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Abstract

The objective of the project is to develop a fault-tolerant system.
When a system is in operation, it may encounter any failure conditions
regardless of the operation time period. For a monitoring and
diagnostic system, any type of fault occurrence can cause the system
performance to be abnormal and interrupted, or even damages the
system being monitored. Thus, for a monitoring and diagnostic system,
it is essential to reduce the effects of failures and accomplish the
remaining tasks. This goal can be achieved by the use of appropriate
redundancies. The critical tasks include: establish the fault-tolerant
structure; evaluate the causes, effects, and locations of faults; based
upon the analysis, design the parallel and analytical redundancies;
conduct experiments through computer-aided equipment; obtain an
optimal deign for the parallel and analytical redundancies; analyze
and improve the fault-tolerant system’s reliability through the Markov

Chain model, artificial neural network, and genetic algorithm.
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Since 1970s, fault tolerance (FT) technologies have been widely
developed and applied to the areas of computers [1, 2], aerospace [3,
4], chemical engineering [5, 6] and manufacturing [7, 8], robotics [9,
10], etc. The FT technologies are essential to not only the evaluations
but also the enhancements of the reliability, maintainability, and
survivability of the system. Carter and Bouricius [1] reviewed the
redundancy techniques to self-repair the computers and improve the
system reliability.

This report focuses on the Partitioning and Parallel-processing of
Markov Chain (PPMC) for a fault-tolerant system of Multi-Modular
Redundant (MMR) controllers. A Markov Chain (MC) is formulated
to represent the N distinct states of the MMR controllers as well as the
failure and repair rates between any two states. The complex MC
graph has N-square directed edges as each edge weight represents the
transition rate of the start state directing to the end one. The system
reliability, which is calculated in terms of the edge weights, requires
large computational calculations. To this end, the techniques of
partitioning MC have been studied to reduce the complexity of
reliability analysis. The lightly weighted edges are suspended based
on the threshold parameters and the MC is partitioned into multiple
weakly connected sub-graphs using the sparse matrix partitioning.

However, the partitioned MC is still a complex multidisciplinary
system that requires a considerable amount of memory for processing
on a single processor. To evaluate the system reliability from the
partitioned MC in a memory-efficient manner, the task-farming

paradigm 1is adopted for parallel processing. The task-farming



paradigm has a master-workers pattern. The master is responsible for
decomposing a task, distributing sub-tasks among workers, and
gathering partial results from workers to coordinate the final
calculation for the reliability evaluation. The worker processes
execute in a simple cycle: get a sub-task, process the sub-task, and
send the result to the master. In addition, due to the task-farming
paradigm’s dynamic load balancing characteristic, the proposed
methodology can respond well to the failure of some processors,
which simplifies the creation of robust applications that are capable of
surviving from the loss of workers or even the master.

The efficiency and accuracy of reliability analysis depend on the
suspension threshold, the partition level, and the availability of
parallel processors. The worst-case reliability is evaluated to
compensate for inaccuracy due to the suspended edge weights. Higher
suspension thresholds produce simpler MC models and faster
calculations but more conservative reliabilities. The performance of
PPMC is maximized to find the optimal suspension and partition
levels. The proposed methodology has been successfully integrated
with the detection and diagnosis processes in the fault-tolerant system.
The simulation results show that, compared with the reliability
analysis of the intact Markov Chain model, the proposed methodology
is capable of improving the performance but also producing allowable

accuracy of the reliability analysis.

- ~ Reliability analysis of multi-modular redundant controllers

Suppose the MMR controllers have N distinct states

S={1,2,..., N}, the transitions between each state are represented



in a Markov Chain (MC). Figure 1 illustrates the graph G (S, E) of

the MC where the edge set E is composed of N° directed edges:
{E E B E } Each directed edge has two edge

11> o Enn
weights g4, and Q, ;. The prior one is the transition probability of
that the state i moves to the state ] while the later one represents the
rate of change of the transition probability. The total transition
probability of that the state i moves to every state, including itself,

equals one, namely

N
Z,uiJ =1 for all i (1)

i1

Therefore, the total rate of change of probability is zero, as in

Z:Qi’j =0 foralli (2)

j=1

Given a vector of the initial state probabilities,

p(O):lel+ZiN:20€i, at the time t=0, the vector of the state

probabilities, p(t) = Z.N: B (t)ei , 1s desirable for the evaluation of

the system reliability.

Figure 1. N-state Markov Chain for MMR controllers.



(= ) Continuous-time Markov chain

To evaluate the transient behaviors of the continuous-time
Markov Chain (CTMC), the differential equation of the transition

probabilities is given as
p'(t)=Q-p(t) (3)
In Eq. (3), Q is the infinitesimal generator of the CTMC [11]

and it is defined as

inithejei i A1 )

- 50 o
N N . .. .
where A= Zi:l Z i H €8 18 called the transition matrix.

The differential equation (3) yields to the eigenvalue

problem as in
(Q-Al)p=0 (5)

The characteristic equation is formulated by ‘Q —M‘ =0. For the
: . : N .
I -th eigenvalue A, the eigenvector v, = Zj:l v, ;&; I1s calculated

by (Q—Al)v, =0.In the end, the transient state probabilities are
given as
C, exp(/llt)

o) v, o v | ©)
CNexp(/th)

Substituting the initial conditions to Eq. (6), the coefficients

C,..C, can be determined by



:[ v, O v, T : (7)

where p,(0)=1 and p,;(0)=0 for i=2..N.

For most MC, the time-dependent state probabilities can be
evaluated using the described method. However, the
computational complexity increases dramatically when the
number of states increases in the MMR controllers. It is very
difficult to solve the large-scale eigenvalue problem and obtain
the state probabilities in allowable working time. To this end, we
will focus on the discrete-time approach, which requires less
calculation.

(= ) Discrete-time Markov chain
With the Markov property, the state variable X (n+1) at
the time n+1 depends only upon its state at the time n, X (n).
That is, given the present state of the system X (n), the future
state of the discrete-time Markov Chain (DTMC) X (n+1) is

independent  of  its  previous discrete-time states

X (0), X (1),..., X(n—1). ADTMC with the finite state space S

1s time homogeneous if the Eq. (8) holds.
) EP[x(nH): j‘X(n):iJ:P[X(I): j]x(o)zi] (8)
for n>0 and i,j=1..N. For the DTMC, g, is called the

one-step transition probability at the time n. In this report, we
assume the one-step transition probability remains constant for all

times Nn. The state probabilities will be calculated using the given



one-step transition probabilities.

We are interested in the probabilities P[X(n): J] for all

jeS and nz0. Statistically, the probability P| X (n)=j] is

calculated by
f{x ()= - e x (o) - ()= fx(0)=1] o
The Eq. (9) is further I:lewritten in the matrix form as in
o0)-A(r)-9() w0
where  p(n)=2" P[X(n)=jle, indicates the state

probabilities at n; p(O):Z:P[X(O):i]ei is for the initial

e N N : : :
probabilities; A(n) = ZHZHP[X (n) = j‘ X (0) = IJejei is the
matrix of the n-step transition probabilities. Since the DTMC 1is

assumed to be time homogeneous, the matrix A(n) can be

calculated by the n-the power of A[11], as in
p(n)=A"-p(0) (11)
To sum up, the transition probabilities of the DTMC are
calculated by the matrix operations in Eq. (11). The matrix
multiplication algorithm has message-passing characteristics and
i1s more applicable in message-passing systems, such as
distributed memory based cluster of computers. In the section 3,
the MC is partitioned into smaller systems in order to distribute
the loads to several computers. In the section 4, the parallel

processing of the MC is introduced.

= ~ Partitioning of Markov chain

10



This section presents the partitioning of a large-scale MC.
Essentially, the lightly weighted edges are suspended based on the
threshold parameters and the MC is partitioned into multiple
weakly connected sub-graphs using the sparse matrix partitioning.
The created sub-graphs can be processed individually to produce
partial results, which are combined to form the complete state
probability distribution at a desired time instant.

(= ) Reduction of Markov chain

In this report, we want to first reduce the complexity of the
MC in terms of eliminating the connectivity of the weakly linked
edges. Chou and Lin [12] have eliminated the edges of minimal
probabilities in the MC and greatly reduced the required
calculations. The evaluated network probability of the reduced
Markov Chain (RMC) was slightly underestimated and can be
utilized as a worst-case probability, that is, the true probability of
a MC is at least higher than or equal to the worst-case probability
in the RMC.

A binary dependency matrix D represents the connectivity

of the MC, as in

D=)> D ege (12)

i=1 j=I
where D, j =1 when the i-th state is directed to the j-th one;
otherwise, D,;=0. It is noted that Dij = Dji only when there

exist an reversible transition between the nodes I and j; however,

4 ; and p;; do not need to be the same. Given a threshold

parameter 7, the connectivity D,; of the RMC is reduced to

11



zero if g [ <T. As a result, the dependency matrix becomes

sparse. We want to reorder the sparse dependency matrix and
partition them into smaller matrices in order to distribute the
computational workloads to multiple computers.
(= ) M-Partitioning
Figure 2 (a) shows an example of the partition of a 60 x 60
dependency matrix. Each blue dot represents a non-zero element

in the matrix. The four red lines divide the matrix into 9 smaller
matrices, including a M x M, submatrix, a M, ><(I\/I2 — Ml)
submatrix, ..., and a (N - Mz) x(N - MZ) submatrix. Each

submatrix is required for the calculations of the state probabilities

in Eq. (11). Given the initial permutation of the sparse matrices
N . . . .
H=E__lzel_, we focus on finding the optimal permutation to

minimize the connectivity between the partitioned systems. In
other words, we want to reorder the dependency matrix such that
some submatrices are closer to zero matrices, as shown in
Figure 2 (b). In this way, the required matrix multiplications are

reduced.

12
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Figure 2. Partitions of (a) an original and (b) a reordered

dependency matrices.

Define a M -partition that partitions the dependency matrix
of the RMC, D, into two sub-systems:

_ D ¢
D= (13)
(I)Z D2

where D, and D, are MxM and (N—M)X(N—M)

sub-matrices respectively. The sizes of the off-diagonal matrices

13



® and ®, are M x(N — M) and (N - I\/I)x M respectively.
Meanwhile, the permutation vector is partitioned into two vectors
M N .. .
IT = E~—1 ie, and I = E‘_M 1iel.. The partition parameter M is
controlled to balance the computational loads for each computer.
When M <N/2, the computational complexity of the first
sub-problem is lower; on the other hand, the second sub-problem

is more complex when M > N/2. Multiple matrix partitions can

be accomplished using multiple M -partitions.
Based on the M -partition, the calculation in Eq. (11) is

partitioned as in

pl(n) _ Al lpl pl(O) (14)

P, (n) ¥, A p,(0)
where Ak:ZigP Zjep Di’j,ui’jejei is calculated based on the

permutation I, . Furthermore, the off-diagonal matrices ‘¥, and

Y, are calculated by Z. . Z and

Ijjl

Zi ; Zj o Dt 88 respectively. The state probabilities in the

i,j i

first and second sub-problems are then determined by

pl(n)=Afp1 (O)+f1(‘l’1,l1‘2) (15)
p2(n)=A;p2 (0)+f2(1111,1112) (16)

If the permutations of the matrices and vectors are reordered such

that the total probability in the off-diagonal matrices ¥, and ‘¥,
are close to zero, the functions f, and f, in Egs. (15) and (16)

become negligible. Thus, the state probabilities can be

14



approximated by the following equation:
pi(n)zAi”pi(O) (17)
(=) Iteration process of finding the minimal coupling between

sub-problems
The objective of our approach is to find the permutation
order that minimizes the total transition probability between the

two subsystems:
M
Pc :Z LPl,ij + Z \Pz,ij (18)

One of the possible methods is to diagonalize the dependency
matrix D; however, it does not ensure the coupling probability

P. 1s minimized for the specific M -partition. In this report, an

effective iteration process is proposed as in the following steps to

determine the optimal permutation order:

(0)

1. Given the initial permutation IT"’ and dependency matrix

D). Calculate the initial coupling probability péo) using the
Eq. (18).
2. Begin with LI’(O)LN_M in the wupper-right off-diagonal

dependency matrix as the pivot element. The iteration number
k equals one.

3. Suppose the location of the pivot element is (i, ). If the

(1, j)-th element in Tl(k_l), or the (j,i)-th element in \}12("‘1))
is not zero, the column number of the pivot element is denoted

as C(pk) and go to step 5; otherwise, go to step 4.

4. If the pivot element is the last element ‘P(,\';_ll), cannot advance

15



further and go to step 10. Otherwise, move to the adjacent
element along the zig-zag trajectory, shown in Figure 3, and

consider it as the new pivot element. Go to step 3.

5. Begin with the first column, i.e. c=1. Let H(k) = H(k_l) and

nl) =l

6. If c=c

o » move to the adjacent column by c=c+1. If
c <N, go to step 7; otherwise, go to step 9.

(k)
p

(k-1)

7. Interchange ¢ and c,;’ in the permutation II and

calculate the coupling probability p, of the interchanged
off-diagonal dependency matrix.

8. If n, <n(ck) , n((:k) =n, and assign the interchanged
permutation as 1" . Advance to the adjacent column by
Cc=C+1 and go to step 6.

9. If n((:k) = n((:kfl) , the iteration process has been converged. Go to

step 10. Otherwise, update the interchanged matrix D™

(k

using the determined permutation IT ) and advance to the

next iteration by k =k +1. Go to step 4.
10.The optimal permutation is IT = 1% and the optimal

reordered dependency matrix is D™ = DX,

16
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Figure 3. Determination of pivot elements along the zig-zag

trajectory in the off-diagonal dependency matrix.

= ~ Parallel-processing of Markov chain

As illustrated in the section 3.2, the partitioned MC has
multiple transition probability sub-matrices. As also mentioned in
the section 3, these square matrices can be processed individually
to produce partial results, which are combined to form the
complete state probability distribution at a desired time instant.
However, for a large-scale MC that has been partitioned, each of
its transition probability sub-matrices might still need a large
memory space for processing on a single processor. Thus, the
task-farming paradigm is adopted for parallel processing. The
task-farming paradigm has a master-workers pattern. The master
1s responsible for decomposing a task, distributing sub-tasks
among workers, and gathering partial results from workers to
coordinate the final calculation for the reliability evaluation. The
worker processes execute in a simple cycle: get a sub-task,
process the sub-task, and send the result to the master. In addition,
due to the task-farming paradigm’s dynamic load balancing

characteristic, the proposed methodology can respond well to the

17



failure of some processors, which simplifies the creation of robust
applications that are capable of surviving from the loss of workers
or even the master. In this report, for simplicity purposes, with a
static load balancing feature, the task-farming paradigm is used to
implement an algorithm to obtain the state probability vector at
any desired time instant.

The message-passing programming paradigm is one of the
earliest and most widely used approaches for programming
parallel computers. Its wide-spread adoption can be attributed to
the fact that it imposes minimal requirements on the underlying
hardware [13].

The most natural message-passing architecture for matrix
operations is a two-dimensional mesh, where each node in the
mesh computes one element, or submatrix, of the result array. The
mesh connections allow messages to pass between adjacent nodes
in the mesh simultaneously. The Cannon’s algorithm [14], a
memory efficient algorithm, is implemented for matrix
multiplication. It uses a mesh of processors with wraparound
connections to shift submatrices.

For clarity, elements, instead of submatrices, of the arrays a
and b are used to illustrate the algorithm as follows.

Cannon’s algorithm:

1. Initially, processor T, . has elements a and bi,j

(0<i<n,0<j<n)
2. Elements are moved from their initial position to an aligned
position. In other words, the complete i-th row of a is

left-shifted i positions, and then the complete j-th column of b

18



is up-shifted j positions. This step places the element a. .

i,j+i

and the element biﬂ. . in processor 7, i This pair of elements
are required to calculate the element C, i

3. Each processor 7T | multiplies its elements.

4. The i-th row of a is shifted one position left, and the j-th
column of b is shifted one position upward. This step brings

together the adjacent elements of a and b, which are also

required in the computation of ¢, i

5. Each processor 7. j multiplies the elements brought to it and

adds the result to the accumulating sum.

6. Repeat steps 4 and 5 until the final result of c, j is obtained.

In other words, given n rows and n columns of elements, a

total of n—1 shifts need to be conducted.

Next given that both a and b have s* submatrices. Each
submatrix has mxm elements. Thus, based on the above
Cannon’s algorithm, for both a and b, the initial alignment
requires a maximum of S—1 shift operations. Afterward, there
are another S—1 shift operations required for computation
purposes. Each shift operation performs a communication

involving mxm elements. Therefore, the communication time

t can be determined using Eq. (19).

comm

2
tcomm =4 (S B 1) (tstartup +m tdata) (1 9)
Thus, the Cannon’s algorithm has a communication time

complexity of O(sm?)=0(mn), where s=n/m is assumed in

19



this report.

As for the computation aspect, each submatrix multiplication
requires m’ multiplications and m’ additions. Therefore, with

s—1 shifts as mentioned above, the computation time Lomp CAN

be determined using Eq. (20).
t =2sm’=2m"n (20)

comp
Hence, the Cannon’s algorithm has a computation time
complexity of O(m’n).

In this report, the Cannon’s algorithm is implemented
through the Message Passing Interface (MPI) [15, 16]. MPI is a
specification for building a library that provides standard
functions for writing portable and efficient message passing
programs to be run on a variety of parallel computers. In this

report, the selected MPI library is a widely used open source
library called MPICH2 [17, 18].

20
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— ~ Numerical Examples
In this section, we study the Markov Chains for three different

examples to validate the proposed PPMC method.
(- ) Example 1: 60-state MC for MMR controllers

The first example considers a randomly generated 60-state
MC, which is composed of 277 distinct directed edges.
Figure 4 (a) shows the dependency matrix of the 6-state MC
while each blue dot represents one of the directed connections.
The blank areas stand for no connections between the states. The
subfigure (a) can also be used to represent the transition matrix; in

this case, each blue dot is a non-zero transition probability s ;.

When the size of MC is in the order of tens of states, it is not
necessary to reduce the MC using the threshold parameter. In the
latter case when the MC size is larger, the reduction can help
improve the numerical efficiency. To uniformly distribute the
computational workloads to five computers, we partition the

dependency matrix at the positions of M = {12,24,36,48}. The

red lines represent the desirable locations for matrix partitioning.
According to the desirable partitioning locations, the dependency
matrix is reordered such that the totally probability in the
off-diagonal submatrices, shown in the gray areas in the
subfigure (c), is minimized. The ratio of the total coupling
probability and the total probability is 9.66 / 60 = 0.16. In other
words, around 84 percent of workloads are uniformly distributed
in the five diagonal submatrices. The discrete-time state

probabilities are calculated using the Eq. (17).

21



Suppose the initial condition is given as p,5(0)=1 and
p; (O) =0 for 1=1...14,16...60, the state probabilities at the time

n=10 are calculated using the proposed method. Furthermore,
the numerical performances of the PPMC method are compared
with the calculations using the original MC in Eq. (10). Three
different simulation results are listed in Table 1. The first case
considers the second state as the fail state. The original matrix
multiplication shows the failure probability is 0.07% while the
proposed method overestimates the failure rate as 12.5%. A
worst-case reliability, 87.50%, is then found, that is, the true
probability, 99.93%, is at least larger than or equal to the
underestimation, 87.50%.

The second case shows a higher failure probability of 3.06%
when the 24th state is considered as the fail state. In this case, the
proposed method is capable of finding the overestimated failure
probability of 12.5% and the worst-case reliability of 87.5%. In
the last case, the 30th state is considered as the fail state. In this
case, the PPMC method obtains the worst-case reliability of
99.87%, which is just slightly lower than the true probability of
99.88%.

Table 2 shows the comparison of computation times in this
60-state example. The average computation time for evaluating
the system reliability through the original MC using one
processor is 74.97 (ms). By Cannon’s algorithm, the average
computation time for evaluating the system reliability through the
original MC using 25 processors is 3.48 (ms). The average

computation time for evaluating the system reliability through the

22



PPMC method using five processors is 0.66 (ms). Compared with
the first configuration, the second and third configurations have

parallel speedup ratios of 21.53 and 113.77, respectively.
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Figure 4. The (a) original and (b) partitioned dependency matrices
for the 60-state Markov Chain.
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Table 1. Results of the 60-state Markov Chain.

Method | Index of fail state | Probability of fail state | System reliability
Original 2 0.07% 99.93%
PPMC 2 12.5% 87.50%
Original 24 3.06% 96.94%
PPMC 24 12.5% 87.50%
Original 30 0.12% 99.88%
PPMC 30 0.13% 99.87%

Table 2. Comparison of computation times.

Number of Computation time | Speedup ratio
processors (ms)
Original | 74.97 1
Original 25 3.48 21.53
PPMC 5 0.66 113.77

(= ) Example 2: 200-state MC for MMR controllers

The second case focuses on a 200-state MC, which contains
605 directed edges. Figure 5 (a) shows the dependency matrix of
the given MC. In this case, the MC reduction is also unnecessary.
To distribute the workloads to five computers, the desirable

partitioning locations are M = {40, 80,120, 160}, indicated by the

red lines. The off-diagonal probabilities are minimized to reorder
the dependency matrix. As a result, the off-diagonal probability,
the sum of probabilities in the gray areas, equals 34.33, which is
around 17.16% over the total probability. The values in the
off-diagonal submatrices will be neglected in Eq. (17) yielding

the underestimated measure of system reliability. Therefore, the
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worst-case reliability can be determined.

We now want to demonstrate different types of simulation
results from the first example. Suppose the 5th state is considered
as the fail state, three different initial states are studied. The 1st

case starts with p(0)=1e,,. The original matrix multiplication

shows the fail probability of 6.63% as the PPMC overestimates
the fail probability of 7.05%; therefore, a worst-case reliability of

92.95% is found. Another initial condition considers p(0)=1e,.

The proposed method underestimates the reliability, i.e. 82.83% <
true probability = 83.25%, and utilizes the worst-case measure as
a robust estimator of the system probability. Lastly, when the 99th
state is considered as the initial state, a lower reliability of
77.01% 1s found using the original calculations. Even for the
special situation of low reliability, the proposed method is capable
of finding the worst-case reliability, 1.e. 75.32%. Table 3 lists the
detailed information about the simulation results.

Table 4 shows the comparison of computation times in this
200-state example. The average computation time for evaluating
the system reliability through the original MC using one
processor is 2093.91 (ms). By Cannon’s algorithm, the average
computation time for evaluating the system reliability through the
original MC using 25 processors is 119.49 (ms). The average
computation time for evaluating the system reliability through the
PPMC method using five processors is 22.34 (ms). Compared
with the first configuration, the second and third configurations

have parallel speedup ratios of 17.52 and 93.74, respectively.
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Figure 5. The (a) original and (b) partitioned dependency matrices
for the 200-state Markov Chain.

Table 3. Results of the 200-state Markov Chain.

Method Indexst(;t;elmtlal Probability of fail state | System reliability
Original 32 6.63% 93.37%
PPMC 32 7.05% 92.95%
Original 18 16.75% 83.25%
PPMC 18 17.17% 82.83%
Original 99 22.99% 77.01%
PPMC 99 24.68% 75.32%
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Table 4. Comparison of computation times

Number of Computation time | Speedup ratio
processors (ms)
Original 1 2093.91 1
Original 25 119.49 17.52
PPMC 5 22.34 93.74

(=) Example 3: 480-state MC for MMR controllers

The final example considers a large-scale MC that contains
480 states. Figure 6 (a) shows the dependency matrix with 1899
blue dots, that is, there are 1899 distinct directed edges in the MC.
In a large problem like this, the matrix reduction can effectively
improve the numerical performances. We assume the threshold
parameter is 7 =0.1. Figure 6 (b) shows the dependency matrix
of the reduce Markov Chain, which now only contains 710
directed edges. The matrix permutation is then reordered and the
resultant dependency matrix is shown in the subfigure (¢). The
total off-diagonal probability equals 110.37, which is around 23%
of the total probability. On the other hand, 77% of the workloads
are uniformly distributed to eight different computers. The red
lines represent the given partitioning locations
M = {60, 120, 180, 240, 300, 360, 420} .

Table 5 lists two different cases of the simulations. The first
case considers the 10th and 406th states as the initial and fail
states. The proposed method is able to find the worst-case
reliability, 99.04%, which is slightly lower than the true measure,
99.75%. In the other case of that the 432nd and 31st states are the
initial and fail states, the PPMC method obtains an
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underestimation of the system reliability, i.e. 70.79% << true
probability = 99.90%, due to the errors from the matrix reduction
and approximated calculation in Eq. (17). However, the proposed
method still guarantees that the true system reliability is at least
larger than or equal to the underestimated measure.

Table 6 shows the comparison of computation times in this
480-state example. The average computation time for evaluating
the system reliability through the original MC using one
processor is 24376.94 (ms). By Cannon’s algorithm, the average
computation time for evaluating the system reliability through the
original MC using 16 processors is 2441.48 (ms). The average
computation time for evaluating the system reliability through the
PPMC method using eight processors is 75.59 (ms). Compared
with the first configuration, the second and third configurations

have parallel speedup ratios of 9.98 and 322.48, respectively.

Table 5. Results of the 480-state Markov Chain.

Index of | Index of fail | Probability of fail System
Method | . L
initial state state state reliability
Original 10 406 0.25% 99.75%
PPMC 10 406 0.96% 99.04%
Original 432 31 0.10% 99.90%
PPMC 432 31 29.22% 70.79%
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Figure 6. The (a) original, (b) reduced, and (c) partitioned

dependency matrices for the 480-state Markov Chain.
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Table 6. Comparison of computation times

Number of Computation time | Speedup ratio
processors (ms)
Original 1 24376.94 1
Original 16 2441.48 9.98
PPMC 8 75.59 322.48

=~ ~ Conclusions

This report focuses on the reliability analysis of multi-modular
controllers using discrete-time Markov chains. A novel approach is
proposed to reduce and partition a large-scale Markov chain model
into multiple independent sub-models, which can be tackled
naturally by parallel processing in the first place. However, each of
those sub-models might still require a huge amount of memory for
processing on a single processor. Thus, the task-farming paradigm
of parallel processing is used to implement a memory-efficient
algorithm to obtain each sub-model’s result, and combine the results
to form the complete state probability vector at any desired time
instant.

The results of three numerical examples reveal that, compared
with the reliability analysis of the intact Markov Chain model, the
proposed methodology is capable of improving the performance but
also maintaining allowable accuracy of the reliability analysis. The
amount of memory required on a single processor to perform matrix
calculations is significantly reduced. The computational speed is

significantly improved as well.
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P(A)

An array in Cannon’s algorithm.

Transition matrix.

| -th partitioned transition matrix.

Another array in Cannon’s algorithm.

Column number.

Column number of the pivot element in dependency matrix.

i -th coefficient.
N x N dependency matrix.
I -th partitioned dependency matrix.

Connectivity parameter. Dij equals one when 1-th and

] -th states are connected; otherwise, it is zero.
I -th normal basis.

Dimensional parameter of submatrices for multiple
Processors.

Dimensional parameter for the partitioned matrix.

Time parameter in the computer processing.

Number of states in Markov Chain.

Vector of transition probabilities.

Total probability of the partitioned Markov Chains couple
with each other.

I -th partitioned vector of transition probabilities.

Total coupling probability for the interchanged dependency

matrix.

Probability of A.
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P(A | B) Conditional probability of A given B.

Q Infinitesimal generator of continuous-time Markov Chain.
S A dimensional parameter.

S Finite state space.

t Time.

X(t)  Variable with Markov property at time t.
A I -th eigenvalue.
H; | Transition probability (failure/recovery rate) of the state |

moves to the state j.

vV, I -th eigenvector.

o A small number.

7T | A processor with elements a and bi’j.
I1 N x1 permutation vector.

IT I -th partitioned permutation vector.

T Threshold parameter.

D I -th off-diagonal dependency matrix.

v I -th off-diagonal transition matrix.
Superscript

!

Derivative with respect to time.

* Optimal solution.
(k) N -th Iteration in finding the optimal partition.
(n) N-th Step in computer processing.
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