國立清華大學環境輻射監測年報

民國 113 年 1 月至 12 月

原子科學技術發展中心

中華民國114年4月

摘要/	/Abstract	1
<u> </u>	前言	2
二、	監測目的與內容	3
三、	監測方法	11
四、	監測結果與討論	12
五、	環境監測結果劑量評估與檢討分析	24
六、	結論	28
	圖 目 錄	
圖1	清華大學環境輻監測取樣位置圖	5
圖2	熱發光劑量計偵測站劑量率變動圖	14
圖3	熱發光劑量計各偵測站劑量率變動圖	15
圖4	連續輻射偵測劑量率變動圖(李存敏館)	18
圖5	連續輻射偵測劑量率變動圖(加速器館/同位素館)	19
圖6	空浮微粒活度濃度變動圖(李存敏館)	22
圖7	空浮微粒活度濃度變動圖(加速器館)	23
	表目錄	
表1	清華大學環境輻射監測項目(113年)	4
表2	環境試樣分析方法簡表	11
表3	土壤與湖底泥試樣放射核種活度濃度範圍(113年)	20
表4	水試樣總貝他活度濃度年報表(113年)	20
表5	植物及農產品試樣放射核種活度濃度範圍(113年)	21
表6	空浮微粒抽氣試樣放射核種活度濃度範圍(113年)	21
表7	落塵試樣放射核種活度濃度範圍(113年)	21
表8	熱發光直接輻射偵測劑量估算表(113年)	26
表9	清華大學劑量評估報表(113年)	27
	附 錄	
附錄	1. 湖底泥試樣(SL13與SL14)歷年 ⁶⁰ Co與 ¹³⁷ Cs活度變動趨勢	29
附錄	2. 生物科技館東側土壤(SL12)歷年 ¹³⁷ Cs活度變動趨勢	31
附錄	3. 指標植物試樣木麻黃(PT11)與龍柏(PT12)歷年 ¹³⁷ Cs活度變動記錄	32

摘要

本校113年執行環境輻射監測作業,以偵測校內核設施周圍環境之輻射變化狀況,並確保校園內外環境之輻射安全。茲將偵測結果摘要如下:(1)環境熱發光輻射劑量率介於0.045~0.065微西弗/小時;(2)環境直接輻射連續偵測變動範圍介於0.017~0.109微西弗/小時;(3)空浮微粒總貝他活度介於 0.10~2.10毫貝克/立方米,另測得微量 ¹³¹I 放射性核種;(4)水試樣總貝他活度介於 21~ 363毫貝克/公升之間,且未測得人工核種;(5)植物試樣測得天然放射核種與微量 ¹³⁷Cs;(6)農產品試樣未測得人工放射核種;(7)土壤與湖底泥試樣測得天然放射核種與微量 ⁶⁰Co與 ¹³⁷Cs;(8)落塵試樣亦以天然核種 ⁷Be為主,其活度介於 -~0.14貝克/平方公尺·日。由各項環境監測結果顯示其屬背景輻射變動範圍且低於預警基準;依此估算核設施周圍環境民眾接受的輻射劑量均遠低於法規的劑量限值。

Abstract

The environmental radiation monitoring was conducted during 2023 to ensure radiation safety in the surroundings of the research reactor in the University. The following summarizes the monitoring results: (1)The direct radiation dose rates with TLD were varied between 0.045~0.065 μSv/h; (2)The direct radiation dose rates with radiation monitoring network system were varied between 0.017~0.109μSv/h; (3)The radioactivities of airborne samples by beta counting were varied between 0.10 ~2.1 mBq/m³; trace ¹³¹I was detected; (4)The radioactivies of water samples by beta counting were varied between 21 ~ 363mBq/L, no artificial radionuclide was found; (5)Radionuclide analysis of vegetation samples: naturally occurring radionuclides and trace ¹³⁷Cs were detected; (6) Radionuclide analysis of agricultural products: no artifical radionuclide was detected; (7)Radionuclide analysis of soil samples: naturally occurring radionuclides and trace ⁶⁰Co and ¹³⁷Cs were detected; (8)Radionuclide analysis of fallout samples collected with water tray: naturally occurring radionuclide ⁷Be was found, varying between – ~0.14 Bq.m⁻².d⁻¹. All monitoring data and the derived radiation dose are within the variation of the background radiation and well below the regulatory levels.

一、前言

國立清華大學核子設施自開始運轉迄今已五十餘年,提供師生研究教學使用。 依據行政院核能安全委員會頒佈之「游離輻射防護法」第十條之規定,設施場所應 實施環境輻射監測,且輻射監測應包括劑量率測定及環境試樣之活度分析。本報告 內容乃113年本校對其核反應器設施四周環境之輻射劑量及放射性物質活度變化所進 行之偵測及結果評估。

二、監測目的與內容

本校之環境輻射監測,係指對輻射管制區以外之校區,以及校園周圍環境所實施 之輻射量測。目的在瞭解上述地區之輻射劑量及放射性物質含量,並據以評估環境民眾 所可能接受之影響。

本(113)年環境輻射測監工作內容分為兩大部分:一為直接輻射偵測,主要為偵測環境中加馬輻射之累積劑量,包括宇宙射線、地表之天然輻射及人工輻射;另一為環境中放射性物質活度之量測,所採用之偵測方法計有(1)累積效應偵測,以土壤、草試樣及指標生物為對象,(2)水試樣偵測——包括飲用水、湖水、溝水,(3)農產品,(4)空浮微粒及落塵偵測——包括抽氣法及水盤法。採用之計測系統主要為低背景貝他偵檢系統及加馬能譜偵檢系統,詳細之偵測項目、取樣頻度、及試樣種類示如表1。各取樣地點示如圖1。各項偵測結果與劑量評估方式依據核能安全委員會「環境輻射監測規範」附件四。空氣與水攝入量採「游離輻射防護安全標準」所訂定之值。使用因子採用農業部「糧食供需年報」每人每年純糧食供給量資料。

表1 清華大學環境輻射監測項目

試樣類別		頻 度	站數	分析類別	件次	備 註
環境直接輻射		每季	22	累積劑量	88	含背景站
		連續	2	劑量率監測	2	
土壤試樣	表土壤	每半年	22	γ	44	含背景站
	湖底泥	每季	2	γ	8	
水試樣	河湖水	每月	2	$G\beta,\gamma$	24	THOR附近。註(1)
	河湖水	每季	12	$G\beta,\gamma$	48	含背景站;3H量測頻度為每
	溝水	每半年	14	^{3}H	28	半年。
	地下水					
	飲用水					
植物試樣	植物	每半年	14	γ	28	含背景站
	龍柏葉	每季	2	γ	8	THOR附近。註(2)
	木麻黄					(指標植物)
農產品	稻米	每半年	2	γ	4	水源里
	葉菜類					
空浮微粒		每週	2	Gβ	104	
		每週	2	γ	104	含碘(I-131)之分析。
落塵		每月	1	γ	12	原科中心 加速器館/李存敏館

註(1): 水試樣之總貝他分析結果若超過0.30貝克/升時,方執行加馬能譜分析。G β 指總貝他計測。

註(2): THOR係指清華水池式反應器。

圖 1.1 國立清華大學環境輻射監測取樣位置圖

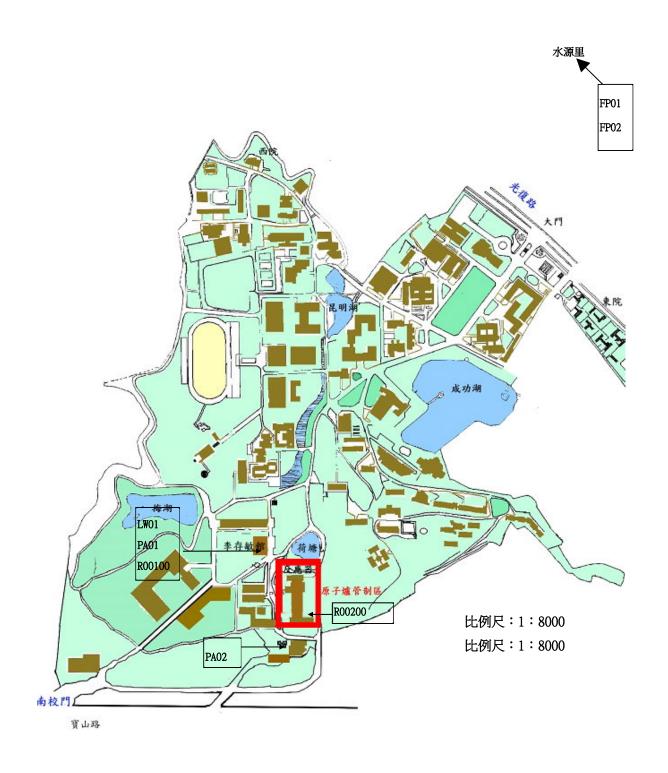


圖 1.2 國立清華大學環境輻射監測取樣位置圖(連續劑量率、空浮微粒、落塵、農產品)

圖 1.3 國立清華大學環境輻射監測取樣位置圖(累積劑量率)

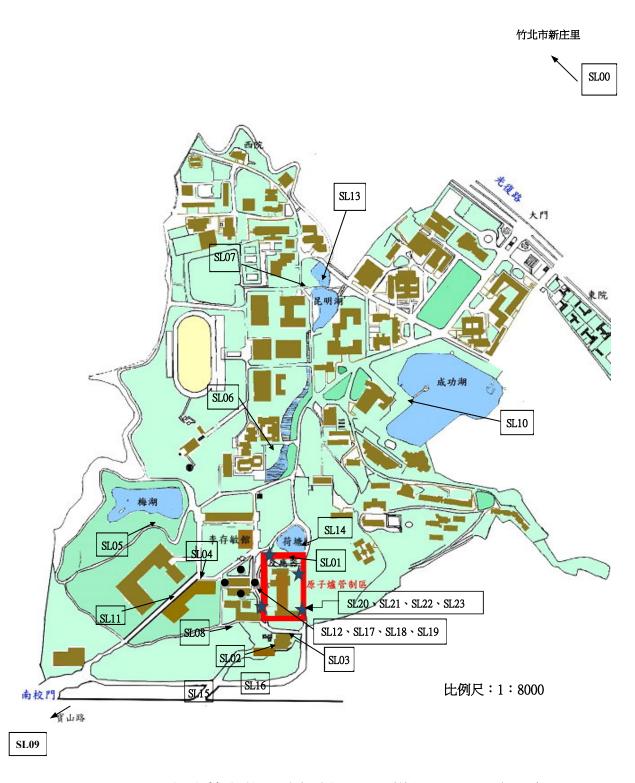


圖 1.4 國立清華大學環境輻射監測取樣位置圖(土壤及底泥)

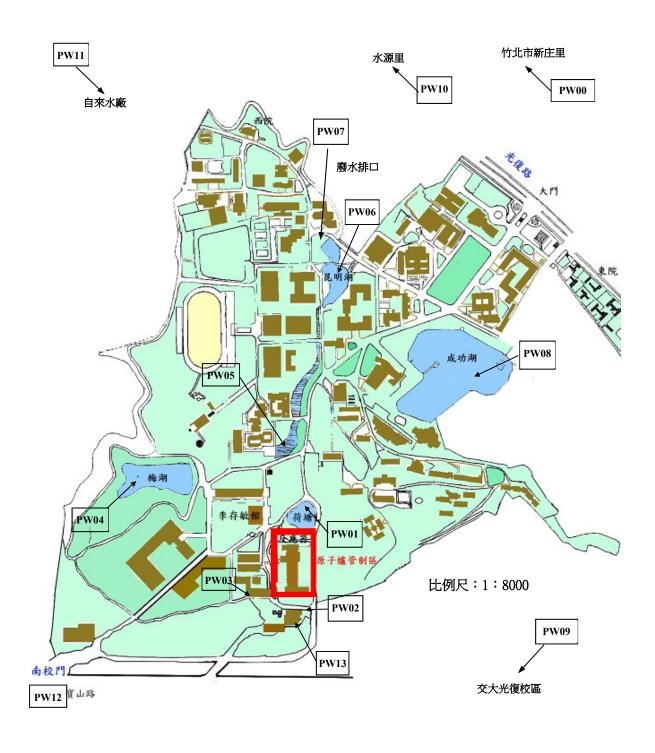


圖 1.5 國立清華大學環境輻射監測取樣位置圖(水試樣)

圖 1.6 國立清華大學環境輻射監測取樣位置圖(植物試樣)

三、監測方法

值測方法分為環境加馬直接輻射及環境試樣放射性活度分析兩種。前者以熱發光劑量計(TLD)、連續值測為主,後者則包括總貝他活度計測、加馬能譜分析等。加馬核種計測係使用純鍺值檢系統作加馬能譜分析,主要對象核種包括錳54、鈷60、銫137、碘131等。試樣之分析項目、前處理方法及計測條件示如表2。

表2 環境試樣分析方法簡表

試樣類別	分析類別	分析方法簡介	分析作業程序書
環境直接輻射	累積劑量(每季)	以測讀儀計讀硫酸鈣熱發光劑量計 以閃爍式偵檢器連續監測環境加馬劑量 率。	RML-OS-05 RML-OS-06
土壤試樣 (土壤,底泥)	加馬核種	烘乾篩濾後裝罐,以純鍺偵檢系統計測	RML-OS-01; RML-OS-02
水試樣(地下水,河湖水, 溝水,飲用水)	總貝他 加馬核種 氚	蒸乾灰化後以低背景比例偵檢系統計測 直接以純鍺偵檢系統計測上述試樣 蒸餾純化後直接以低背景液體閃鑠偵 檢系統計測	RML-OS-01; RML-OS-02; RML-OS-03; RML-OS-04
植物,農產品	加馬核種	灰化後裝罐,以純鍺偵檢系統計測	RML-OS-01; RML-OS-02
空浮微粒	總貝他加馬核種	以低容量空氣取樣器,抽約400立方米 (每週)容積空氣後,待24小時後再置於 低背景比例偵檢系統直接計測濾紙 累積一週之濾紙後直接以純鍺偵檢系統 計測	RML-OS-03
落塵	加馬核種	蒸乾灰化後以純鍺偵檢系統計測	RML-OS-01; RML-OS-02

四、監測結果與討論

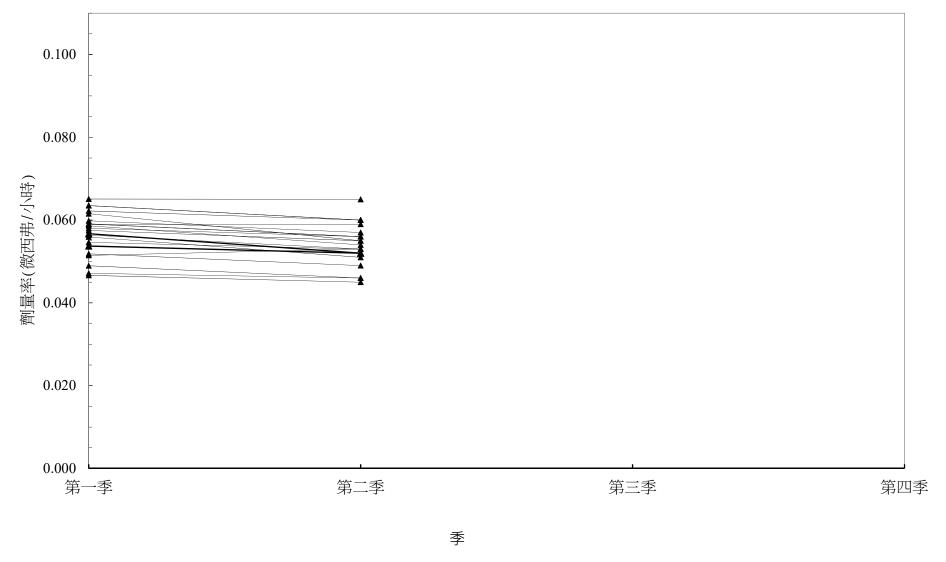
1. 環境加馬直接輻射

於清華大學校園周圍設置22個硫酸鈣(CaSO₄)熱發光劑量計偵測站,以偵測環境加馬直接輻射劑量率。第三、四季因環境熱發光輻射劑量率TLD計讀儀器故障,因此數據缺失。114年第一季委託台電公司放射實驗室執行TLD量測工作,已取得第一季數據,將於114年第1季季報呈現,目前新計讀儀採購業已同步進行,待交機、測試完成後,可進行計讀作業。各偵測點之劑量率變化如圖2及圖3所示,變動範圍介於0.045~0.065微西弗/小時之間。各測站偵測結果均低於預警基準1.0微西弗/小時。

環境直接輻射連續偵測於李存敏館 (R00100)及加速器/同位素館(R00200)進行偵測,茲將113年全年劑量率變動(每日最大值,最小值與平均值)繪於圖4圖5中。偵測變動範圍介於0.017至0.109微西弗/小時之間。日平均變動範圍則於0.040至0.086微西弗/小時之間,均低於預警基準。全年平均值為0.050及0.064微西弗/小時。另R00200已於2024/03/12從加速器館頂樓移至同位素館頂樓

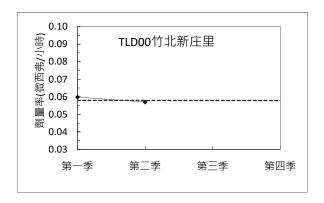
2. 環境試樣之活度分析

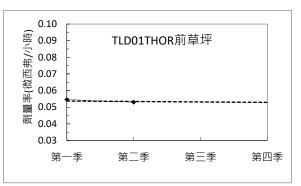
(1) 土壤與湖底泥

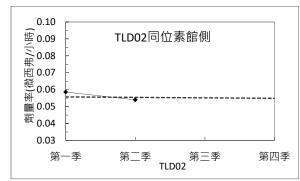

土壤與湖底泥試樣分析結果均已列表於各季報。在清華校園內可分析到微量之全球核試爆落塵及校園污染殘留核種¹³⁷Cs與⁶⁰Co,低於預警基準。土壤與湖底泥試樣中各核種之活度濃度範圍如表3所示。湖底泥試樣(SL13與SL14)歷年活度變化趨勢如附錄1。昆明湖底泥(SL13)的 ⁶⁰Co與¹³⁷Cs活度已明顯下降至背景範圍,荷塘底泥(SL14)中的⁶⁰Co與¹³⁷Cs為早期因核反應器與同位素館廢液之外釋所致,於96~99年間因淤泥堆積而呈表面活度下降,於100年後之清淤工程後¹³⁷Cs則維持在30貝克/公斤以下,而⁶⁰Co則小於10貝克/公斤。早年因校園污染而較高¹³⁷Cs活度的土壤值測點(SL12),該處土壤中¹³⁷Cs活度分佈不均勻,會隨採樣地點之不同呈現較大的變異,113年第二季測得數值(278±7(貝克/千克・乾重)),超過歷年變動範圍,經查驗另取鄰近位置,¹³⁷Cs數值分別為10±0.5及13±0.7並無異常,且無呈趨勢異常或連續上升之狀況,仍遠低於¹³⁷Cs調查基準(740貝克/公斤),其歷年變動趨勢如附錄2。

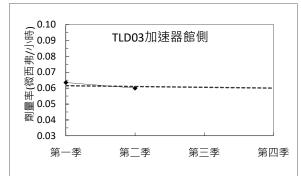
(2) 水樣

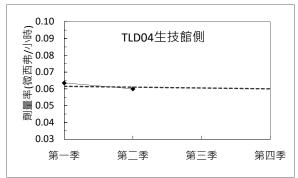
包括飲用水、溝水、湖水等,分析結果列表於各季報,水樣總貝他活度範圍介於21~363毫貝克/公升,年度平均值示如表4,均低於預警基準,未發現人工核種。水樣氚核種分析值均低於儀器之偵測極限。

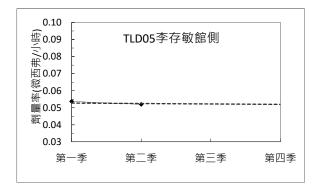

(3) 植物及農產品

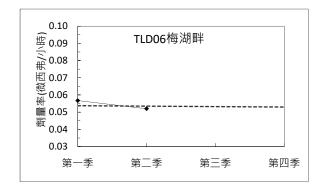

在清華校園內外取草樣為主,並以木麻黃、龍柏作為植物指標試樣;農產品以稻米及蔬菜為主。農產品均未測得人工放射性核種。植物試樣測得微量¹³⁷Cs核種,均低於預警基準;人工核種之活度變動範圍如表5,遠低於預警基準(74貝克/公斤)。指標植物歷年變動如附錄3說明。

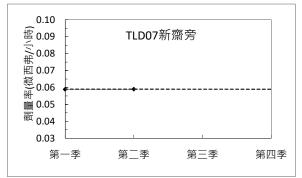


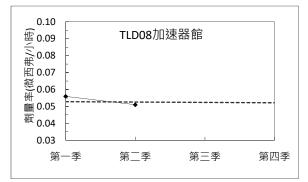

註:第三、四季因環境熱發光輻射劑量率TLD計讀儀器故障,因此數據缺失。

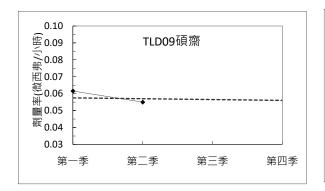

圖2 113年熱發光劑量計偵測站劑量率變動圖

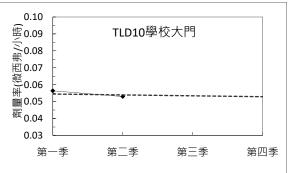


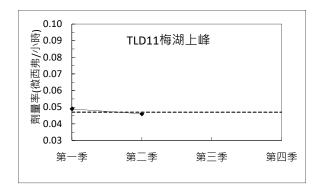


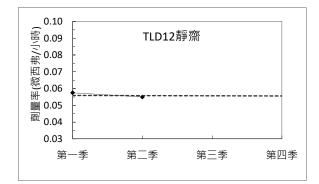


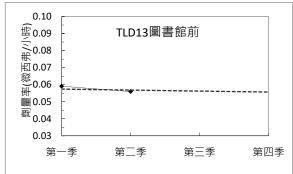


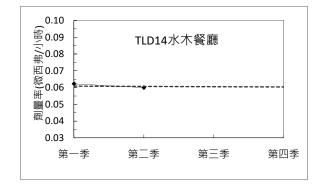


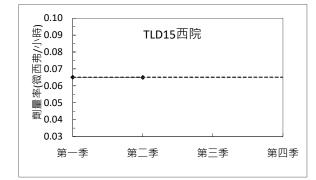


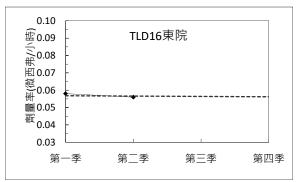


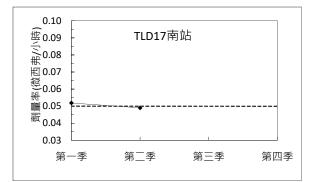


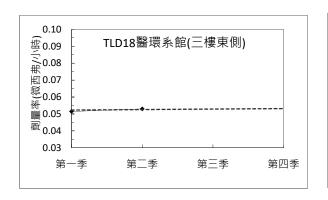


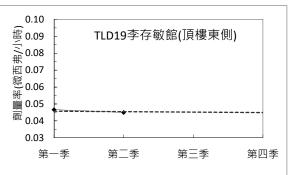


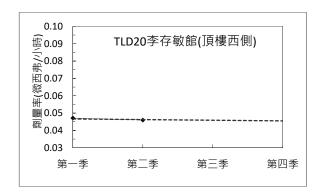


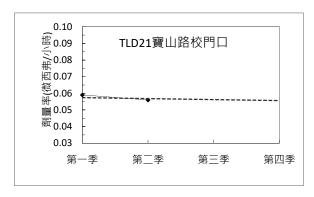












註:第三、四季因環境熱發光輻射劑量率TLD計讀儀器故障,因此數據缺失。

圖3 113年熱發光劑量計各偵測站劑量率變動圖

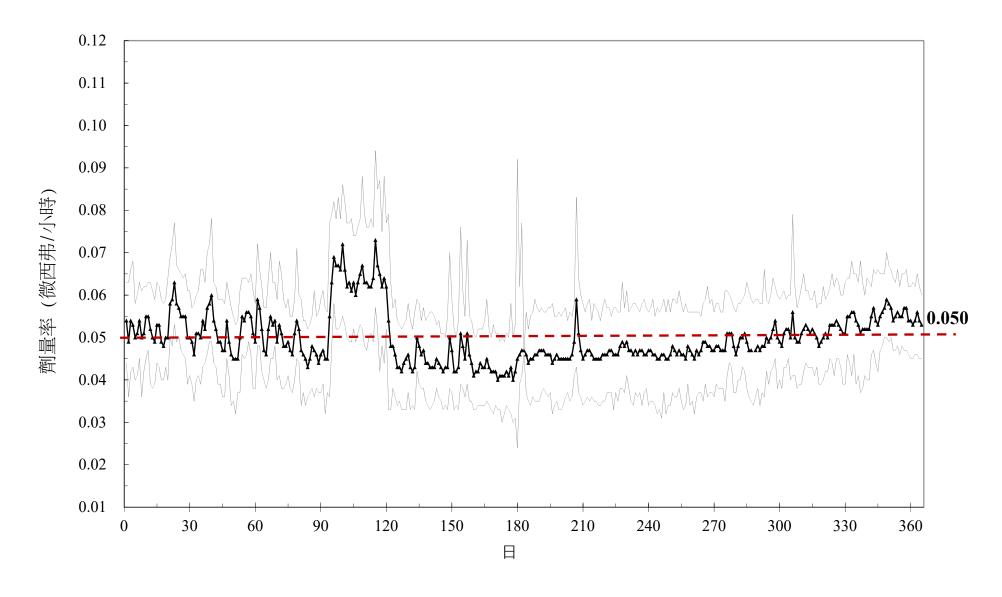
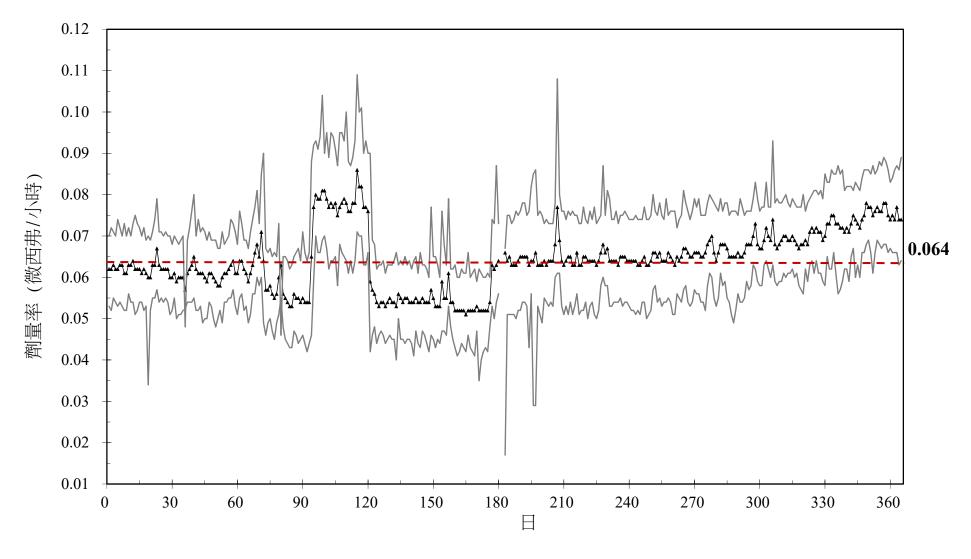



圖 4 113 年連續輻射偵測劑量率變動圖(李存敏館)

註 1: R00200 已於 2024/03/12 移至同位素館頂樓

註 2:6 月 29 日至 30 日同位素館連續偵測系統新機測試,測試期間李存敏館運作正常。

圖5 113年連續輻射偵測劑量率變動圖(加速器館)

表 3 土壤與湖底泥試樣放射核種活度濃度範圍(113年)

		活度濃度範圍(貝克/千克·乾重)			
		Co-60 Cs-137			
本年度範圍	土壤		<i>—</i> ∼278		
	底泥	~ 1.8	 ∼15		
歷年範圍(108~1	13年) 土壤	_	—~278		
	底泥	~ 5.3	— ~ 24		

表 4 水試樣總貝他活度濃度年報表(113年)

→上羊心口味	Tin t美 th M F	活度濃度(毫貝克/公升)				
試樣編號	取樣地點 -	平均值	最 高	最 低		
PW00	新庄里地下水(背景站)	42	52	35		
PW01	THOR前荷塘(每月)	135	257	69		
PW02	THOR東溝水(每月)	147	191	61		
PW03	環測實驗室自來水	40	61	30		
PW04	梅湖	156	174	133		
PW05	靜齋前池水	136	156	124		
PW06	昆明湖	129	144	101		
PW07	廢水排水口	267	363	205		
PW08	成功湖	58	74	36		
PW09	交大光復區	120	137	110		
PW10	水源里地下水	50	66	40		
PW11	自來水廠	33	44	21		
PW12	寶山路水溝	49	77	25		
PW13	同位素東側溝水	104	134	58		

表 5 植物及農產品試樣放射核種活度濃度範圍(113年)

		- 1111111111111111111111111111111111111	
		活度濃度範圍(貝克/千克·鮮重)
		I-131	Cs-137
本年度範圍	植物	_	—~0.7
	農產品	—	
歷年範圍(108~113年)	植物	~1.2	—~2.2
	農產品	_	_

3. 空氣微粒及落塵之活度分析

(1) 空浮微粒

空浮微粒取樣地點為李存敏館及加速器館側,其每週總貝他活度變動介於 0.10~2.1毫貝克/立方米,如圖6及圖7所示,年平均活度分別為0.57及0.49毫貝克/立方米,變動範圍遠低於預警基準90毫貝克/立方米。主要加馬能譜測得天然放射性核種⁷Be,另測得微量 ¹³¹I 放射性核種,如表6。

(2) 落塵

落塵取樣地點為李存敏館(LW01),本年度之加馬能譜活度分析結果如表7所示,主要為天然核種7Be等,其活度介於一~0.14貝克/平方公尺.日。

表 6 空浮微粒抽氣試樣放射核種活度濃度範圍(113年)

	活度濃度範圍(雪	毫貝克/立方米)
	I-131	Cs-137
本年度範圍		
李存敏館(PA01)	$-\sim 0.6$	_
加速器館側(PA02)	$-\sim 0.13$	_
歷年範圍(108~113年)		
李存敏館(PA01)	$-\sim$ 23	_
加速器館側(PA02)	$-\sim$ 29.4	_

表 7 落塵試樣放射核種活度濃度範圍(113年)

	活度濃度範圍(貝克/平方公尺.日)					
	Be-7	Cs-137				
本年度範圍	− ~ 0.14	_	_			
歷年範圍(108~113年)	− ~ 0.54	_	_			

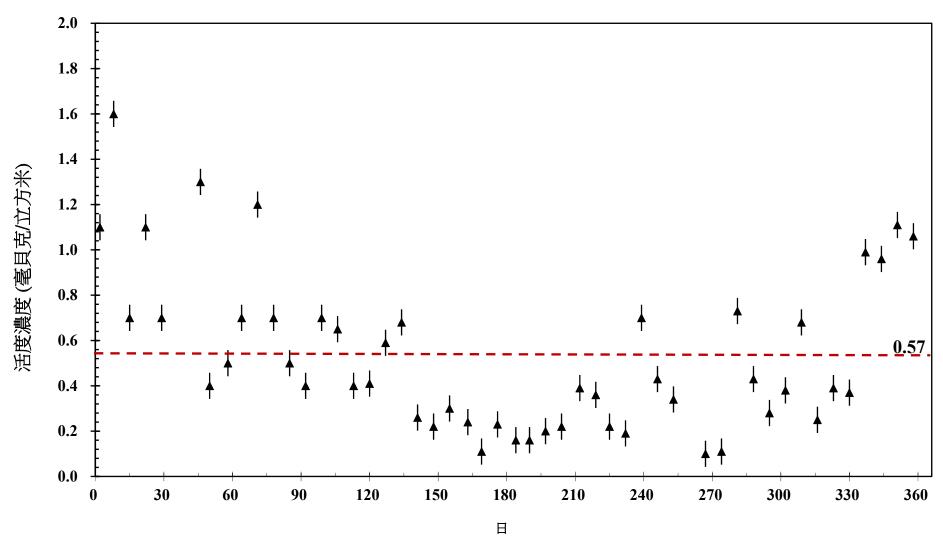


圖6 113年空浮微粒活度濃度變動圖(李存敏館)

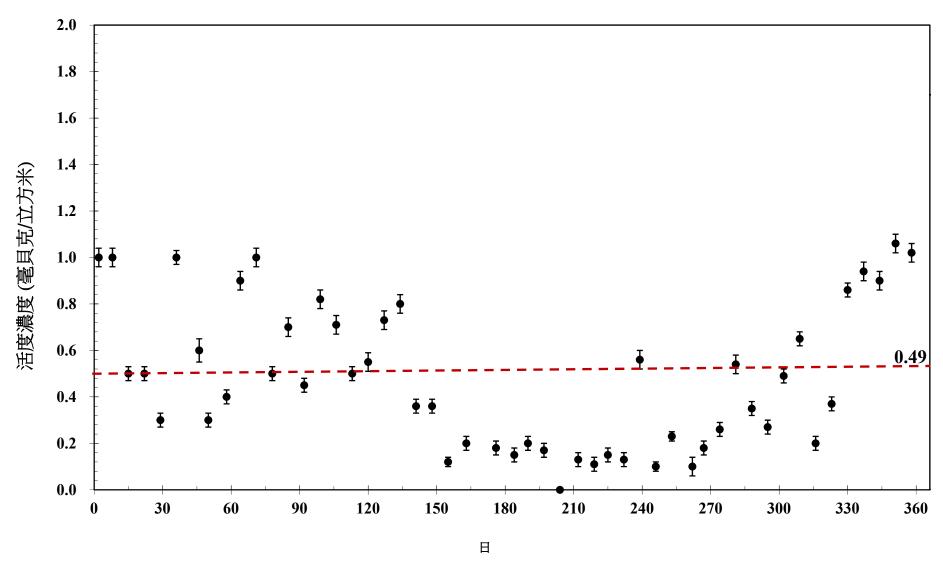


圖7 113年空浮微粒活度濃度變動圖(加速器館)

五、環境監測結果劑量評估與綜合分析

1. 環境輻射監測結果劑量評估

(1) 熱發光直接輻射劑量估算

熱發光直接輻射偵測結果所估算之淨劑量已列於各季報中,謹將上半年估算結果彙整於表8中,各站估算之淨劑量均為<MDA(小於0.05 mSv/年或0.025 mSv/季)。

(2) 地表土壤核種之體外劑量估算

土壤中人造放射核種造成之體外劑量估算如下式:

 $D(mSv/y) = 8760 \times S \times K \times H \times A$ $\overrightarrow{\pi} + \overrightarrow{\Psi}$

S=0.36(佔用因數)

 $K = 80 \text{ kg/m}^2$

H= 劑量轉換因數(60Co=8.28×10⁻⁹; ¹³⁷Cs=2.08×10⁻⁹ mSv·m²/Bq·h)

A= 土壤核種活度(Bq/kg)

- (i) 依本校一般土壤試樣分析結果,大多含微量¹³⁷Cs,此乃過往全球核爆落塵之影響。本年度上半年依SL02測值估算為1.3×10⁻³毫西弗(第2季季報),下半年依SL16測值估算為 1.2×10⁻³ 毫西弗(第4季季報),故全年劑量為2.5×10⁻³毫西弗。。
- (ii) 因過去校園污染事件(非本校核設施運轉)造成之土壤¹³⁷Cs偏高地區,本年度上半年依SL12測值估算體外劑量為 7.3×10⁻³ 毫西弗(第2季季報),下半年依SL19測值估算為5.3×10⁻³毫西弗(第4季季報),故全年劑量為12.5×10⁻³毫西弗/年。

(3) 體內劑量之估算

(1) 空浮微粒吸入之體內劑量

依各站(PA01與PA02) ¹³¹I空浮微粒濃度結果依全年最高值(0.6毫貝克/立方米) 估算。以下式估算,顯示本年各測站均遠低於登錄值(1/1000毫西弗),註記 為 < 0.001毫西弗。

約定有效劑量(毫西弗/年)=空浮微粒濃度(貝克/立方米)× 年吸入量 (8103立 方米/年)×劑量轉換因數(7.4×10⁻⁹毫西弗/貝 克)。

(2)農產品攝入之體內劑量

農產品試樣不含人工核種或低於偵測低限值(如 137 Cs為0.1 Bq/kg)。依下式估算得到小於 10^{-3} mSv/y,註記 <0.001。(農產品年攝入量依農業部111年

「糧食供需年報」每人純糧食供給量,稻米為42.98公斤,蔬菜為42.63公斤)。

約定有效劑量(mSv/y) = 嚥入核種活度 (Bq/kg)x年攝入量(kg/y)x 劑量轉換因數 $(1.3\times10^{-5} mSv/Bq)$

2. 環境監測結果比較與檢討分析

- (1) 因環境熱發光輻射劑量率TLD計讀儀器故障,因此缺失113年第3、4季數據,第1、 2季(113年)度環境輻射監測結果顯示各項監測與分析結果均未超過法規之調查基 準,且落於背景輻射變動範圍之內。
- (2) 謹將本年(113年)環境監測結果劑量估算結果列於表9中,各項估算之輻射劑量均 遠低於法規限值。與上年(112年) 監測結果比較,並無顯著的差異。

表8 熱發光直接輻射偵測劑量估算表(113年)

試樣編號	净劑量						
	第一季	第二季	第三季	第四季			
TLD00	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD01	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD02	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD03	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD04	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD05	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD06	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD07	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD08	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD09	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD10	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD11	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD12	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD13	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD14	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD15	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD16	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD17	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD18	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD19	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD20	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			
TLD21	<mda< td=""><td><mda< td=""><td>/</td><td>/</td></mda<></td></mda<>	<mda< td=""><td>/</td><td>/</td></mda<>	/	/			

說明一:第四、五欄,'/'符號表示無數據。

說明二:各站劑量值落於(歷次平均值 ± 3 x偏差)範圍內,淨劑量註記為<MDA(小於 0.05mSv/年或0.025毫西弗/季);偏差計算為 $\sigma = \sqrt{\sum (Xi - \overline{X})^2/n - 1}$ 。

表9 清華大學劑量評估報表(113年)

	體外曝露(毫西弗/年)			體內曝露(毫西弗/年)			
曝露途徑	TLD	地表	岸沙	空浮微粒	飲水	農畜產物	海產物
核設施	< MDA	_	*	_	*	_	*
核爆影響	/	2.5×10 ⁻³	/	/	/	/	/
其他影響	/	12.5×10 ⁻³	/	/	/	/	/

註 1: TLD 評估 0.05 毫西弗/年或 0.025 毫西弗/季,則註記小於 MDA。

註 2: "一"表未測得數據。

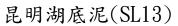
註 3: 各曝露途徑的有效劑量低於 0.001 毫西弗(<0.001 毫西弗)者,僅註記「-」,並加註「未達評估標準」。

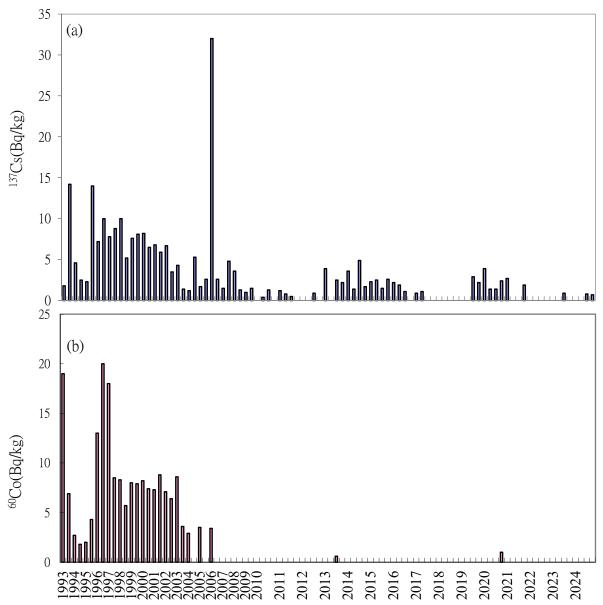
註 4: 體內劑量評估係考慮 50 年的劑量積存。

註 5: 凡經評估所得最大個人劑量之設站地點,在計畫書中未規劃執行該項試樣(表示無此曝露途徑)者,即於表格中直接標示「*」,並註明「最大個人劑量的地點無此曝露途徑」。

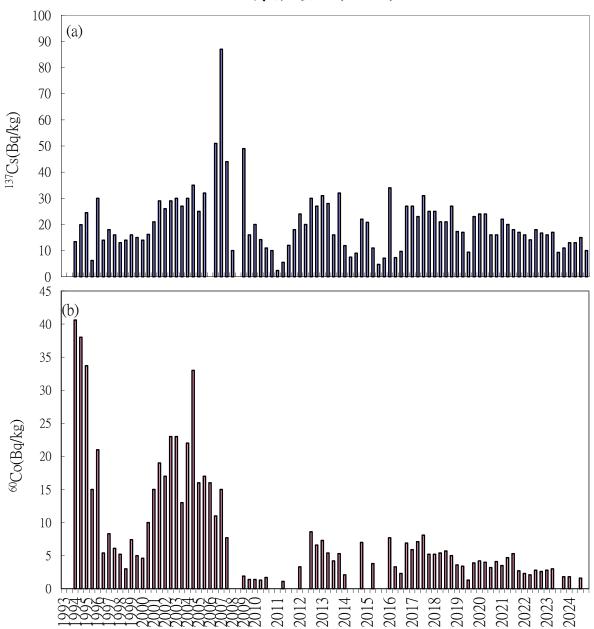
註 6: 核爆與其他影響乙欄,如不需評估者可以「/」表示,並註明「本項不需評估」。

註7:其他影響係指過往校園污染事件的背景輻射影響。

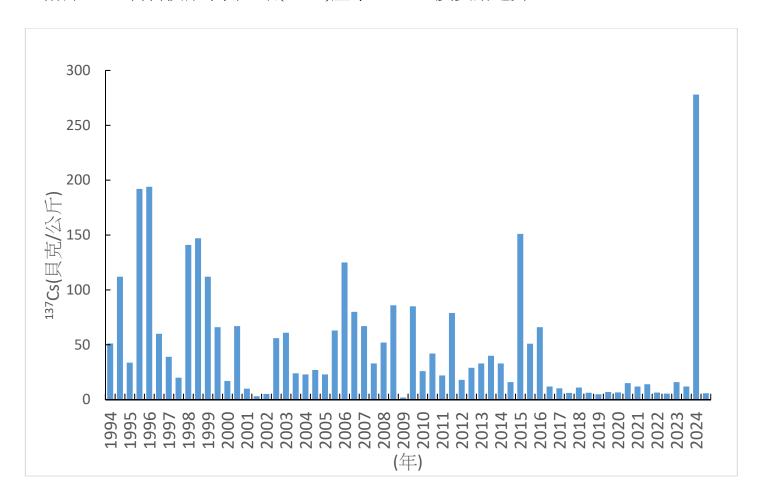

註 8: 清華大學劑量評估報告(112年)

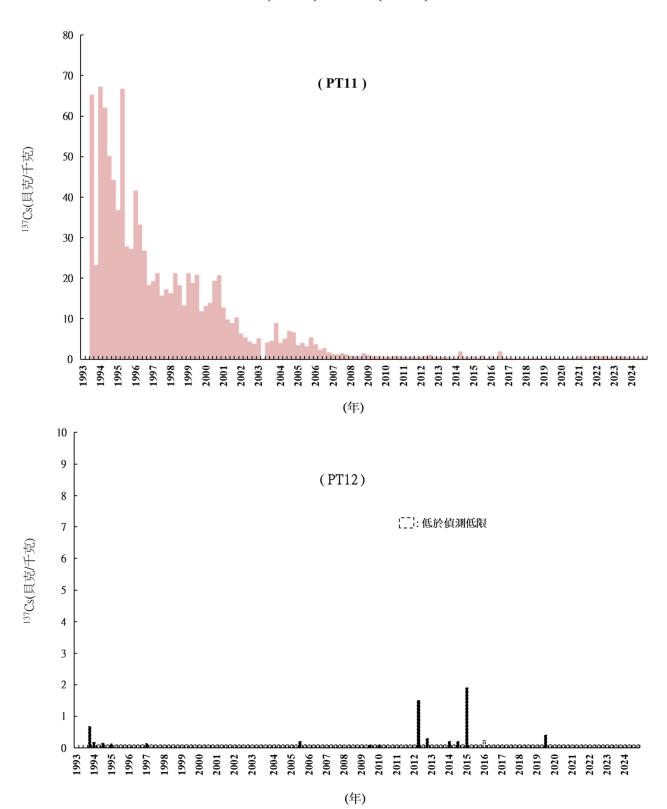

	體外	暴露(毫西弗	号/年)		體內曝露(毫西弗/年)	
曝露途徑	TLD 地表 岸沙		空浮微粒	飲水	農畜產物	海產物	
核設施	< MDA	_	*	_	*	_	*
核爆影響	/	3.1×10 ⁻³	/	/	/	/	/
其他影響	/	7.9×10 ⁻³	/	/	/	/	/

六、結 論


本校113年環境輻射監測作業共計執行之分析件數為500件次以上,另有環境連續值測配合,對本校核子設施及周邊實驗室實施輻射監測以確保校園之輻射安全。各項值測與分析結果均低於調查基準,且屬背景輻射變動範圍。依「環境輻射監測規範」附件四「體外及體內劑量評估方法」評估核設施作業及核爆落塵對環境民眾的影響,113年評估體外劑量小於0.05毫西弗/年,體內劑量小於0.001毫西弗/每年,相較於往年並無顯著的變動。為求環境試樣值測品質之保證,本中心定期參加財團法人全國認證基金會(TAF)與核能安全委員會輻射值測中心舉辦之實驗室環境試樣比較分析試驗,另參加TAF游離輻射測試領域認可實驗室之認證。

附錄1. 湖底泥試樣(SL13與SL14)歷年60Co與137Cs活度變動趨勢




荷塘底泥(SL14)

附錄 2. 生物科技館東側土壤(SL12)歷年 ¹³⁷Cs 活度變動趨勢

附錄3. 指標植物試樣木麻黃 (PT11)及龍柏(PT12) 歷年137Cs活度變動記錄

