行政院原子能委員會 97 年度科技計畫期末報告

MW 級聚光太陽光發電系統(HCPV)示範計畫

計畫編號: A-EE-04

執行單位:核能研究所

計畫主持人:

報告日期: 97年12月31日

目 錄

壹、基本資料	1
貳、計畫目的、計畫架構與主要內容	1
一、計畫目的	1
二、計畫架構(含樹狀圖)	
三、計畫主要內容	<i>6</i>
參、計畫經費與人力執行情形	8
一、計畫經費執行情形:	8
(一)計畫結構與經費(金額單位:千元)	8
(二)經資門經費表	8
二、計畫人力運用情形:	9
(一)計畫人力(人年)	9
(二)主要人力投入情形(副研究員級以上)	10
肆、計畫已獲得之主要成就與量化成果(output)	12
伍、評估主要成就及成果之價值與貢獻度 (outcome)	16
一、學術成就(科技基礎研究)(權重 15%)	16
二、技術創新(科技整合創新)(權重 25%)	17
三、經濟效益(產業經濟發展)(權重 30%)	19
四、社會影響(民生社會發展、環境安全永續)(權重 5%)	
五、其它效益(科技政策管理及其它)(權重 25%)	20
陸、與相關計畫之配合	21
柒、後續工作構想之重點	21
捌、檢討與展望	22

政府科技計畫成果效益報告

壹、基本資料

計畫名稱:MW級聚光太陽光發電系統(HCPV)示範計畫

主 持 人:____

審議編號:97-2001-03-0205

計畫期間(全程):96年1月1日至98年12月31日

年度經費:133,905 千元 全程經費規劃:277,440 千元

執行單位:核能研究所

貳、計畫目的、計畫架構與主要內容

一、計畫目的

本所投入再生能源發展工作,致力於MW級聚光太陽光發電系統(High Concentration Photovoltaic: HCPV)示範計畫之總目標係在建立聚光模組、太陽光追蹤器、電力系統、檢測與驗證及系統整合等產業技術,含括:

(一) 聚光模組設計開發

- 1.建立聚光型太陽電池模組製作與量產技術能力,單一模組輸出功率 分別達120W以上(使用國外太陽電池)或110W以上(使用國內太陽 電池)。
- 完成1MW聚光太陽光發電系統所需之聚光模組製作。
- (二) 追蹤器及電力系統設計開發
 - 1.完成太陽光追蹤器實體製作,建立太陽光追蹤器性能量測平台,追蹤控制精度 $\leq 0.3^{\circ}$,耗電量< 5%,承載荷重 $\geq 2,000$ 公斤(針對5 kW HCPV系統而言),或承載荷重 $\geq 2,400$ 公斤(針對7.5 kW HCPV系統而言)。
 - 2.完成太陽光追蹤控制測試平台,驗證太陽光追蹤控制設計。
 - 3.完成MW級太陽能發電電力系統設計、MW級太陽能發電系統併網 對電力網之系統衝擊分析。

4.建立電力系統測試平台,驗證電力系統穩定度及保護協調。

(三) 模組檢測與驗證

- 1.建立符合國際標準規範的聚光模組檢測與驗證技術,以及認證實驗室,確保模組研發設計與製造的正確性與可靠性,並扶持國內產業加速獲得產品驗證。
- 2.完成HCPV系統驗證相關法規依據彙整。

(四)系統整合與建置

- 1.完成HCPV系統整合之概念設計、細部設計、設計審查,其中包含 模組、電力系統與太陽光追蹤器之整合設計。
- 2.完成介面建置整合測試作業,含周邊監測系統建置與測試,模組、 追蹤器及電力系統等組裝整合測試及市電併聯。
- 3.完成製造與設計修正,包含中央監控系統、介面連線技術及系統整 合建置。

以上計畫之推動,將有助於國家再生能源太陽光電能裝置容量之提升,開創國內新一代太陽光電產業發展機會,並藉由示範系統之建立,以加速太陽光電能推廣與應用進行的步伐,進而逐步落實溫室氣體減量、改善能源自主問題及推動潔淨能源使用之發展策略。

二、計畫架構(含樹狀圖)

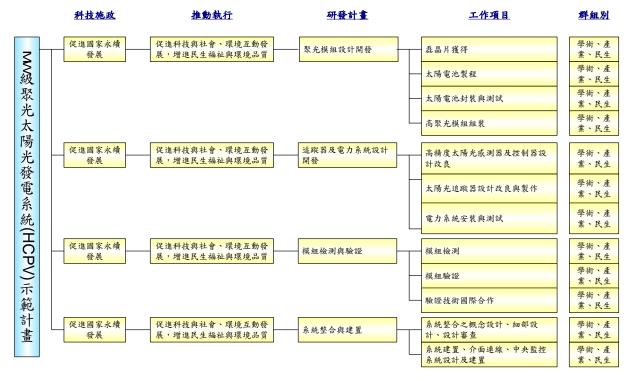
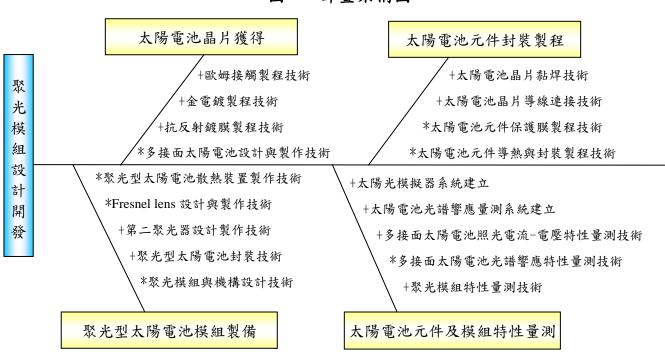



圖1:計畫架構圖

(註)科技成熟度之標註:

- +:我國已有之產品或技術
- *:我國正發展中之產品或技術
- <:我國尚未發展中產品或技術
- 產品或技術若與「智慧財產權」有關亦請加註說明

圖 2: 聚光模組設計開發重要科技關聯圖

太陽光感測器設計製造

控制器設計製造

太陽光感測器測試驗證平台建置

- +太陽光感測器結構體設計
- + 太陽光感測器結構體研製
- * 太陽光感測器量測調校
- *太陽光感測器安裝於

TRACKER 程序建立

- + 控制器硬體設計及製造
- /+ 追蹤法技術開發
- * 控制器的追蹤參數調校
- , + 控制器箱體及電機組件 設計及製造

/+太陽光感測器量測技術研發 *太陽光感測器調校技術研發

- * 太陽光追蹤器機構設計平台
 - +太陽光追蹤器結構強度分析技術
 - +太陽光追蹤器實體製備
 - *太陽光追蹤器追蹤精度量測平台 *太陽光追蹤器作動耗電測試平台
- *分散式發電電力系統建置
 - * 充電控制與換流裝置建置
 - < 分散式發電系統最佳化設計
 - * 最大功率追蹤技術研究
 - * MW 級太陽能發電電力系統設計 *再生能源發電系統之併聯衝擊

電力監控系統研製

太陽光追蹤器結構

(註)科技成熟度之標註:

- +:我國已有之產品或技術
- *:我國正發展中之產品或技術
- <:我國尚未發展中產品或技術
- 產品或技術若與「智慧財產權」有關亦請加註說明

圖 3:追蹤器及電力系統設計開發重要科技關聯圖

模組檢測

- / + 模組目視檢查
- + 模組组裝檢查
- + 模組乾絕緣測試
- + 模組濕絕緣測試
- + 模組接地阻抗測試
- + 引線端拉力測試
- 旁通二極體溫度測試

模組戶外測試

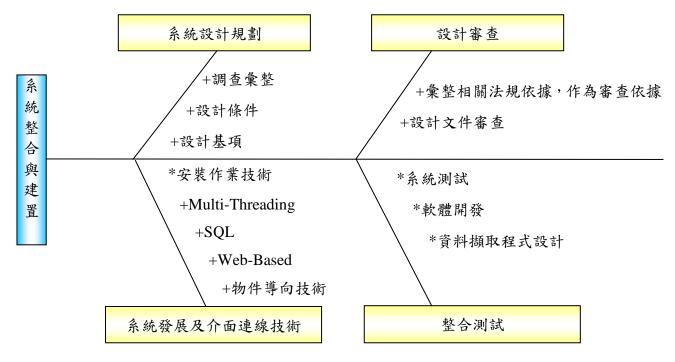
- / * 基準性能測試
- /* 聚光偏離損害測試
- * 室外暴露測試
- * 熱斑耐久測試
- * 紫外線(UV)測試

環境驗證實驗室

- + 模組溫度循環測試
- + 模組濕熱測試
- + 模組濕冷測試
- + 聚光模組冰雹測試
- + 模組機械負荷測試
- + 模組噴水/浸水測試

* 閃爍式聚光型模組太陽光模擬器測試

- + 模組 I-V 量測系統建立
 - + 模組模擬測試與戶外測試結果比對
 - + 實驗室標準測試程序建立
 - * 測試結果與國際實驗室比對
- < 測試設備使用與測試技術訓練
 - < 支援模組驗證需求
 - < 協助實驗室取得國際認證
 - < 支援比對實驗


驗證技術國際合作

模擬器測試平台

(註)科技成熟度之標註:

- +:我國已有之產品或技術
- *:我國正發展中之產品或技術
- <:我國尚未發展中產品或技術
- 產品或技術若與「智慧財產權」有關亦請加註說明

圖 4: 模組檢測與驗證重要科技關聯圖

(註)科技成熟度之標註:

+:我國已有之產品或技術

*:我國正發展中之產品或技術

<:我國尚未發展中產品或技術

產品或技術若與「智慧財產權」有關亦請加註說明

圖 5: 系統整合與建置重要科技關聯圖

三、計畫主要內容

- (一)聚光模組設計開發
 - 1.磊晶片獲得:將視國內廠商技術發展進度評估,原則上以國外廠 商為主,國內廠商為輔,從而獲得高效率之聚光型多接面太陽電 池磊晶片,使適用於接面高穿隧接面電流密度的要求。
 - 2.晶片製程:藉由已建立之低阻抗聚光型太陽電池電極設計與形成 技術,及低反射率抗反射層製作技術,技術移轉國內廠家或合作 生產方式,獲得所需的聚光型太陽電池片。
 - 3.太陽電池片封裝與測試:藉由良好的散熱機構的設計與製作,以 建立聚光型太陽電池元件之封裝量產技術。
 - 4.高聚光模組組裝:改善聚光 Fresnel lens 的特性,降低聚光模組機構的重量,完成太陽電池模組量產技術建立。

(二)追蹤器及電力系統設計開發

- 1. 高精度太陽光感測器及控制器設計改良與製造。
- 2. 太陽追蹤器結構設計改良。
- 3. 承載 900kW 模組之 120 套 7.5kW 太陽光追蹤器實體製作,追蹤控制精度≤0.3°,耗電量< 5%,承載荷重 ≥ 2,400 公斤。
- 4. 完成 900kW 電力系統製作與測試。
- 5. 完成 1 MW HCPV 發電系統安裝與現場測試。

(三)模組檢測與驗證

- 1.模組檢測:建立模組檢測能力,並符合 IEC 國際驗證規範要求。
- 2.模組驗證:建立模組驗證實驗室,並符合 IEC 國際驗證規範要求。
- 3.驗證技術國際合作:完成雙方合作計畫,引進驗證與壽命評估技術,並進行測試實驗比對。

(四)系統整合與建置

1.研究 HCPV 系統相關法規依據。

- 2.HCPV 系統整合之概念設計、細部設計、設計審查,其中包含模組、 電力系統與太陽光追蹤器之整合設計。
- 3.介面建置整合驗收測試作業,含周邊監測系統建置與驗收測試, 模組、追蹤器及電力系統等組裝整合驗收測試,及電力品質管理 以符合市電併聯需求。
- 4.製造及設計修正,包含系統發展及介面連線技術,建置一套以Ethernet 連線為基礎的中央監控系統,並以 Multi-Threading 方式進行資料擷取及顯示,再將資料儲存於 SQL 資料庫。另外並配合資料庫系統建置太陽能發電監測展示系統網站,透過瀏覽器進行監看及查詢。
- 5.安裝及測試、併聯:包含電力工程負責之市電併聯、效能評估及中控室軟體發展等相關工作。
- 6.中央監控系統,含資料庫建立、控制室設備建置、遠端監測、現場監測系統、網路工程(含中控系統各控制台間之網路、監視、警報系統)。

参、計畫經費與人力執行情形

一、計畫經費執行情形:

(一)計畫結構與經費(金額單位:千元)

細部計畫 (分支計畫		研究計畫 (分項計畫)		主持	もL ノー 144 日日	/
名稱	經費	名稱	經費	人	執行機關	備註
MW級聚光太陽 光發電系統 (HCPV)示範計畫	133,905				核能研究所	
		1.聚光模組設計開發	61,247		核能研究所	
		2.追蹤器及電力系統 設計開發	52,030		核能研究所	
		3.模組檢測與驗證	7,016		核能研究所	
		4.系統整合與建置	13,612		核能研究所	

(二)經資門經費表

	- T D		預算數	饮(執行數)/元		
	項目			合	計	備註
會計	科目	主管機關預算	自籌款	流用後預算數	占總經費%	1/4 1/2
				(實際執行數)	(占總執行數%)	
一、	經常支出					
1.	人事費					
2	坐 改 弗	20 207 000		16,423,000	12.26%	業務費流用 2784,000 = 5
۷.	業務費	20,207,000		(16,422,403)	(12.26%)	3,784,000 元至 設備費
3.	差旅費					
4.	管理費					
5.	營業稅					
	小計	20,207,000		16,423,000	12.26%	
	71.91	20,207,000		(16,422,403)	(12.26%)	
二、	資本支出					
1	設備費	113,698,000		117,482,000	87.74%	由業務費流入
1.	以用只	113,070,000		(115,141,889)	(85.99%)	3,784,000 元
	小計	113,698,000		117,482,000	87.74%	
	7 - 1	110,000,000		(115,141,889)	(85.99%)	
	金額	133,905,000		133,905,000	100%	
合	- / \			(131,564,292)	(98.25%)	
計	占總經費%:	100%		100%		
	(執行數÷總預算)	10070		(98.25%)		

請將預算數及執行數並列,以括弧表示執行數。

與原計畫規劃差異說明:

原經常門預算數為 20,207,000 元,流用 3,784,000 元到資本門。另計畫因安裝場所規劃移往高雄路竹,並奉核定計畫延後至 98 年完成,配合計畫作業亦因應調整預算,保留菲涅爾透鏡製作案 234 萬元設備費於 98 年使用,主要因透鏡需於特定溫濕度條件下存放,故先行製作不易保存,需隨模組一同製作。預計於 98 年採購模組時,同時製作透鏡,再同時完成結報。

二、計畫人力運用情形:

(一)計畫人力(人年)

計畫名稱	執行 情形	總人力	研究員級	副研究員級	助理 研究員級	助理
分支計畫	原訂	14	0	2.73	5.4	5.87
MW 級聚光 太陽光發電	實際	18.78	0	2.88	8.7	7.2
系統 (HCPV) 示範計畫	差異	4.78	0	0.15	3.3	1.33
分項計畫	原訂	4.7	0	1	3	0.7
聚光模組設 計開發	實際	5.5	0	1.2	3.4	0.9
司用役	差異	0.8	0	0.2	0.4	0.2
分項計畫	原訂	3.2	0	0.83	0.5	1.87
追蹤器及電	實際	6.48	0	0.83	2.55	3.1
力系統設計 開發	差異	3.28	0	0	2.05	1.23
分項計畫	原訂	2.8	0	0.3	1.4	1.1
模組檢測與	實際	2.9	0	0.25	1.55	1.1
驗證	差異	0.1	0	-0.05	0.15	0
分項計畫	原訂	3.3	0	0.6	0.5	2.2
系統整合與	實際	3.9	0	0.6	1.2	2.1
建置	差異	0.6	0	0	0.7	-0.1

說明:

研究員級:研究員、教授、主治醫師、簡任技正、若非以上職稱則相當於博士滿 三年、或碩士滿六年、或學士滿九年之研究經驗者。

副研究員級:副研究員、副教授、總醫師、薦任技正、若非以上職稱則相當於博士、碩士滿三年、學士滿六年以上之研究經驗者。(含國防訓儲人員:工程師)

<u>助理研究員級</u>:助理研究員、講師、住院醫師、技士、若非以上職稱則相當於碩士、

或學士滿三年以上之研究經驗者。(含自聘人員:助理工程師,國防訓

儲人員:副工程師,專支人員:助理工程師)

<u>助 理</u>:研究助理、助教、實習醫師、若非以上職稱則相當於學士、或專科滿

三年以上之研究經驗者。(含正式人員:技術員,專支人員:工程助理、

行政人員)

(二)主要人力投入情形(副研究員級以上)

姓名	計畫職稱	投入人月數 及工作重點		學、經歷及專長
		2.38 人月	學 歷	
	計畫主持人	計畫管理	經 歷	
			專 長	
	計畫副主持	2.5 人月	學歷	
	人	協助計畫推行及 模組開發	經 歷	
			專長	
		7.12 人月 模組設計、製作	學 歷	
	•	與測試相關技術	經 歷	
	持人	之開發,分項計畫管理與工作規劃	專長	
		7.56 人月	學 歷	
	分項計畫主 持人	追蹤器及電力系 統設計開發,分	經 歷	
	行人	項計畫管理與工 作規劃	專 長	
		2.52 人月	學 歷	
	研究人員	電力系統設計及	經 歷	
		市電併網規劃	專 長	
		3 人月 負責規劃聚光模	學 歷	
	分項計畫主 持人	且驗證,分項計	經 歷	
	7寸八	畫管理與工作規 劃	專 長	
		7.2 人月	學 歷	
	分項計畫主 持人	系統整合、分項	經 歷	
		計畫管理	專長	

與原計畫規劃差異說明:

肆、計畫已獲得之主要成就與量化成果(output)

表一 科技計畫之績效指標

計畫類別	1	2	3	4	5	6	7	8	9	99
	學	創	技	系	政策、法	研發	人	研	研	其
	術	新	術	統	規、制	環境	オ	究	究	他
	研	前	發	發	度、規	建構	培	計	調	
	究	瞻	展	展	範、系統	(改善)	育	畫	查	
			(開發)	(開發)	之規劃		(訓練)	管		
績效指標					(制訂)			理		
A論文			V							
B研究團隊養成			>							
C博碩士培育			V							
D研究報告			V							
E辨理學術活動										
F形成教材			V							
G專利			V							
H技術報告			V							
I 技術活動			V							
J技術移轉			V							
S技術服務										
K 規範/標準制訂			V							
L促成廠商或產業團										
體投資			V							
M創新產業或模式建										
立										
N協助提昇我國產業										
全球地位或產業競爭										
カ										
0 共通/檢測技術服										
務										
T促成與學界或產業			>							
團體合作研究			V							
Ⅱ促成智財權資金融										
通										
V 提高能源利用率										
₩提昇公共服務										
X提高人民或業者收										
λ										

計畫類別	1	2	3	4	5	6	7	8	9	99
	學	創	技	系	政策、法	研發	人	研	研	其
	術	新	術	統	規、制	環境	オ	究	究	他
	研	前	發	發	度、規	建構	培	計	調	
	究	瞻	展	展	範、系統	(改善)	育	畫	查	
			(開發)	(開發)	之規劃		(訓練)	管		
績效指標					(制訂)			理		
P創業育成										
Q資訊服務										
R增加就業										
Y資料庫										
Z調查成果										
AA 決策依據										

表二 請依上表勾選合適計畫評估之項目填寫初級產出、效益及 重大突破

	主人人次			
	績效指標	初級產出量化值	效益說明	重大突破
	A論文	 SCI期刊:投稿7篇(含刊登3篇,收到回覆編號4篇) ●會議論文:發表10篇 	●刊登於 ISSN, SOLAR ENERGY MATERIAL AND SOLAR CELLS 期刊; OPT MATER 期刊; Journal of Crystal Growth 期刊。 ●發表於國際會議: The 9th International Conference on Electronics materials and Packaging; 17 th International Photovoltaic Science and Engineering Conference; 國內 會議:核能研究所 96 年度研 發成果報告; International Electron Devices and Materials Symposium; 國際安	
學術成就(科技基礎研究)	B研究團隊養成	6個	全管理與工程技術研討會。 所內外形成6個研發團隊:太陽電池與模組材料劣化評估(吳鳳技術學院)、太陽電池封裝(清華大學)、太陽光邊路光追蹤控制器(東南科技大學)、太陽光發電系統整合(萬能科技大學)、分散式發電系統市電併聯品質分析(交通大學)、核研所 HCPV系統技術研發,培育太陽光發電領域人力。	
	C博碩士培育	博士:2人 碩士:8人 研究助理:2人	藉由學研合作,培育太陽光發 電領域人才。	1位博士畢 業後,加持 核研所技轉 公司,從專 HCPV相關 研發工作。
	D研究報告	19 篇	呈現研發之成果及後續研發的 重點與方向,使研發技術與經 驗得以交流與傳承,促進所內 同仁資訊交流,提升專業知識。	
	F形成教材	2 種	形成兩種訓練教材,分別供核 能研究所太陽電池模組製程及 太陽光追蹤器控制技術移轉 時,教育訓練用。	
技術創新(科技整	G專利	申請國內或國外之專利 24 件專利獲得 6 件	建立專利佈局,裨益國內廠商 拓展國際市場。	建 專 續 內 考 促 業 的 , 超 , 產 報 級 , 產

	績效指標	初級產出量化值	效益說明	重大突破
	H 技術報告	18 篇	記載研發的歷程及標準作業程序,以利技術傳承;後續的研發可在既有的基礎上,繼續發揚光大。	
	I技術活動	1 次	97.2.22 核研所舉辦「高聚光太陽光發電系統技術移轉暨技術服務諮詢會議」,共計有22人(包括8家參與技轉與技服廠商及南部科學工業園區代表)與會,本次會議裨益國內高聚光太陽光發電產業策略聯盟的建立。	
	J技術移轉 L促成廠商或	本段落屬機密	然性內容,故	不公
經濟效益	產業團體投資	開		
經濟效益(產業經濟發展)	T 促成與學界 或產業團體 合作研究	5 家	分別與國內五所大學就太陽電 池與模組材料劣化評估(吳鳳 技術學院)、太陽電池封裝(清 華大學)、智慧型太陽光追蹤控 制器(東南科技大學)、太陽光 發電系統整合(萬能科技大學) 及分散式發電系統市電併聯品 質分析(交通大學)等題目作學 術性或前瞻性合作研究,培植 未來產業界生力軍。	
其他效益(科技政策管理)	K 規範/標準 制訂	1 次	97.11.19~20 赴美參加 IEC CPV 標準制訂會議(IEC TC82 WG7), 討論研擬新標準,如太陽光追蹤器、太陽能源及電池溫度、安全、輸出功率等,裨益核研所 HCPV 系統組件驗證技術精進。	

伍、評估主要成就及成果之價值與貢獻度 (outcome)

一、學術成就(科技基礎研究)(權重15%)

(一)SCI 期刊:投稿7篇(含刊登3篇,收到回覆編號4篇)。

	報告名稱	備註
1.	A Novel Mechanism of GaAsN/InGaAs Strain-Compensated Superlattice Solar Cells	INER-5446 (刊登於 ISSN, SOLAR ENERGY MATERIAL AND SOLAR CELLS 期刊,semicond. Sci. and Techonol. 22(2007),549~552)
2.	InN Grown on GaN/Sapphire Templates at Different Temperatures by MOCVD	INER-5539(刊登於 OPT MATER 期刊,30 期,517~520)
3.	Self-Assembled InN Dots Grown on GaN with an In _{0.08} Ga _{0.92} N Intermediate Layer by Metal Organic Chemical Vapor Deposition	INER-5626 (刊登於 Journal of Crystal Growth 期刊,310卷,2320~2325)
4.	An Advanced Central Control System for One MW HCPV System	已投稿至 Solar Energy 期刊,於 97.08.15 收到回覆 編號為 SE-D-08-00279
5.	Improved Algorithm of Position Sensing Detection for Solar Tracking	已投稿至 Electronics Letters 期刊,收到回覆編號為 ELL-2008-2721
6.	Using Analysis Hierarchy Process to Improve the Application of Cost Functions in HCPV System Reliability Allocation	已投稿至 Solar Energy 期刊,於 97.08.27 收到回覆 編號為 SE-D-08-00293
7.	Voltage Tracking Design for Electrical Power Systems via SMC Approach	已投稿至 IEEE Transactions on Industrial Electronics Applications 期刊,於 97.10.12 收到回覆編號為 08-TIE-1459

(二)會議論文:發表 10 篇。

	報告名稱	備註
1.	Investigation of the Thermal Performance of High-Concentration Photovoltaic Solar Cell Package	INER-5127(國際會議: The 9th International Conference on Electronics materials and Packaging)
2.	A Smart Central Control System of On-Grid HCPV	INER-5404(國際會議: 17 th International Photovoltaic Science and Engineering Conference)
3.	Analysis and Optimization of Thermal Performance of High-Concentration Photovoltaic Solar Cell Package	INER-5615(國際會議: 23rd European Photovoltaic Solar Energy Conference and Exhibition)
4.	MW 級聚光型太陽光發電系統(HCPV)示範計畫	INER-5333 (國內會議:核能研究所 96 年度研發成果報告)
5.	MW級聚光型太陽光發電系統(HCPV)示範計畫-聚 光模組設計開發	INER-5357(國內會議:核能研究所 96 年度研發成果報告)
6.	MW級聚光型太陽光發電系統(HCPV)示範計畫一追 蹤器及電力系統設計開發	INER-5332 (國內會議:核能研究所 96 年度研發成果報告)
7.	MW級聚光型太陽光發電系統(HCPV)示範計畫—模組檢測與驗證	INER-5329 (國內會議:核能研究所 96 年度研發成果報告)
8.	MW級聚光型太陽光發電系統(HCPV)示範計畫一系統整合與建置	INER-5347(國內會議:核能研究所 96 年度研發成果報告)
9.	Study on the Front Grid Contact of High-Efficiency III-V Concentrator Solar Cells	INER-5559(國內會議: International Electron Devices and Materials Symposium)
10.	聚甲機丙烯酸甲酯(PMMA)運用於 HCPV 太陽電池 聚光鏡材料	INER-5654(國內會議: 2007 國際安全管理與 工程技術研討會)

(三)內部研究論著:發表 19 篇。

	報告名稱	備註
1.	5 kW HCPV 太陽追蹤器支撐架改良設計	INER-5240R(研究報告)
2.	7.5kW HCPV 太陽光追蹤器支撐架設計與疲勞分析	INER-5495R(研究報告)
3.	1MW 高聚光太陽電池追蹤器控制系統	INER-5503H(研究報告)
4.	聚光型光伏模組技術	INER-5512H(研究報告)
5.	MW HCPV 太陽光發電系統中央監控網路通訊規劃與評估	INER-5544R(研究報告)
6.	1MW HCPV 市電併聯之 ETAP 電力暫態模擬	INER-5570R(研究報告)
7.	100kW 高聚光型太陽能發電系統市電併聯建置	INER-5572R(研究報告)
8.	聚光型太陽電池模組製程技轉結案報告	INER-5611H(研究報告)
9.	聚光型太陽電池模組散熱結構與材料研究	INER-5612R (研究報告)
10.	1MW HCPV 電力併網衝擊分析	INER-5613R(研究報告)
11.	高聚光太陽光發電系統中央監控系統演繹	INER-5614R(研究報告)
12.	高精度追蹤技術應用於太陽追蹤器	INER-5620R(研究報告)
13.	1MW HCPV 市電併聯模擬研究	INER-5623R(研究報告)
14.	聚光型太陽光發電模組之二次光學元件設計與模擬	INER-5628H(研究報告)
15.	1MW HCPV 之 5KW 換流器配置及運轉設計	INER-5729R(研究報告)
16.	高聚光太陽電池接收器之信賴性測試報告	INER-5734H(研究報告)
17.	台灣地區直達日射量分布概況	INER-5601H(研究報告)
18.	核研所聚光型太陽電池模組驗證之建立	INER-5602H(研究報告)
19.	III-V 族太陽電池壽限評估期末報告	INER-A1578R(委託計畫報告)

(四)透過太陽電池聚光光學系統、聚光型太陽電池模組的設計與測試、太陽光追蹤控制技術等研發工作及學術論著發表,促進國內、外等相關研究單位交流,培育國內太陽光發電領域的人才,進而提升中華民國在聚光型太陽光發電的國際學術研究地位。

二、技術創新(科技整合創新)(權重25%)

(一)專利申請:預定 97~98 年申請 20 件,本年度已有申請案號為 24 件。

本段落屬機密性內容,故不公開

(二)專利獲得:獲得6篇。

本段落屬機密性內容,故不公開

(三)技術報告:發表 18 篇。

	報告名稱	備註
1.	聚光型太陽電池模組濕絕緣測試程序書	INER-SOP-0107R(作業程序書)
2.	聚光型太陽電池模組旁路二極體溫度測試程序書	INER-SOP-0108R(作業程序書)
3.	聚光型太陽電池模組冰雹衝擊測試程序書	INER-SOP-0109R(作業程序書)
4.	聚光型太陽電池模組淋水測試程序書	INER-SOP-0110R(作業程序書)
5.	聚光型太陽電池模組接地測試程序書	INER-SOP-0111R(作業程序書)
6.	聚光型太陽電池模組濕熱測試程序書	INER-SOP-0112R(作業程序書)
7.	聚光型太陽電池模組戶外曝曬測試程序書	INER-SOP-0113R(作業程序書)
8.	聚光型太陽電池模組集光束偏移損害測試程序書	INER-SOP-0114R(作業程序書)
9.	聚光型太陽電池模組 UV 測試程序書	INER-SOP-0115R(作業程序書)
10.	聚光型太陽電池模組端子強度測試程序書	INER-SOP-0116R(作業程序書)
11.	聚光型太陽電池模組目視檢查程序書	INER-SOP-0117R(作業程序書)
12.	聚光型太陽電池模組熱斑耐久測試程序書	INER-SOP-0118R(作業程序書)
13.	聚光型太陽電池模組電性量測程序書	INER-SOP-0119R(作業程序書)
14.	太陽位置感測器及追蹤控制器設計原理技術報告	INER-OM-1186H(技術手冊及技術程序書)
15.	1MW HCPV 系統中控室程式說明手冊	INER-OM-1226R(技術手冊及技術程序書)
16.	新型太陽光追蹤器控制器	INER-OM-1225H(技術手冊及技術程序書)
17.	「MW 級聚光太陽光發電系統」設計報告	INER-OM-1230H(技術手冊及技術程序書)
18.	太陽位置感測器及追蹤控制器製作程序書	INER-OM-1241R(技術手冊及技術程序書)

本段落屬機密性內容,故不公開

三、經濟效益(產業經濟發展)(權重30%)

本段落屬機密性內容,故不公開

四、社會影響(民生社會發展、環境安全永續)(權重5%)

- (一)本年度接受外界參訪達 41 批次,除達成宣揚本所 HCPV 研發成果之效益,或提高國際能見度,也增進一般民眾對聚光型太陽光發電潔淨能源之認識。
- (二)聚光型太陽光發電是在近幾年才受到國際重視,國內亦僅有數年的發展經驗,但是藉由近幾年來,核研所與國內相關研究機構及大學院校積極合作推展下,聚光型太陽光電技術在國內已建立能量,接續在本計畫積極與業界互動下,已逐步使相關技術落實於產業界,達到技術生根與發展的目的。

五、其它效益(科技政策管理及其它)(權重 25%)

(一)國際知名太陽光電雜誌「PHOTON International」在 2008 年 11 月 份一期中,登載了全世界 36 家公司或機構的商業或展示用 CPV 模組和系統,核研所建置的 HCPV 系統也在其中,不僅擴大本所 HCPV 研發成果在國際上的能見度,也顯示了本所在全球聚光型太 陽光電發展中仍佔有一席之地。

(二)分別與國內五所大學就太陽電池與模組材料劣化評估(吳鳳技術學院)、太陽電池封裝(清華大學)、智慧型太陽光追蹤控制器(東南科技大學)、太陽光發電系統整合(萬能科技大學)及分散式發電系統市電併聯品質分析(交通大學)等題目作學術性或前瞻性合作研究,一位參與本所提供國內大學研究生研究獎助之博士生於年度內畢業,並於年中加入核研所技轉公司,從事 HCPV 相關研發工作,共培育 12 位(含博士:2人、碩士:8人、研究助理:2人),培植高聚光太陽光發電人才及研發量產能力,藉以厚植本土化技術,提升系統效率,有效降低成本。

- (三)建立全國七個日照監測站,同時蒐集直射日照量(全國唯一)及全日 照量,並可即時監控,未來此量測數據可提供業界評估建置太陽 光發電系統之參考(圖 27)。
- (四)97.2.22 核研所舉辦「高聚光太陽光發電系統技術移轉暨技術服務 諮詢會議」,共計有22人(包括8家參與技轉與技服廠商及南部科 學工業園區代表)與會,本次會議裨益國內高聚光太陽光發電產業 策略聯盟的建立。

陸、與相關計畫之配合

本計畫之研發成果可運用於「核能研究所高聚光太陽光發電 系統高科驗證與發展中心」建置計畫,進一步執行模組驗證及技 術推廣工作。

柒、後續工作構想之重點

台灣本島太陽日照量監控資料累計分析評估等方向推動執行。後續工作之推動將有助於聚光型太陽光發電系統之效率提升、成本降低及可靠度提高。

捌、檢討與展望

本段落屬機	密性内容	,	故不公開
′ 〒*4 又 / ロ / 寒 川 / 汉			

實於產業界。未來將朝高聚光太陽光發電系統及其模組效率提升、成本降低及可靠度提高等方向努力。綜而言之,核研所在HCPV系統技術的研發,已達產業化的起端,將持續結合國內廠商,達成技術生根,建立本土化的HCPV產業。

填表人: 聯絡電話:	傳真電話:
E-mail:	
*計畫主管機關審閱後	簽名:

本段落屬機密性內容	,	故不公開

本段落屬機密性內容,故不公開	