小,充滿輻射線,傷害工作人員,根本不可能用「原工法」施工。

操作空間極為狹小,且充滿輻射 爲什麼這位工人背後應有的輻射屏蔽不見了?

核四錨定螺栓施工現場用捲尺測量中心點

核四錨定螺栓安裝極爲粗糙,根本無法令人接受

錯定螺栓有如得了牙周病 整排牙齒掉光光

- 錨定螺栓與反應爐「唇齒相依」,現在1號機 內側斷裂7根,2號機去年斷裂1根,台電都沒 有完整的解釋。只以測震儀壞了、金相分析斷 裂形貌來替代「肇因分析」
- 從現有的事實來看,可以斷言,錨定螺栓斷裂絕非個案,而是一個系統性的「普遍原因」造成,機械與材料的「老化」與「疲勞」才是根本原因。
- 台電用「超音波」探測螺栓,完全無法查證老 化與疲勞的問題。

報告人背景資料

- 方儉
 - 綠色消費者基金會董事長
- 經歷
 - 美國品質學會中國首席代表
 - 美國三大汽車公司供應商品質管理系統(QS-9000, ISO/TS 16949)總培訓師
 - 福特汽車公司全球採購中國採購中心供應商品質經理
 - 美國 FDA HACCP 稽核員培訓師
 - 台電、中油、民航局...等Y2K專案管理與風險評估
 - 1990地球日台灣協調人
 - 1988、1990行政院新聞局新聞類金鼎獎公共服務獎