國立清華大學環境輻射監測年報

民國 104 年 1 月至 12 月

原子科學技術發展中心

中華民國 105 年 4 月修訂

摘要	/Abstract	1					
<u> </u>	前言	2					
_,	監測目的與內容	3					
\equiv `	監測方法	11					
四、	監測結果與討論	12					
五、	環境監測結果劑量評估與檢討分析23						
六、	結論	27					
	圖目錄						
圖1	104年清華大學環境輻監測取樣位置圖	5					
圖2	2 104年熱發光劑量計偵測站劑量率變動圖 13						
圖3	104年熱發光劑量計各偵測站劑量率變動圖	16					
圖4	104年連續輻射偵測劑量率變動圖(生物科技館)	17					
圖5							
圖6	104年空浮微粒活度濃度變動圖(生物科技館)	21					
圖7	圖7 104年空浮微粒活度濃度變動圖(加速器館側)22						
	表目錄						
表1	清華大學環境輻射監測項目(104年)	4					
表2	環境試樣分析方法簡表	11					
表3	土壤與湖底泥試樣放射核種活度濃度範圍(104年)	19					
表4	水試樣總貝他活度濃度年報表(104年)	19					
表5	植物及農產品試樣放射核種活度濃度範圍(104年)	19					
表6	空浮微粒抽氣試樣放射核種活度濃度範圍(104年)	20					
表7	落塵試樣放射核種活度濃度範圍(104年)	20					
表8	8 熱發光直接輻射偵測劑量估算表(104年) 25						
表9	清華大學劑量評估報表(104年)	26					
	附 錄						
附錄	1. 環境直接輻射連續監測平行監測說明	28					
附錄	2. 湖底泥試樣(SL13與SL14)歷年 ⁶⁰ Co與 ¹³⁷ Cs活度變動趨勢	33					
附錄	3. 生物科技館東側土壤(SL12)歷年 ¹³⁷ Cs活度變動趨勢	35					
附錄	付錄4. 指標植物試樣木麻黃(PT11)與龍柏(PT12)歷年 ¹³⁷ Cs活度變動記錄						

摘要

本校104年執行環境輻射監測作業,以偵測校內核設施周圍環境之輻射變化狀況,並確保校園內外環境之輻射安全。茲將偵測結果摘要如下:(1)環境熱發光輻射劑量率介於0.046~0.083微西弗/小時;(2)環境直接輻射連續偵測變動範圍介於0.034~0.120微西弗/小時;(3)空浮微粒總貝他活度介於0.16~2.03毫貝克/立方米,主要測得之天然核種為⁷Be;(4)水試樣總貝他活度介於21~302毫貝克/公升之間,且未測得人工核種;(5)植物試樣測得天然放射核種與微量¹³⁷Cs;(6)農產品試樣未測得人工放射核種;(7)土壤與湖底泥試樣測得天然放射核種與微量⁶⁰Co與¹³⁷Cs;(8)落塵試樣亦以天然核種⁷Be為主,其活度介於0.19~1.8貝克/平方公尺·日。由各項環境監測結果顯示其屬背景輻射變動範圍且低於預警基準;依此估算核設施周圍環境民眾接受的輻射劑量均遠低於法規的劑量限值。

Abstract

The environmental radiation monitoring was conducted during 2015 to ensure radiation safety in the surroundings of the research reactor in the University. The following summarizes the monitoring results: (1)The direct radiation dose rates with TLD were varied between 0.046~0.083 μSv/h; (2)The direct radiation dose rates with radiation monitoring network system were varied between 0.034~0.120 μSv/h; (3)The radioactivities of airborne samples by beta counting were varied between 0.16~2.03 mBq/m³; ⁷Be was detected; (4)The radioactivies of water samples by beta counting were varied between 21~302 mBq/L, no artificial radionuclide was found; (5)Radionuclide analysis of vegetation samples: naturally occurring radionuclides and trace ¹³⁷Cs were detected; (6) Radionuclide analysis of agricutural products: no artifical radionuclide was detected; (7)Radionuclide analysis of soil samples: naturally occurring radionuclides and trace ⁶⁰Co and ¹³⁷Cs were detected; (8)Radionuclide analysis of fallout samples collected with water tray: naturally occurring radionuclide ⁷Be was found, varying between 0.19~1.8 Bq.m⁻².d⁻¹. All monitoring data and the derived radiation dose are within the variation of the background radiation and well below the regulatory levels.

一、前 言

國立清華大學核子設施自開始運轉迄今已五十餘年,提供師生研究教學使用。 依據行政院原子能委員會頒佈之「游離輻射防護法」第十條之規定,設施場所應實 施環境輻射監測,且輻射監測應包括劑量率測定及環境試樣之活度分析。本報告內 容乃104年本校對其核反應器設施四周環境之輻射劑量及放射性物質活度變化所進行 之偵測及結果評估。

二、監測目的與內容

本校之環境輻射監測,係指對輻射管制區以外之校區,以及校園周圍環境所實施 之輻射量測。目的在瞭解上述地區之輻射劑量及放射性物質含量,並據以評估環境民眾 所可能接受之影響。

本(104)年環境輻射測監工作內容分為兩大部分:一為直接輻射偵測,主要為偵測環境中加馬輻射之累積劑量,包括宇宙射線、地表之天然輻射及人工輻射;另一為環境中放射性物質活度之量測,所採用之偵測方法計有(1)累積效應偵測,以土壤、草試樣及指標生物為對象,(2)水試樣偵測——包括飲用水、湖水、溝水,(3)農產品,(4)空浮微粒及落塵偵測——包括抽氣法及水盤法。採用之計測系統主要為低背景貝他偵檢系統及加馬能譜偵檢系統,詳細之偵測項目、取樣頻度、及試樣種類示如表1。各取樣地點示如圖1。各項偵測結果與劑量評估方式依據原能會「環境輻射監測規範」附件四。空氣與水攝入量採「游離輻射防護安全標準」所訂定之值。使用因子採用農委會「糧食供需年報」每人每年純糧食供給量資料。

表1 清華大學環境輻射監測項目(104年)

試樣類別		頻 度	站數	分析類別	件次	備 註
環境直接輻射		每季	22	累積劑量	88	含背景站
		連續	2	劑量率監測	2	
土壤試樣	表土壤	每半年	18	γ	36	含背景站
	湖底泥	每季	2	γ	8	
水試樣	河湖水	每月	2	$G\beta,\gamma$	24	THOR附近。註(1)
	河湖水	每季	11	$G\beta, \gamma$	44	含背景站;3H量測頻度
	溝水	每半年	13	$^{3}\mathrm{H}$	26	為每半年。
	地下水					
	飲用水					
植物試樣	植物	每半年	14	γ	28	含背景站
	龍柏葉	每季	2	γ	8	THOR附近。註(3)
	木麻黄					(指標植物)
農產品	稻米	每半年	2	γ	4	水源里
	葉菜類					
空浮微粒		每週	2	Gβ	104	註(2)
		每月	2	γ	24	
落塵(大水盤)		每月	1	γ	12	生物科技館

註(1): 水試樣之總貝他分析結果若超過0.30貝克/升時,方執行加馬能譜分析。 G β 指總貝他計測。

註(2): 每週空氣微粒之總貝他分析結果若超過3.7毫貝克/立方公尺時(約為背景值的10倍), 方執行加馬能譜分析。

註(3): THOR係指清華水池式反應器。

水源里

圖 1.1 國立清華大學環境輻射監測取樣位置圖

圖 1.2 國立清華大學環境輻射監測取樣位置圖(連續劑量率、空浮微粒、落塵、農產品)

圖 1.3 國立清華大學環境輻射監測取樣位置圖(累積劑量率)

圖 1.4 國立清華大學環境輻射監測取樣位置圖(土壤及底泥)

圖 1.5 國立清華大學環境輻射監測取樣位置圖(水試樣)

圖 1.6 國立清華大學環境輻射監測取樣位置圖(植物試樣)

三、監測方法

值測方法分為環境加馬直接輻射及環境試樣放射性活度分析兩種。前者以熱發光劑量計(TLD)、連續值測為主,後者則包括總貝他活度計測、加馬能譜分析等。加馬核種計測係使用純鍺值檢系統作加馬能譜分析,主要對象核種包括錳54、鈷60、銫137、碘131等。試樣之分析項目、前處理方法及計測條件示如表2。

表2 環境試樣分析方法簡表

試樣類別	分析類別	分析方法簡介	分析作業程序書
環境直接輻射	累積劑量(每季) 劑量率(連續)	以計讀儀計讀硫酸鈣熱發光劑量計 以環測用充氣式偵檢器連續監測環	RML-OS-05
		境加馬劑量率。	RML-OS-06
土壤試樣	加馬核種	烘乾篩濾後裝罐,以純鍺偵檢系統	RML-OS-01;
(土壤,底泥)		(GC3520, Canberra)計測	RML-OS-02
水試樣(地下	總貝他	蒸乾灰化後以低背景比例偵檢系統	RML-OS-01;
水,河湖水,		(WPC9550; Protean-Instrument	RML-OS-02;
溝水,飲用水)		Corporation)計測	RML-OS-03;
	加馬核種	直接以純鍺偵檢系統計測上述試樣 蒸餾純化後直接以低背景液體閃鑠 偵檢系統(Tri-Carb2910; PerkinElmer)計測	RML-OS-04
植物,農產品	加馬核種	灰化後裝罐,以純鍺偵檢系統計測	RML-OS-01;
			RML-OS-02
空浮微粒	總貝他	以低容量空氣取樣器,抽約400立方	RML-OS-01;
		米(每周)容積空氣後,待24小時後再	RML-OS-02;
		置於低背景比例偵檢系統	RML-OS-03
		(WPC9550; Protean-Instrument	
	加馬核種	Corporation)直接計測濾紙 累積一月之濾紙後直接以純鍺偵檢	
	川崎水生	系領一万之應紙後且按以純銷頂傚系統計測	
落塵(大水盤)	加馬核種	蒸乾灰化後以純鍺偵檢系統計測	RML-OS-01;
			RML-OS-02

四、監測結果與討論

1. 環境加馬直接輻射

於清華大學校園周圍設置22個硫酸鈣(CaSO₄)熱發光劑量計偵測站,以偵測環境加馬直接輻射劑量率。各偵測點之劑量率變化如圖2及圖3所示,變動範圍介於0.046~0.083微西弗/小時之間。各測站偵測結果均低於預警基準1.0微西弗/小時。

環境直接輻射連續偵測於生物科技館頂樓及加速器館側進行偵測,茲將104年全年劑量率變動(每日最大值,最小值與平均值)繪於圖4圖5中。偵測變動範圍介於0.034至0.120微西弗/小時之間。日平均變動範圍則於0.045至0.083微西弗/小時之間,均低於預警基準。全年平均值為0.057及0.059微西弗/小時。加速器館於4月1日至7日與5月25日至6月22日因系統更新所造成的數據缺漏期間,以鄰近的熱發光劑量測站(TLD08)之測值(0.053微西弗/小時)為輔助偵測,評估該期間並未有異常輻射情況。

本年度因生物科技館頂樓測站儀器更換而進行平行監測,詳細說明如附錄2。新舊系統之監測值的差異乃兩者之間的儀器系統誤差,新系統於裝設時已於儀器校正實驗室校正,因此其測量值為可追溯至國家標準。另外,考慮增購備用儀器,以做為系統故障時輻射偵測之替代使用。連續監測儀將設置備電系統,以因應於斷電時,可維持系統功能至少72小時。

2. 環境試樣之活度分析

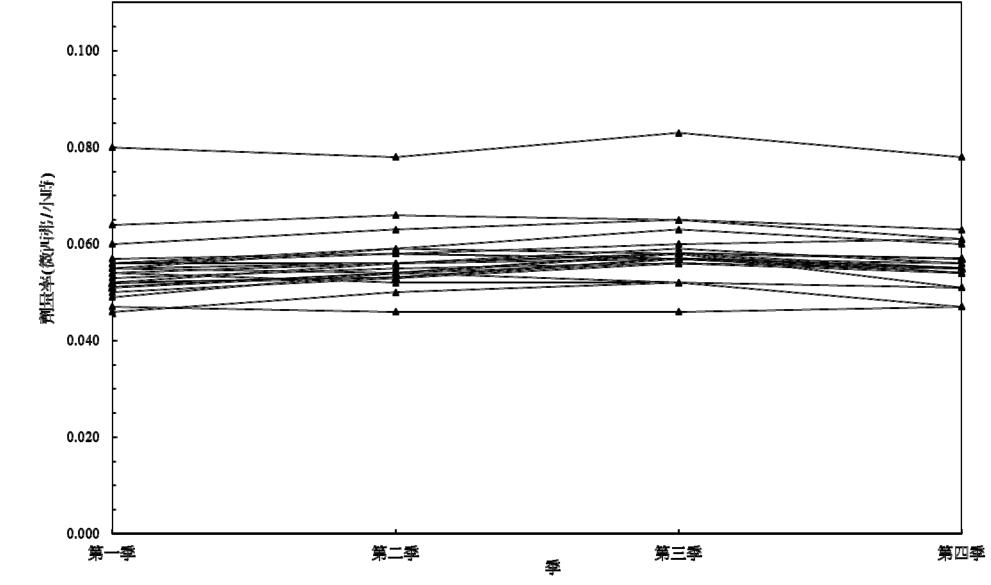
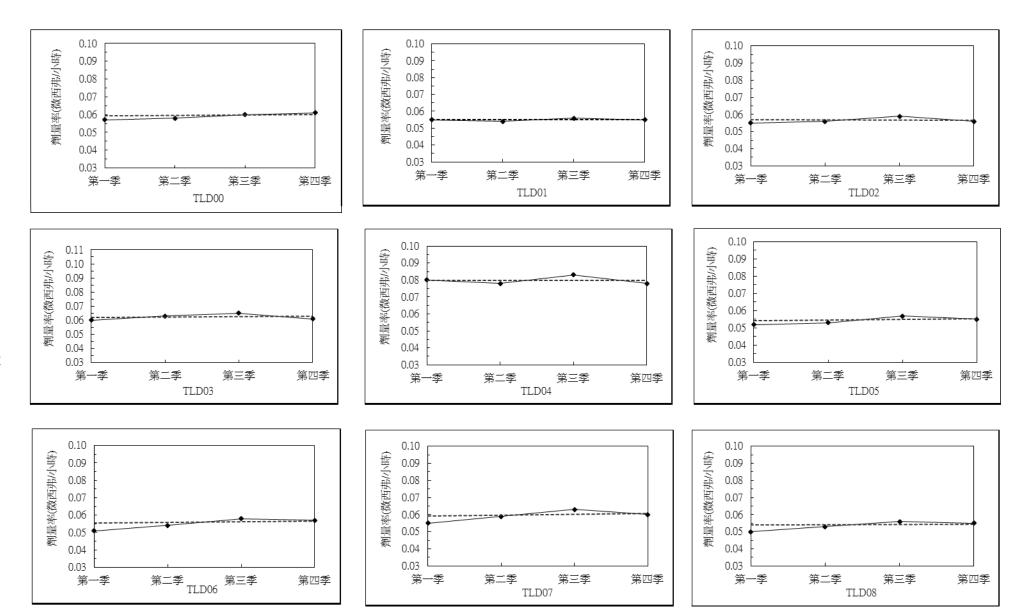
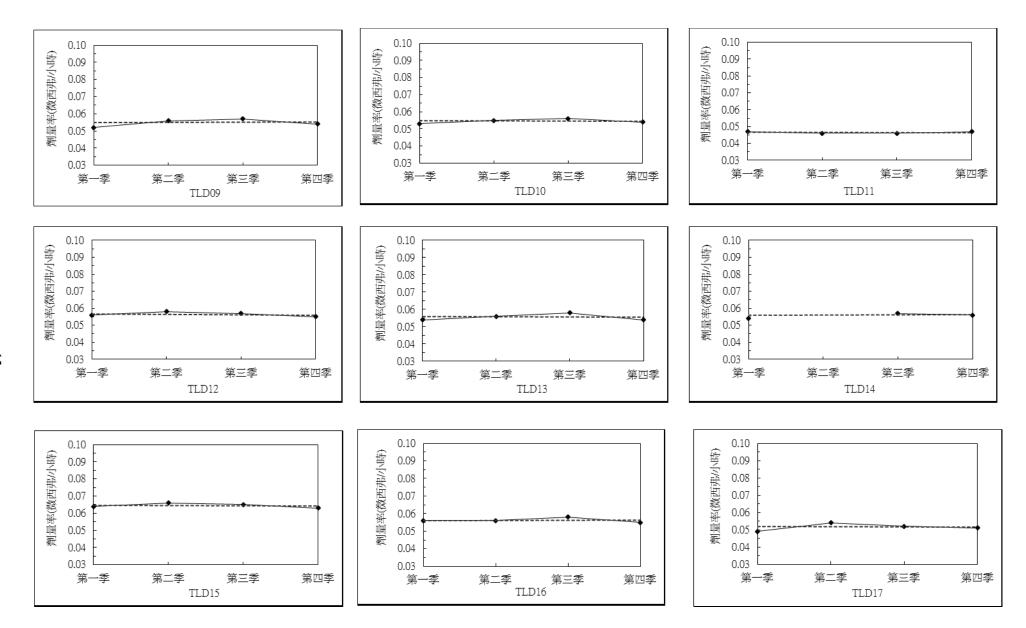
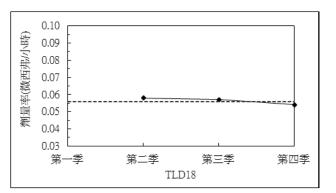
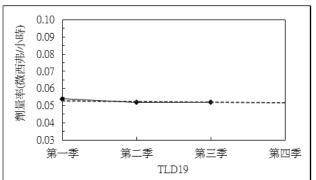
(1) 土壤與湖底泥

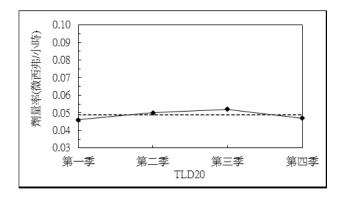
土壤與湖底泥試樣分析結果均已列表於各季報。在清華校園內可分析到微量之全球核試爆落塵及校園污染殘留核種¹³⁷Cs與⁶⁰Co,低於預警基準。土壤與湖底泥試樣中各核種之活度濃度範圍如表3所示,均於歷年(99~103年)的活度變動範圍之內。湖底泥試樣(SL13與SL14)歷年活度變化趨勢如附錄2。昆明湖底泥(SL13)的 ⁶⁰Co與¹³⁷Cs活度已明顯下降至背景範圍,荷塘(漫濾池)底泥(SL14)中的⁶⁰Co與¹³⁷Cs為早期因核反應器與同位素館廢液之外釋所致,於96~99年間因淤泥堆積而呈表面活度下降,於100年後之清淤工程後¹³⁷Cs則維持在30貝克/公斤以下,而⁶⁰Co則小於10貝克/公斤。早年因校園污染而較高¹³⁷Cs活度的土壤偵測點(SL12),該處土壤中¹³⁷Cs活度分佈不均勻,會隨採樣地點之不同呈現較大的變異,然其歷年活度均小於200貝克/公斤,低於¹³⁷Cs預警基準(740貝克/公斤),其歷年變動趨勢如附錄3。

(2) 水樣

(3) 植物及農產品

在清華校園內外取草樣為主,並以木麻黃、龍柏作為植物指標試樣;農產品以稻米及蔬菜為主。農產品均未測得人工放射性核種。植物試樣測得微量¹³⁷Cs核種,均低於預警基準;人工核種之活度變動範圍如表5,其活度於預警基準(74貝克/公斤)。歷年變動如附錄4說明。


圖2 104年熱發光劑量計偵測站劑量率變動圖

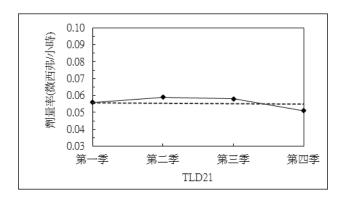
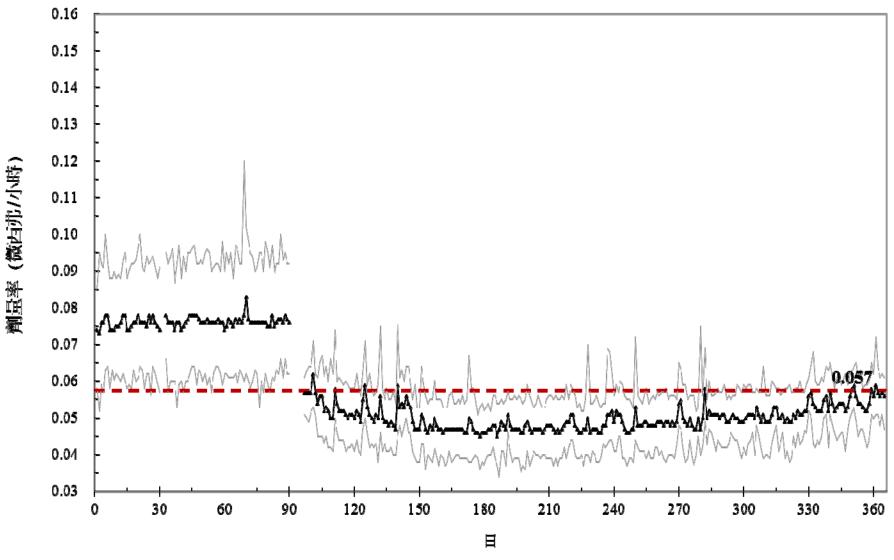
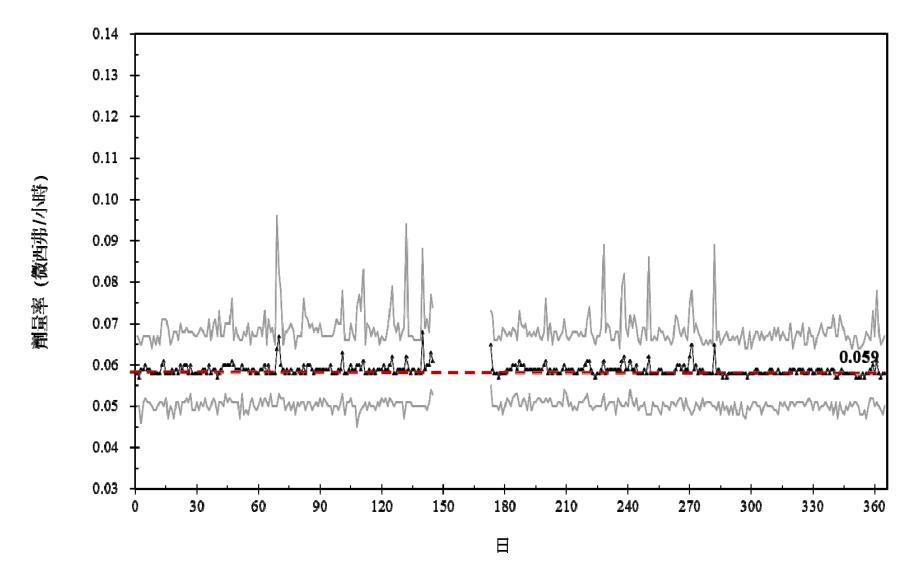




圖3 104年熱發光劑量計各偵測站劑量率變動圖

註: : AT1121 連續偵測儀器於 4/1~4/7 進行測試並完成建置。

圖 4 104 年連續輻射偵測劑量率變動圖(生物科技館)

註:20150525-20150622 偵測儀器信號異常進行修復。

圖5 104年連續輻射偵測劑量率變動圖(加速器館側)

表 3 土壤與湖底泥試樣放射核種活度濃度範圍(104年)

		活度濃度範圍(貝克/千克·乾重)			
		Co-60 Cs-137			
本年度範圍	土壤		—~151		
	底泥	$-\sim 6.8$	− ~21		
歷年範圍(99~103	3年) 土壤	_	~631		
	底泥	~ 8.6	− ~32		

表 4 水試樣總貝他活度濃度年報表(104年)

<u>→</u> +++ → + + + + + + + + + + + + + + + + +		活	度濃度(毫貝克/公	升)
試樣編號	取樣地點 -	平均值	最 高	最 低
PW00	新庄里地下水(背景站)	58.5	66	51
PW01	THOR前漫濾池(每月)	144.7	271	73
PW02	THOR東溝水(每月)	148.1	224	110
PW03	環測實驗室自來水	41.0	62	26
PW04	梅湖	146.5	171	91
PW05	靜齋前池水	122.0	136	114
PW06	昆明湖	107.8	143	80
PW07	廢水排水口	235.3	302	91
PW08	成功湖	66.5	70	63
PW09	交大光復區	115.0	137	87
PW10	水源里地下水	47.3	78	33
PW11	自來水廠	38.8	71	21
PW12	寶山路水溝	99.0	132	86

註: 總貝他分析結果大於0.3貝克/公升之試樣,執行加馬能譜核種分析,人工放射性 核種均低於登錄值。

表 5 植物及農產品試樣放射核種活度濃度範圍(104年)

		活度濃度範圍(貝克/千克·鮮重)		
		I-131	Cs-137	
本年度範圍	植物		- ∼2.2	
	農產品		_	
歷年範圍(99~103年)	植物	−~2.1	—~12	
	農產品			

3. 空氣微粒及落塵之活度分析

(1) 空浮微粒

空浮微粒取樣地點為生物科技館及加速器館側,其每週總貝他活度變動介於 0.16~2.03毫貝克/立方米,如圖6及圖7所示,年平均活度分別為0.75及0.86毫貝克/立方米,變動範圍遠低於預警基準90毫貝克/立方米。主要加馬能譜測得天然放射性核種⁷Be,其核種活度範圍如表6所列。本年度未測得人工放射性核種,歷年(100年)監測所測得之微量人工放射性核種¹³⁷Cs與¹³⁴Cs則源於日本核災影響(於民國100年)。

(2) 落塵(大水盤)

大水盤落塵取樣地點為生物科技館,本年度之加馬能譜活度分析結果如表7所示,主要為天然核種⁷Be等,其活度介於0.19~1.8貝克/平方公尺.日。民國100年後因受日本核災落塵影響,測得微量¹³⁷Cs活度。

表 6 空浮微粒抽氣試樣放射核種活度濃度範圍(104年)

活度濃度範圍(毫貝克/立方米)							
Be-7 I-131 Cs-134 Cs-137							
本年度範圍							
生物科技館	$1.4 \sim 5.0$	_	_	_			
加速器館側	1.5~5.5	_	_	_			
歷年範圍(99~103年))						
生物科技館	$0.5 \sim 8.7$	_	$-\sim 0.03$	$-\sim 0.05$			
加速器館側	$0.8 \sim 6.9$	_	$-\sim 0.03$	$-\sim 0.03$			

表 7 落塵試樣放射核種活度濃度範圍(104年)

		70人人人人人	T)				
	活度濃	活度濃度範圍(貝克/平方公尺.日)					
	Be-7	I-131	Cs-137				
本年度範圍	$0.19 \sim 1.8$	_	-~1.2×10 ⁻³				
歷年範圍(99~103年)	$0.11 \sim 6.7$	_	$-\sim 2.4 \times 10^{-2}$				

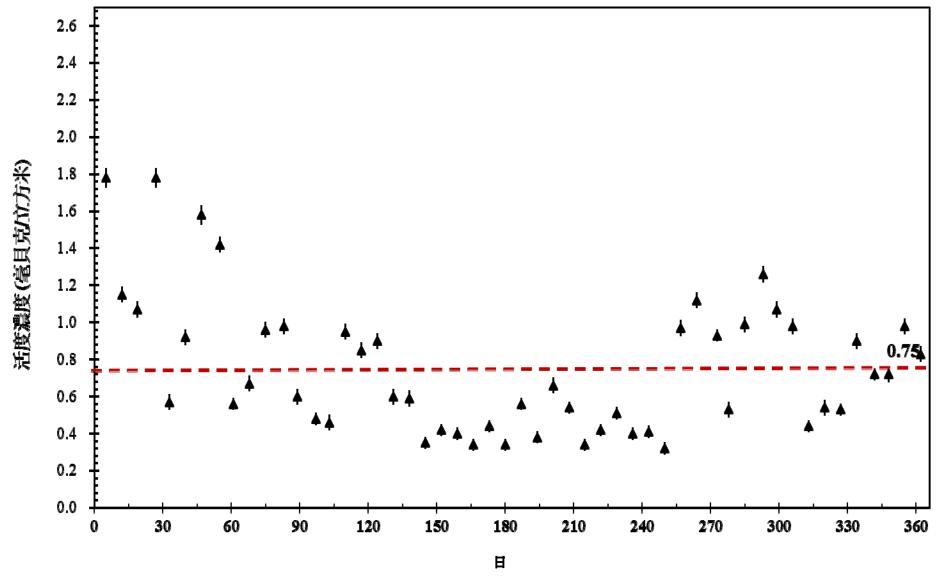


圖6 104年空浮微粒活度濃度變動圖(生物科技館)

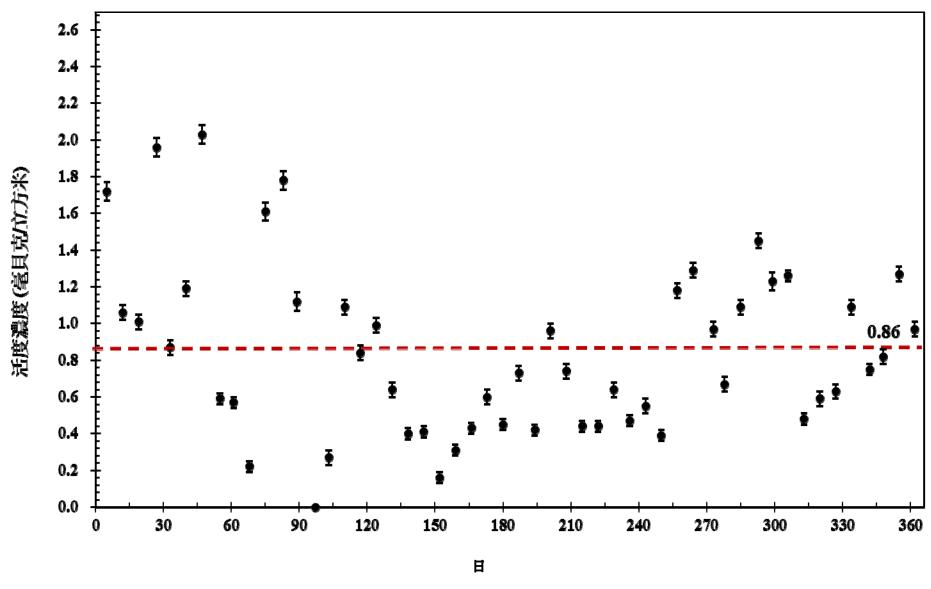


圖7 104年空浮微粒活度濃度變動圖(速器館側)

五、環境監測結果劑量評估與綜合分析

1. 環境輻射監測結果劑量評估

(1) 熱發光直接輻射劑量估算

熱發光直接輻射偵測結果所估算之淨劑量已列於各季報中,謹將全年估算結果 彙整於表8中,各站估算之淨劑量均為<MDA(小於0.05 mSv/年或0.025 mSv/ 季)。

(2) 地表土壤核種之體外劑量估算

土壤中人造放射核種造成之體外劑量估算如下式:

 $D(mSv/y) = 8760 \times S \times K \times H \times A$ $\overrightarrow{\pi} + \overrightarrow{\Psi}$

S=0.36(佔用因數)

 $K = 80 \text{ kg/m}^2$

H= 劑量轉換因數(60Co=8.28×10⁻⁹; 137Cs=2.08×10⁻⁹ mSv·m²/Bq·h)

A= 土壤核種活度(Bq/kg)

- (i) 依本校一般土壤試樣分析結果,大多含微量¹³⁷Cs於 10 Bq/kg 以內,此乃過往全球核試爆落塵影響,依SL02(較高者)測得之年平均活度 6.5 Bq/kg 估算得到之體外劑量為3.4×10⁻³ mSv/y。
- (ii) 因過去校園污染事件(非本校核設施運轉)造成之土壤¹³⁷Cs偏高地區,如 SL12(較高者)測得¹³⁷Cs活度平均值為101 Bq/kg,依此估算體外劑量為 0.053 mSv/y。

(3) 體內劑量之估算

(1) 空浮微粒吸入之體內劑量

依各站(PA01與PA02) ¹³¹I空浮微粒濃度結果估算(偵測低限值為0.1毫貝克/立方米)。以下式估算,顯示本年各測站均遠低於登錄值(1/1000毫西弗),註記為 < 0.001毫西弗。

約定有效劑量(毫西弗/季)=平均空浮微粒濃度(貝克/立方米)× 年吸入量 (8103立方米/年)×劑量轉換因數(7.4×10⁻⁹毫西 弗/貝克)。

(2)農產品攝入之體內劑量

農產品試樣不含人工核種或低於偵測低限值(如¹³⁷Cs為0.1 Bq/kg)。依下式估算得到小於 10⁻³ mSv/y, 註記 < 0.001。(農產品年攝入量依農委會103年「糧食供需年報」每人純糧食供給量,稻米為46公斤,蔬菜為106公斤)。

約定有效劑量(mSv/y) = 嚥入核種活度 (Bq/kg)×年攝入量(kg/y)× 劑量轉換因數(1.3×10^{-5} mSv/Bq)

2. 環境監測結果比較與檢討分析

- (1) 本年(104年)度環境輻射監測結果顯示各項監測與分析結果均未超過法規之調查 基準,且落於背景輻射變動範圍之內。環境試樣中人工放射性核種的活度均落 於歷年(99~103年)的變動範圍之內。
- (2) 謹將本年(104年)環境監測結果劑量估算結果列於表9中,各項估算之輻射劑量均 遠低於法規限值。與上年(103年) 監測結果比較,並無顯著的差異

表8 熱發光直接輻射偵測劑量估算表(104年)

試樣編號	淨劑量				
	第一季	第二季	第三季	第四季	
TLD00	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD01	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD02	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD03	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD04	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD05	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD06	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD07	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD08	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD09	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD10	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD11	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD12	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD13	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD14	<mda< td=""><td>/</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	/	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD15	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD16	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD17	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD18	/	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD19	<mda< td=""><td><mda< td=""><td><mda< td=""><td>/</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td></mda<>	/	
TLD20	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
TLD21	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	

說明一:各站劑量值落於(歷次平均值±3×偏差)範圍內,淨劑量註記為<MDA(小於 0.05mSv/年或0.025毫西弗/季);偏差計算為 $\sigma = \sqrt{\sum (Xi - \overline{X})^2/n - 1}$ 。

說明二:"/"表示熱發光劑量計遺失。

表9 清華大學劑量評估報表(104年)

	體外曝露(毫西弗/年)			體內曝露(毫西弗/年)			
曝露途徑	TLD	地表	岸沙	空浮微粒	飲水	農畜產物	海產物
核設施	< MDA	_	*	_	*	_	*
核爆影響	/	3.4×10 ⁻³	/	/	/	/	/
其他影響	/	0.053	/	/	/	/	/

註 1: TLD 評估 0.05 毫西弗/年或 0.025 毫西弗/季,則註記小於 MDA。

註 2: "一"表未測得數據。

註 3: 各曝露途徑的有效劑量低於 0.001 毫西弗(<0.001 毫西弗)者,僅註記「-」,並加註「未達評估標準」。

註 4: 體內劑量評估係考慮 50 年的劑量積存。

註 5: 凡經評估所得最大個人劑量之設站地點,在計畫書中未規劃執行該項試樣(表示無此曝露途徑)者, 即於表格中直接標示「*」,並註明「最大個人劑量的地點無此曝露途徑」。

註 6: 核爆與其他影響乙欄,如不需評估者可以「/」表示,並註明「本項不需評估」。

註7:其他影響係指過往校園污染事件的背景輻射影響。

註 8: 清華大學劑量評估報告(103年)

	體外曝露(毫西弗/年)			體內曝露(毫西弗/年)			年)
曝露途徑	TLD	地表	岸沙	空浮微粒	飲水	農畜產物	海產物
核設施	< MDA	_	*	_	*	_	*
核爆影響	/	4.2×10 ⁻³	/	/	/	/	/
其他影響	/	0.019	/	/	/	/	/

六、結 論

本校104年環境輻射監測作業共計執行之分析件數為400件次以上,另有環境連續負測配合,對本校核子設施及周邊實驗室實施輻射監測以確保校園之輻射安全。各項偵測與分析結果均低於調查基準,且屬背景輻射變動範圍。依「環境輻射監測規範」附件四「體外及體內劑量評估方法」評估核設施作業及核爆落塵對環境民眾的影響,相較於往年並無顯著的變動。為求環境試樣偵測品質之保證,本中心定期參加財團法人全國認證基金會(TAF)與原能會輻射偵測中心舉辦之實驗室環境試樣比較分析試驗,另參加TAF游離輻射測試領域認可實驗室之認證。

附錄 1、環境直接輻射連續監測平行監測說明

1. 前言

因位於生物科技館頂樓 (R00100)之環境直接輻射連續監測系統使用已久,易於故障,故更換偵檢器與數值處理系統,於安裝新偵檢器後進行半年以上之平行監測,以確認新置儀器的可用性。

2. 新舊偵檢儀特性比較

位於生物科技館頂樓 (R00100)測站的輻射偵測儀原為充氣式偵檢器 (GammaTRACER),而新置的則為閃爍式偵檢器(AT1121),茲將兩者特性表列於下(表 1.1),而其能量依存性則分別如圖 1.1 與圖 1.2 所示。兩種儀器之使用能量範圍均涵蓋環境中天然與人造放射性核種之加馬能量,其介於 200 keV 至 1.5MeV(表 1.2)。

表 1.1 環境連續性直接輻射測量儀器說明

偵檢器	新置偵檢器	原使用偵檢器
偵檢器型式	閃爍式偵檢器(AT1121)	充氣式偵檢器(GammaTRACER)
量測功能	加馬輻射	加馬輻射
量測範圍	$50 \text{nSv/h} \sim 10 \text{Sv/h}$	20nSv/h~10mSv/h
靈敏度(cps/μSv/h)	70	無資料
能量依存性	15keV~60keV≤ ±35%	60keV~2MeV≦±30%
	$60 \text{keV} \sim 3 \text{MeV} \leq \pm 25\%$	
	(如圖 1.1 所示)	(如圖 1.2 所示)
偵檢器型式	有防電磁干擾設計	無資料

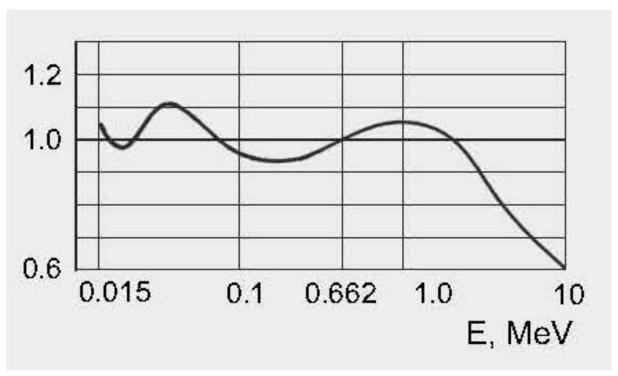


圖 1.1 閃爍式偵檢器(AT1121)能量依存性

GammaTRACER -BASIC-

Energy response (preferred direction) normalized to 662 keV (Cs-137)

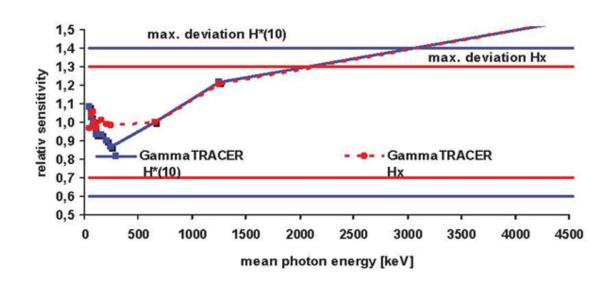


圖 1.2 充氣式偵檢器(GammaTRACER)能量依存性

表 1.2 環境中放射性核種主要加馬能量資料

放射核種	能量(keV)	豐度(%)	子核種
40 K	1461	10.7	
²³² Th 系列	239	43.3	²¹² Pb
	583	86	²⁰⁸ Tl
	911	29	²²⁸ Ac
²³⁸ U 系列	352	37.6	²¹⁴ Pb
	609	46.1	²¹⁴ Bi
⁴¹ Ar	1294	99.1	
⁶⁰ Co	1173	99.9	
	1332	100	
⁵⁴ Mn	835	100	
¹³¹ I	364	81.2	
¹³⁷ Cs	662	85.1	

3. 平行監測結果

- (1) 新置值檢器(AT1121)於安裝前先於本校輻射值檢儀校正實驗室進行校正(校正日期: 104 年 3 月 19 日)。
- (2) 茲將新舊偵檢儀偵測結果列於圖 2.1(平行監測期程:105 年 5 月 7 日至 105 年 12 月 31 日)

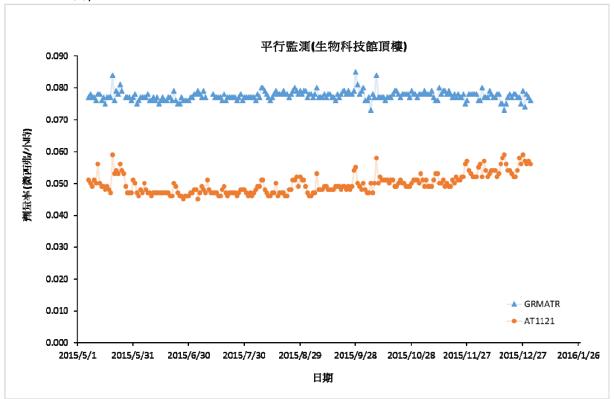


圖 2.1 連續監測站(R00100)平行監測結果

(3) 茲將新舊偵檢器於平行監測期間相對變動之比值繪如圖 2.2。依變動比值偏差(σ)與 變動比值平均值(ਓ)求得平行監測期間相對變動率為 6.35%(如表 1.3)。

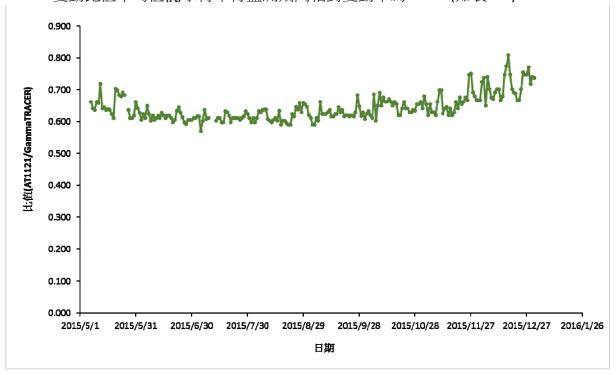
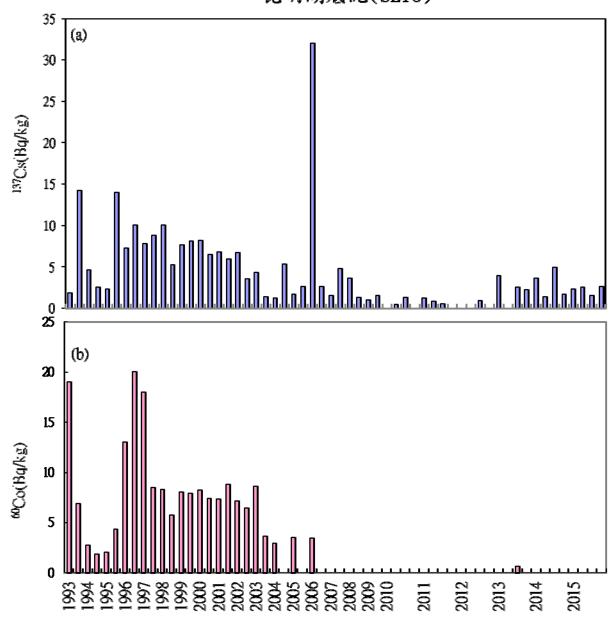
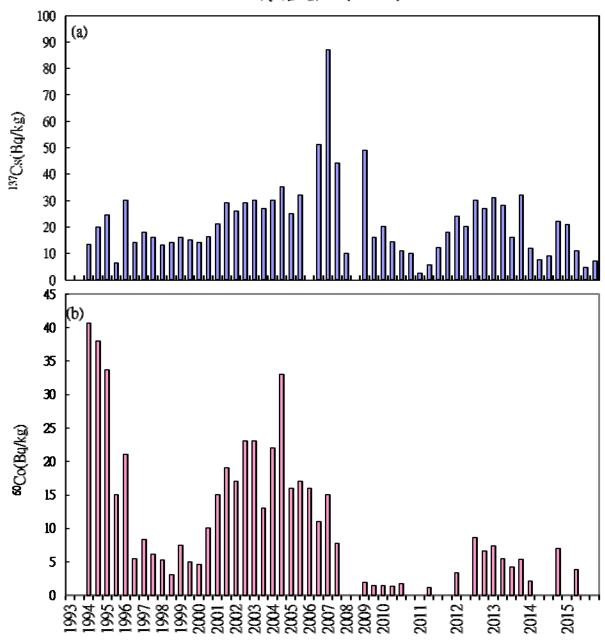


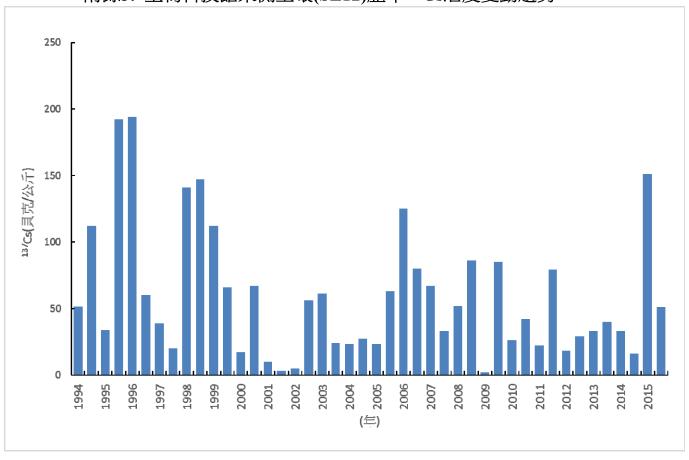
圖 2.2 監測結果相對變動比值(AT1121/GammaTRACER)

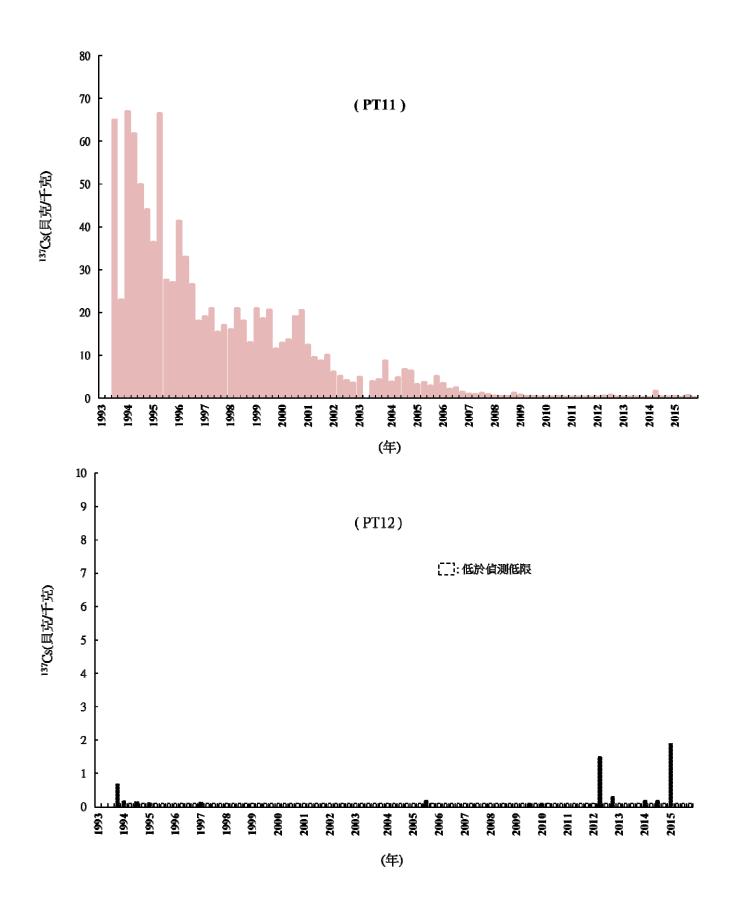

表 1.3 相對變動比值之平均值與偏差值

變動比值平均值(0.643
變動比值偏差(σ)	0.041
相對變動率(σ/χ)	6.35%


4. 結論

- 1. 環境直接輻射監測儀器使用之充氣式與閃爍式偵檢器,其能量範圍涵蓋環境中天然 及人造放射性核種中加馬能量。
- 2. 輻射監測儀器定期校驗,以確保儀器偵測結果之可靠性。
- 3. 新舊監測儀器實施平行監測,監測期間相對變動率為 6.35%,符合儀器校驗充許標準(±20%以內)。


附錄2. 湖底泥試樣(SL13與SL14)歷年⁶⁰Co與¹³⁷Cs活度變動趨勢 昆明湖底泥(SL13)


荷塘底泥(SL14)

附錄3. 生物科技館東側土壤(SL12)歷年¹³⁷Cs活度變動趨勢

附錄4. 指標植物試樣木麻黃 (PT11)及龍柏(PT12) 歷年137Cs活度變動記錄

