

行政院原子能委員會

委託研究計畫研究報告

多重容錯控制器研究

Investigation on Multi-Modular Redundancy Fault-Tolerant Controllers

計畫編號：1012001INER010

受委託機關(構)：中原大學機械工程學系

計畫主持人：丁鏞

聯絡電話：(03)2654319

E-mail address：yung@cycu.edu.tw

核研所聯絡人員：陳昌國

報告日期： 101 年 12 月 5 日

 i

目 錄

目 錄 ..I

中文摘要 ... 1

ABSTRACT.. 2

壹、計畫緣起與目的 ... 3

貳、研究方法與過程 ... 5

一、RELIABILITY ANALYSIS OF MULTI-MODULAR REDUNDANT CONTROLLERS......... 6

(一) Continuous-time Markov chain.. 8

(二) Discrete-time Markov chain... 9

二、PARTITIONING OF MARKOV CHAIN .. 10

(一) Reduction of Markov chain ...11

(二) M-Partitioning.. 12

(三) Iteration process of finding the minimal coupling between sub-problems. 15

三、PARALLEL-PROCESSING OF MARKOV CHAIN ... 17

參、主要發現與結論 ... 21

一、NUMERICAL EXAMPLES .. 21

(一) Example 1: 60-state MC for MMR controllers .. 21

(二) Example 2: 200-state MC for MMR controllers .. 24

(三) Example 3: 480-state MC for MMR controllers .. 27

二、CONCLUSIONS... 30

肆、數學符號 ... 31

伍、參考文獻 ... 33

1

中文摘要

本計畫針對使用在核能級控制器中的多重容錯控制器研究，內

容包括控制器架構、容錯機制、系統可靠度分析等議題，探討多重

容錯控制器執行安全功能時的容錯機制(Fault Tolerance)及可靠度

(Reliability)並建立評估機制。系統在操作中，不論使用時間長短，

都可能發生錯誤而故障。以監測診斷系統而言，任何一個故障的發

生都可能造成該監測診斷系統執行不正常、中斷、或損壞系統本身，

甚或影響受監測之系統。對一監測診斷系統之容錯機制(或容錯系統)

而言，能即時發現故障，找出故障的原因，經由重組過程及容錯控

制法則，使故障對監測診斷系統之影響降至最低，並使其繼續完成

任務，是相當重要的。研究重點包括建立容錯系統之架構；評估各

種故障可能之原因、地點、與影響；依容錯分析結果，設計平行性

與分析性備份件；配合電腦輔助設備進行系統整合測試；找出最佳

的備份件設計方法；採用 Markov Chain 模型並搭配類神經網路與基

因演算法，針對容錯系統進行可靠度之分析與改善。

2

Abstract

The objective of the project is to develop a fault-tolerant system.

When a system is in operation, it may encounter any failure conditions

regardless of the operation time period. For a monitoring and

diagnostic system, any type of fault occurrence can cause the system

performance to be abnormal and interrupted, or even damages the

system being monitored. Thus, for a monitoring and diagnostic system,

it is essential to reduce the effects of failures and accomplish the

remaining tasks. This goal can be achieved by the use of appropriate

redundancies. The critical tasks include: establish the fault-tolerant

structure; evaluate the causes, effects, and locations of faults; based

upon the analysis, design the parallel and analytical redundancies;

conduct experiments through computer-aided equipment; obtain an

optimal deign for the parallel and analytical redundancies; analyze

and improve the fault-tolerant system’s reliability through the Markov

Chain model, artificial neural network, and genetic algorithm.

3

壹、計畫緣起與目的

根據國際上運轉中核電廠儀控系統數位化更新及新建核電廠整

廠數位儀控系統之應用與申照經驗，掌握自主關鍵技術有助於申照

過程及長期運轉維護策略。因此，發展自主核能儀控產業技術，對

於持續發展核能應用、確保核能安全與減少外匯損失有具體之效

益。另外，透過自主型核能級儀控產業技術與關鍵組件認證平台之

建立，可促進國內儀控系統與零組件產業升級，除應用於核電廠外，

可擴大應用於其他工業，如火力發電、石化廠等之高可靠度安全需

求相關系統。

多重容錯控制器研究的行為影響甚鉅，在安全數位儀控系統中

為一相當重要之議題，本計劃針對使用在核能級控制器中的多重容

錯控制器進行探討，研究內容含括控制器架構、容錯機制、系統可

靠度分析等議題，探討多重容錯控制器執行安全功能時的容錯機制

(Fault Tolerance)及可靠度(Reliability)並建立評估機制。

本計畫之重點工作項目包括多重容錯控制器之設計與實現、多

重容錯控制器之可靠度分析、可靠度評估分析機制之建立；規劃多

重容錯控制器軟硬體與系統測試及驗證程序。

本計畫之最終目標包含協助核能電廠建立核能級控制器容錯之

評估機制，以作為制訂國內核能級控制器設計規範之重要基礎；依

據核能級控制器設計規範，建立一套多重容錯控制器應用於核能電

廠之測試與驗證程序。

本計畫亦期望將研究成果運用於人員訓練，內容包括藉由多重

容錯控制器的研究，建立其制訂核能級控制器設計規範之能力；藉

由多重容錯控制器測試程序的規劃，增進其整合系統安全與儀控系

4

統之能力；藉由應用於核能電廠的多重容錯控制器驗證程序的建

立，增進其開發核能級控制器之能力。

5

貳、研究方法與過程

Since 1970s, fault tolerance (FT) technologies have been widely

developed and applied to the areas of computers [1, 2], aerospace [3,

4], chemical engineering [5, 6] and manufacturing [7, 8], robotics [9,

10], etc. The FT technologies are essential to not only the evaluations

but also the enhancements of the reliability, maintainability, and

survivability of the system. Carter and Bouricius [1] reviewed the

redundancy techniques to self-repair the computers and improve the

system reliability.

This report focuses on the Partitioning and Parallel-processing of

Markov Chain (PPMC) for a fault-tolerant system of Multi-Modular

Redundant (MMR) controllers. A Markov Chain (MC) is formulated

to represent the N distinct states of the MMR controllers as well as the

failure and repair rates between any two states. The complex MC

graph has N-square directed edges as each edge weight represents the

transition rate of the start state directing to the end one. The system

reliability, which is calculated in terms of the edge weights, requires

large computational calculations. To this end, the techniques of

partitioning MC have been studied to reduce the complexity of

reliability analysis. The lightly weighted edges are suspended based

on the threshold parameters and the MC is partitioned into multiple

weakly connected sub-graphs using the sparse matrix partitioning.

However, the partitioned MC is still a complex multidisciplinary

system that requires a considerable amount of memory for processing

on a single processor. To evaluate the system reliability from the

partitioned MC in a memory-efficient manner, the task-farming

paradigm is adopted for parallel processing. The task-farming

6

paradigm has a master-workers pattern. The master is responsible for

decomposing a task, distributing sub-tasks among workers, and

gathering partial results from workers to coordinate the final

calculation for the reliability evaluation. The worker processes

execute in a simple cycle: get a sub-task, process the sub-task, and

send the result to the master. In addition, due to the task-farming

paradigm’s dynamic load balancing characteristic, the proposed

methodology can respond well to the failure of some processors,

which simplifies the creation of robust applications that are capable of

surviving from the loss of workers or even the master.

The efficiency and accuracy of reliability analysis depend on the

suspension threshold, the partition level, and the availability of

parallel processors. The worst-case reliability is evaluated to

compensate for inaccuracy due to the suspended edge weights. Higher

suspension thresholds produce simpler MC models and faster

calculations but more conservative reliabilities. The performance of

PPMC is maximized to find the optimal suspension and partition

levels. The proposed methodology has been successfully integrated

with the detection and diagnosis processes in the fault-tolerant system.

The simulation results show that, compared with the reliability

analysis of the intact Markov Chain model, the proposed methodology

is capable of improving the performance but also producing allowable

accuracy of the reliability analysis.

一、Reliability analysis of multi-modular redundant controllers

Suppose the MMR controllers have N distinct states

{1, 2, ..., }S N= , the transitions between each state are represented

7

in a Markov Chain (MC). Figure 1 illustrates the graph (),G S E of

the MC where the edge set E is composed of 2N directed edges:

{ }1,1 1,2 , ,, , ..., , ...,i j N NE E E E . Each directed edge has two edge

weights ,i jμ and ,i jQ . The prior one is the transition probability of

that the state i moves to the state j while the later one represents the

rate of change of the transition probability. The total transition

probability of that the state i moves to every state, including itself,

equals one, namely

 ,
1

1 for all
N

i j
j

iμ
=

=∑ (1)

Therefore, the total rate of change of probability is zero, as in

 Qi, j
j=1

N

∑ = 0 for all i (2)

Given a vector of the initial state probabilities,

() 1 2
0 1 0N

ii=
= +∑p e e , at the time 0t = , the vector of the state

probabilities, () ()1

N
i ii

t p t
=

= ∑p e , is desirable for the evaluation of

the system reliability.

Figure 1. N-state Markov Chain for MMR controllers.

8

(一) Continuous-time Markov chain

To evaluate the transient behaviors of the continuous-time

Markov Chain (CTMC), the differential equation of the transition

probabilities is given as

 () ()t t′ = ⋅p Q p (3)

In Eq. (3), Q is the infinitesimal generator of the CTMC [11]

and it is defined as

 ()
, 01 1

lim
N N

i j j i
i j

Q
δ

δ
δ→

= =

−
≡ =∑∑

A I
Q e e (4)

where ,1 1

N N
i j j ii j

μ
= =

≡∑ ∑A e e is called the transition matrix.

The differential equation (3) yields to the eigenvalue

problem as in

 ()λ− =Q I p 0 (5)

The characteristic equation is formulated by 0λ− =Q I . For the

i -th eigenvalue iλ , the eigenvector ,1

N
i i j jj

v
=

= ∑v e is calculated

by ()i iλ− =Q I v 0 . In the end, the transient state probabilities are

given as

 p t() = v1 � v N
⎡
⎣

⎤
⎦

C1 exp λ1t()
M

CN exp λNt()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (6)

Substituting the initial conditions to Eq. (6), the coefficients

C1...CN can be determined by

9

C1

M

CN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= v1 � v N
⎡
⎣

⎤
⎦
−1

p1 0()
M

pN 0()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7)

where ()1 0 1p = and ()0 0ip = for i = 2...N .

For most MC, the time-dependent state probabilities can be

evaluated using the described method. However, the

computational complexity increases dramatically when the

number of states increases in the MMR controllers. It is very

difficult to solve the large-scale eigenvalue problem and obtain

the state probabilities in allowable working time. To this end, we

will focus on the discrete-time approach, which requires less

calculation.

(二) Discrete-time Markov chain

With the Markov property, the state variable ()1X n + at

the time 1n + depends only upon its state at the time n , ()X n .

That is, given the present state of the system ()X n , the future

state of the discrete-time Markov Chain (DTMC) ()1X n + is

independent of its previous discrete-time states

() () ()0 , 1 , ..., 1X X X n − . A DTMC with the finite state space S

is time homogeneous if the Eq. (8) holds.

 μi, j ≡ P X n+1() = j X n() = i⎡
⎣

⎤
⎦= P X 1() = j X 0() = i⎡

⎣
⎤
⎦ (8)

for 0n ≥ and , 1...i j N= . For the DTMC, ,i jμ is called the

one-step transition probability at the time n . In this report, we

assume the one-step transition probability remains constant for all

times n . The state probabilities will be calculated using the given

10

one-step transition probabilities.

We are interested in the probabilities P X n() = j⎡⎣ ⎤⎦ for all

j ∈ S and n ≥ 0 . Statistically, the probability P X n() = j⎡⎣ ⎤⎦ is

calculated by

 P X n() = j⎡⎣ ⎤⎦= P X 0() = i⎡⎣ ⎤⎦P X n() = j X 0() = i⎡
⎣

⎤
⎦

i=1

N

∑ (9)

The Eq. (9) is further rewritten in the matrix form as in

 p n() = A n() ⋅p 0() (10)

where p n() = P X n() = j⎡⎣ ⎤⎦e jj=1

N∑ indicates the state

probabilities at n ; p 0() = P X 0() = i⎡⎣ ⎤⎦eii=1

N∑ is for the initial

probabilities; A n() = P X n() = j X 0() = i⎡
⎣

⎤
⎦e jeij=1

N∑i=1

N∑ is the

matrix of the n-step transition probabilities. Since the DTMC is

assumed to be time homogeneous, the matrix A n() can be

calculated by the n-the power of A [11], as in

 p n() = An ⋅p 0() (11)

To sum up, the transition probabilities of the DTMC are

calculated by the matrix operations in Eq. (11). The matrix

multiplication algorithm has message-passing characteristics and

is more applicable in message-passing systems, such as

distributed memory based cluster of computers. In the section 3,

the MC is partitioned into smaller systems in order to distribute

the loads to several computers. In the section 4, the parallel

processing of the MC is introduced.

二、Partitioning of Markov chain

11

This section presents the partitioning of a large-scale MC.

Essentially, the lightly weighted edges are suspended based on the

threshold parameters and the MC is partitioned into multiple

weakly connected sub-graphs using the sparse matrix partitioning.

The created sub-graphs can be processed individually to produce

partial results, which are combined to form the complete state

probability distribution at a desired time instant.

(一) Reduction of Markov chain

In this report, we want to first reduce the complexity of the

MC in terms of eliminating the connectivity of the weakly linked

edges. Chou and Lin [12] have eliminated the edges of minimal

probabilities in the MC and greatly reduced the required

calculations. The evaluated network probability of the reduced

Markov Chain (RMC) was slightly underestimated and can be

utilized as a worst-case probability, that is, the true probability of

a MC is at least higher than or equal to the worst-case probability

in the RMC.

A binary dependency matrix D represents the connectivity

of the MC, as in

 D = Di, je jei
j=1

N

∑
i=1

N

∑ (12)

where Di, j =1 when the i -th state is directed to the j -th one;

otherwise, , 0i jD = . It is noted that Di, j = Dj ,i only when there

exist an reversible transition between the nodes i and j; however,

,i jμ and ,j iμ do not need to be the same. Given a threshold

parameter τ , the connectivity ,i jD of the RMC is reduced to

12

zero if μi, j < τ . As a result, the dependency matrix becomes

sparse. We want to reorder the sparse dependency matrix and

partition them into smaller matrices in order to distribute the

computational workloads to multiple computers.

(二) M-Partitioning

Figure 2 (a) shows an example of the partition of a 60 60×

dependency matrix. Each blue dot represents a non-zero element

in the matrix. The four red lines divide the matrix into 9 smaller

matrices, including a M1× M1 submatrix, a M1× M2 − M1()
submatrix, …, and a N − M2() × N − M2() submatrix. Each

submatrix is required for the calculations of the state probabilities

in Eq. (11). Given the initial permutation of the sparse matrices

, we focus on finding the optimal permutation to

minimize the connectivity between the partitioned systems. In

other words, we want to reorder the dependency matrix such that

some submatrices are closer to zero matrices, as shown in

Figure 2 (b). In this way, the required matrix multiplications are

reduced.

13

(a)

(b)

Figure 2. Partitions of (a) an original and (b) a reordered

dependency matrices.

Define a M -partition that partitions the dependency matrix

of the RMC, D , into two sub-systems:

 (13)

where 1D and 2D are M M× and N − M()× N − M()
sub-matrices respectively. The sizes of the off-diagonal matrices

14

1Φ and 2Φ are M × N − M() and N − M() × M respectively.

Meanwhile, the permutation vector is partitioned into two vectors

 and . The partition parameter M is

controlled to balance the computational loads for each computer.

When M < N 2 , the computational complexity of the first

sub-problem is lower; on the other hand, the second sub-problem

is more complex when M > N 2. Multiple matrix partitions can

be accomplished using multiple M -partitions.

Based on the M -partition, the calculation in Eq. (11) is

partitioned as in

 (14)

where Ak = Di, jμi, je jeij∈Pk
∑i∈Pk

∑ is calculated based on the

permutation kΠ . Furthermore, the off-diagonal matrices 1Ψ and

2Ψ are calculated by Di, jμi, je jeij∈P2
∑i∈P1

∑ and

Di, jμi, je jeij∈P1

∑i∈P2
∑ respectively. The state probabilities in the

first and second sub-problems are then determined by

 (15)

 (16)

If the permutations of the matrices and vectors are reordered such

that the total probability in the off-diagonal matrices 1Ψ and 2Ψ

are close to zero, the functions 1f and 2f in Eqs. (15) and (16)

become negligible. Thus, the state probabilities can be

15

approximated by the following equation:

 pi n() ≅ A i
npi 0() (17)

(三) Iteration process of finding the minimal coupling between

sub-problems

The objective of our approach is to find the permutation

order that minimizes the total transition probability between the

two subsystems:

 pC = Ψ1,ij
j=1

N−M

∑
i=1

M

∑ + Ψ2,ij
j=1

M

∑
i=1

N−M

∑ (18)

One of the possible methods is to diagonalize the dependency

matrix D ; however, it does not ensure the coupling probability

Cp is minimized for the specific M -partition. In this report, an

effective iteration process is proposed as in the following steps to

determine the optimal permutation order:

1. Given the initial permutation ()0Π and dependency matrix
()0D . Calculate the initial coupling probability ()0

Cp using the

Eq. (18).

2. Begin with ()0
1,N M−Ψ in the upper-right off-diagonal

dependency matrix as the pivot element. The iteration number

k equals one.

3. Suppose the location of the pivot element is (i, j) . If the

(i, j)-th element in ()1
1

k−Ψ , or the (j,i)-th element in Ψ2
k−1() ,

is not zero, the column number of the pivot element is denoted

as cp
k() and go to step 5; otherwise, go to step 4.

4. If the pivot element is the last element Ψ k−1()
M ,1 , cannot advance

16

further and go to step 10. Otherwise, move to the adjacent

element along the zig-zag trajectory, shown in Figure 3, and

consider it as the new pivot element. Go to step 3.

5. Begin with the first column, i.e. 1c = . Let and

nC
k() = nC

k−1() .

6. If ()k
pc c= , move to the adjacent column by 1c c= + . If

c N≤ , go to step 7; otherwise, go to step 9.

7. Interchange c and ()k
pc in the permutation ()1k−Π and

calculate the coupling probability Ip of the interchanged

off-diagonal dependency matrix.

8. If ()k
I Cn n< , ()k

C In n= and assign the interchanged

permutation as ()kΠ . Advance to the adjacent column by

1c c= + and go to step 6.

9. If () ()1k k
C Cn n −= , the iteration process has been converged. Go to

step 10. Otherwise, update the interchanged matrix ()kD

using the determined permutation ()kΠ and advance to the

next iteration by 1k k= + . Go to step 4.

10. The optimal permutation is ()* k=Π Π and the optimal

reordered dependency matrix is ()* k=D D .

17

Figure 3. Determination of pivot elements along the zig-zag

trajectory in the off-diagonal dependency matrix.

三、Parallel-processing of Markov chain

As illustrated in the section 3.2, the partitioned MC has

multiple transition probability sub-matrices. As also mentioned in

the section 3, these square matrices can be processed individually

to produce partial results, which are combined to form the

complete state probability distribution at a desired time instant.

However, for a large-scale MC that has been partitioned, each of

its transition probability sub-matrices might still need a large

memory space for processing on a single processor. Thus, the

task-farming paradigm is adopted for parallel processing. The

task-farming paradigm has a master-workers pattern. The master

is responsible for decomposing a task, distributing sub-tasks

among workers, and gathering partial results from workers to

coordinate the final calculation for the reliability evaluation. The

worker processes execute in a simple cycle: get a sub-task,

process the sub-task, and send the result to the master. In addition,

due to the task-farming paradigm’s dynamic load balancing

characteristic, the proposed methodology can respond well to the

18

failure of some processors, which simplifies the creation of robust

applications that are capable of surviving from the loss of workers

or even the master. In this report, for simplicity purposes, with a

static load balancing feature, the task-farming paradigm is used to

implement an algorithm to obtain the state probability vector at

any desired time instant.

The message-passing programming paradigm is one of the

earliest and most widely used approaches for programming

parallel computers. Its wide-spread adoption can be attributed to

the fact that it imposes minimal requirements on the underlying

hardware [13].

The most natural message-passing architecture for matrix

operations is a two-dimensional mesh, where each node in the

mesh computes one element, or submatrix, of the result array. The

mesh connections allow messages to pass between adjacent nodes

in the mesh simultaneously. The Cannon’s algorithm [14], a

memory efficient algorithm, is implemented for matrix

multiplication. It uses a mesh of processors with wraparound

connections to shift submatrices.

For clarity, elements, instead of submatrices, of the arrays a

and b are used to illustrate the algorithm as follows.

Cannon’s algorithm:

1. Initially, processor π i, j has elements ai, j and bi, j

(0 ≤ i < n, 0 ≤ j < n)

2. Elements are moved from their initial position to an aligned

position. In other words, the complete i-th row of a is

left-shifted i positions, and then the complete j-th column of b

19

is up-shifted j positions. This step places the element ai, j+i

and the element bi+ j ,i in processor π i, j . This pair of elements

are required to calculate the element ci , j .

3. Each processor π i, j multiplies its elements.

4. The i-th row of a is shifted one position left, and the j-th

column of b is shifted one position upward. This step brings

together the adjacent elements of a and b, which are also

required in the computation of ci , j .

5. Each processor π i, j multiplies the elements brought to it and

adds the result to the accumulating sum.

6. Repeat steps 4 and 5 until the final result of ci , j is obtained.

In other words, given n rows and n columns of elements, a

total of n−1 shifts need to be conducted.

Next given that both a and b have s2 submatrices. Each

submatrix has m×m elements. Thus, based on the above

Cannon’s algorithm, for both a and b, the initial alignment

requires a maximum of s−1 shift operations. Afterward, there

are another s−1 shift operations required for computation

purposes. Each shift operation performs a communication

involving m×m elements. Therefore, the communication time

tcomm can be determined using Eq. (19).

 tcomm = 4 s−1() tstartup +m2tdata() (19)

Thus, the Cannon’s algorithm has a communication time

complexity of O(sm2) =O(mn), where s = n m is assumed in

20

this report.

As for the computation aspect, each submatrix multiplication

requires m3 multiplications and m3 additions. Therefore, with

s−1 shifts as mentioned above, the computation time tcomp can

be determined using Eq. (20).

 tcomp = 2sm3 = 2m2n (20)

Hence, the Cannon’s algorithm has a computation time

complexity of O(m2n).

In this report, the Cannon’s algorithm is implemented

through the Message Passing Interface (MPI) [15, 16]. MPI is a

specification for building a library that provides standard

functions for writing portable and efficient message passing

programs to be run on a variety of parallel computers. In this

report, the selected MPI library is a widely used open source

library called MPICH2 [17, 18].

21

參、主要發現與結論

一、Numerical Examples

In this section, we study the Markov Chains for three different

examples to validate the proposed PPMC method.

(一) Example 1: 60-state MC for MMR controllers

The first example considers a randomly generated 60-state

MC, which is composed of 277 distinct directed edges.

Figure 4 (a) shows the dependency matrix of the 6-state MC

while each blue dot represents one of the directed connections.

The blank areas stand for no connections between the states. The

subfigure (a) can also be used to represent the transition matrix; in

this case, each blue dot is a non-zero transition probability ,i jμ .

When the size of MC is in the order of tens of states, it is not

necessary to reduce the MC using the threshold parameter. In the

latter case when the MC size is larger, the reduction can help

improve the numerical efficiency. To uniformly distribute the

computational workloads to five computers, we partition the

dependency matrix at the positions of {12, 24, 36, 48}M = . The

red lines represent the desirable locations for matrix partitioning.

According to the desirable partitioning locations, the dependency

matrix is reordered such that the totally probability in the

off-diagonal submatrices, shown in the gray areas in the

subfigure (c), is minimized. The ratio of the total coupling

probability and the total probability is 9.66 / 60 = 0.16. In other

words, around 84 percent of workloads are uniformly distributed

in the five diagonal submatrices. The discrete-time state

probabilities are calculated using the Eq. (17).

22

Suppose the initial condition is given as ()15 0 1p = and

()0 0ip = for 1...14,16...60i = , the state probabilities at the time

10n = are calculated using the proposed method. Furthermore,

the numerical performances of the PPMC method are compared

with the calculations using the original MC in Eq. (10). Three

different simulation results are listed in Table 1. The first case

considers the second state as the fail state. The original matrix

multiplication shows the failure probability is 0.07% while the

proposed method overestimates the failure rate as 12.5%. A

worst-case reliability, 87.50%, is then found, that is, the true

probability, 99.93%, is at least larger than or equal to the

underestimation, 87.50%.

The second case shows a higher failure probability of 3.06%

when the 24th state is considered as the fail state. In this case, the

proposed method is capable of finding the overestimated failure

probability of 12.5% and the worst-case reliability of 87.5%. In

the last case, the 30th state is considered as the fail state. In this

case, the PPMC method obtains the worst-case reliability of

99.87%, which is just slightly lower than the true probability of

99.88%.

Table 2 shows the comparison of computation times in this

60-state example. The average computation time for evaluating

the system reliability through the original MC using one

processor is 74.97 (ms). By Cannon’s algorithm, the average

computation time for evaluating the system reliability through the

original MC using 25 processors is 3.48 (ms). The average

computation time for evaluating the system reliability through the

23

PPMC method using five processors is 0.66 (ms). Compared with

the first configuration, the second and third configurations have

parallel speedup ratios of 21.53 and 113.77, respectively.

(a)

(b)

Figure 4. The (a) original and (b) partitioned dependency matrices

for the 60-state Markov Chain.

24

Table 1. Results of the 60-state Markov Chain.

Method Index of fail state Probability of fail state System reliability
Original 2 0.07% 99.93%
PPMC 2 12.5% 87.50%

Original 24 3.06% 96.94%
PPMC 24 12.5% 87.50%

Original 30 0.12% 99.88%
PPMC 30 0.13% 99.87%

Table 2. Comparison of computation times.

 Number of
processors

Computation time
(ms)

Speedup ratio

Original 1 74.97 1
Original 25 3.48 21.53
PPMC 5 0.66 113.77

 (二) Example 2: 200-state MC for MMR controllers

The second case focuses on a 200-state MC, which contains

605 directed edges. Figure 5 (a) shows the dependency matrix of

the given MC. In this case, the MC reduction is also unnecessary.

To distribute the workloads to five computers, the desirable

partitioning locations are {40, 80,120,160}M = , indicated by the

red lines. The off-diagonal probabilities are minimized to reorder

the dependency matrix. As a result, the off-diagonal probability,

the sum of probabilities in the gray areas, equals 34.33, which is

around 17.16% over the total probability. The values in the

off-diagonal submatrices will be neglected in Eq. (17) yielding

the underestimated measure of system reliability. Therefore, the

25

worst-case reliability can be determined.

We now want to demonstrate different types of simulation

results from the first example. Suppose the 5th state is considered

as the fail state, three different initial states are studied. The 1st

case starts with () 320 1=p e . The original matrix multiplication

shows the fail probability of 6.63% as the PPMC overestimates

the fail probability of 7.05%; therefore, a worst-case reliability of

92.95% is found. Another initial condition considers () 180 1=p e .

The proposed method underestimates the reliability, i.e. 82.83% <

true probability = 83.25%, and utilizes the worst-case measure as

a robust estimator of the system probability. Lastly, when the 99th

state is considered as the initial state, a lower reliability of

77.01% is found using the original calculations. Even for the

special situation of low reliability, the proposed method is capable

of finding the worst-case reliability, i.e. 75.32%. Table 3 lists the

detailed information about the simulation results.

Table 4 shows the comparison of computation times in this

200-state example. The average computation time for evaluating

the system reliability through the original MC using one

processor is 2093.91 (ms). By Cannon’s algorithm, the average

computation time for evaluating the system reliability through the

original MC using 25 processors is 119.49 (ms). The average

computation time for evaluating the system reliability through the

PPMC method using five processors is 22.34 (ms). Compared

with the first configuration, the second and third configurations

have parallel speedup ratios of 17.52 and 93.74, respectively.

26

(a)

(b)

Figure 5. The (a) original and (b) partitioned dependency matrices

for the 200-state Markov Chain.

Table 3. Results of the 200-state Markov Chain.

Method
Index of initial

state
Probability of fail state System reliability

Original 32 6.63% 93.37%
PPMC 32 7.05% 92.95%

Original 18 16.75% 83.25%
PPMC 18 17.17% 82.83%

Original 99 22.99% 77.01%
PPMC 99 24.68% 75.32%

27

Table 4. Comparison of computation times

 Number of
processors

Computation time
(ms)

Speedup ratio

Original 1 2093.91 1
Original 25 119.49 17.52
PPMC 5 22.34 93.74

 (三) Example 3: 480-state MC for MMR controllers

The final example considers a large-scale MC that contains

480 states. Figure 6 (a) shows the dependency matrix with 1899

blue dots, that is, there are 1899 distinct directed edges in the MC.

In a large problem like this, the matrix reduction can effectively

improve the numerical performances. We assume the threshold

parameter is 0.1τ = . Figure 6 (b) shows the dependency matrix

of the reduce Markov Chain, which now only contains 710

directed edges. The matrix permutation is then reordered and the

resultant dependency matrix is shown in the subfigure (c). The

total off-diagonal probability equals 110.37, which is around 23%

of the total probability. On the other hand, 77% of the workloads

are uniformly distributed to eight different computers. The red

lines represent the given partitioning locations

, 300, 360, 420}{60,120,180, 240M = .

Table 5 lists two different cases of the simulations. The first

case considers the 10th and 406th states as the initial and fail

states. The proposed method is able to find the worst-case

reliability, 99.04%, which is slightly lower than the true measure,

99.75%. In the other case of that the 432nd and 31st states are the

initial and fail states, the PPMC method obtains an

28

underestimation of the system reliability, i.e. 70.79% << true

probability = 99.90%, due to the errors from the matrix reduction

and approximated calculation in Eq. (17). However, the proposed

method still guarantees that the true system reliability is at least

larger than or equal to the underestimated measure.

Table 6 shows the comparison of computation times in this

480-state example. The average computation time for evaluating

the system reliability through the original MC using one

processor is 24376.94 (ms). By Cannon’s algorithm, the average

computation time for evaluating the system reliability through the

original MC using 16 processors is 2441.48 (ms). The average

computation time for evaluating the system reliability through the

PPMC method using eight processors is 75.59 (ms). Compared

with the first configuration, the second and third configurations

have parallel speedup ratios of 9.98 and 322.48, respectively.

Table 5. Results of the 480-state Markov Chain.

Method
Index of

initial state
Index of fail

state
Probability of fail

state
System

reliability
Original 10 406 0.25% 99.75%
PPMC 10 406 0.96% 99.04%

Original 432 31 0.10% 99.90%
PPMC 432 31 29.22% 70.79%

29

(a)

(b)

(c)

Figure 6. The (a) original, (b) reduced, and (c) partitioned

dependency matrices for the 480-state Markov Chain.

30

Table 6. Comparison of computation times

 Number of
processors

Computation time
(ms)

Speedup ratio

Original 1 24376.94 1
Original 16 2441.48 9.98
PPMC 8 75.59 322.48

二、Conclusions

This report focuses on the reliability analysis of multi-modular

controllers using discrete-time Markov chains. A novel approach is

proposed to reduce and partition a large-scale Markov chain model

into multiple independent sub-models, which can be tackled

naturally by parallel processing in the first place. However, each of

those sub-models might still require a huge amount of memory for

processing on a single processor. Thus, the task-farming paradigm

of parallel processing is used to implement a memory-efficient

algorithm to obtain each sub-model’s result, and combine the results

to form the complete state probability vector at any desired time

instant.

The results of three numerical examples reveal that, compared

with the reliability analysis of the intact Markov Chain model, the

proposed methodology is capable of improving the performance but

also maintaining allowable accuracy of the reliability analysis. The

amount of memory required on a single processor to perform matrix

calculations is significantly reduced. The computational speed is

significantly improved as well.

31

肆、數學符號

a An array in Cannon’s algorithm.

A Transition matrix.

A i i -th partitioned transition matrix.

 b Another array in Cannon’s algorithm.

c Column number.

cp Column number of the pivot element in dependency matrix.

Ci i -th coefficient.

D N × N dependency matrix.

Di i -th partitioned dependency matrix.

Dij Connectivity parameter. Dij equals one when i -th and

j -th states are connected; otherwise, it is zero.

ei i -th normal basis.

m Dimensional parameter of submatrices for multiple

processors.

M Dimensional parameter for the partitioned matrix.

n Time parameter in the computer processing.

N Number of states in Markov Chain.

p Vector of transition probabilities.

pC Total probability of the partitioned Markov Chains couple

with each other.

pi i -th partitioned vector of transition probabilities.

pI Total coupling probability for the interchanged dependency

matrix.

P(A) Probability of A.

32

P(A | B) Conditional probability of A given B.

Q Infinitesimal generator of continuous-time Markov Chain.

s A dimensional parameter.

S Finite state space.

t Time.

X (t) Variable with Markov property at time t .

λi i -th eigenvalue.

μi, j Transition probability (failure/recovery rate) of the state i

moves to the state j .

v i i -th eigenvector.

δ A small number.

π i, j A processor with elements ai, j and bi, j .

 N ×1 permutation vector.

 i -th partitioned permutation vector.

τ Threshold parameter.

 i -th off-diagonal dependency matrix.

 i -th off-diagonal transition matrix.

Superscript

′ Derivative with respect to time.

* Optimal solution.

(k) N -th Iteration in finding the optimal partition.

(n) n-th Step in computer processing.

33

伍、參考文獻

1.Carter, W. C., and Bouricius, W. G., 1971, "A Survey of Fault Tolerant
Computer Architecture and its Evaluation". Computer, 4(1), pp. 9-16.

2.Lala, J. H., 1986, "Fault Detection, Isolation, and Reconfiguration in
the Fault Tolerant Multiprocessor". Journal of Guidance, Control, and
Dynamics, 9(5), pp. 585-592.

3.Moerder, D. D., Halyo, N., Broussard, J. R., and Caglayan, A. K.,
1989, "Application of Precomputed Control Laws in a Reconfigurable
Aircraft Flight Control System". Journal of Guidance, Control, and
Dynamics, 12(3), pp. 325-333.

4.Handelman, D. A., and Stengel, R., 1989, "Combining Expert System
and Analytical Redundancy Concepts for Fault-Tolerant Flight
Control". Journal of Guidance, Control, and Dynamics, 12(1), pp.
39-45.

5.Hopkins, A. L., and Himmelblau, D. M., 1988, "Artificial Neural
Network Models for Knowledge Representation in Chemical
Engineering". Computers & Chemical Engineering, 12(9-10), pp.
881-890.

6.Basila, M. R., Stefanek, G., and Cinar, A., 1990, "A model-object
based supervisory expert system for fault tolerant chemical reactor
control". Computers & Chemical Engineering, 14(4-5), pp. 551-560.

7.Chintamaneni, P. R., Jalote, P., Shieh, Y.-B., and Tripathi, S. K., 1988,
"On Fault Tolerance in Manufacturing Systems". Network, IEEE, 2(3),
pp. 32-39.

8.Villa, A., 1988, "A Hierarchical Knowledge-Based/Analytical
Approach to Fault-Tolerant Control in Flexible Manufacturing". IEEE
International Conference on Robotics and Automation, pp.
1120-1125.

9.Yates, S. W., and Williams, R. D., 1988, "A Fault-Tolerant

34

Multiprocessor Controller for Magnetic Bearings". IEEE Micro, pp.
6-17.

10.Chladek, J. T., 1990, "Fault Tolerance for Space Based Manipulator
Mechanisms and Control Systems". In Proceeding of the First Int.
Symposium On Measurement and Control in Robotics, Houston, TX.

11.Stewart, W. J., 2009, Probability, Markov Chains, Queues, and
Simulation: The Mathematical Basis of Performance Modeling,
Princeton University Press.

12.Chou, Y.-C., and Lin, P. T., 2012, "Efficient Design Optimization of
Multi-State Flow Network for Multiple Commodities". In
International Conference on Mechanical, Aeronautical and
Manufacturing Engineering, Tokyo, Japan.

13.Grama, A., Gupta, A., Karypis, G., and Kumar, V., 2004, Introduction
to Parallel Computing, Pearson Education.

14.Cannon, L. E., 1969, "A cellular computer to implement the Kalman
Filter Algorithm". Montana State University.

15.Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J.,
1998, MPI: The Complete Reference - The MPI Core, MIT Press,
Cambridge, Massachusetts.

16.Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg,
B., Saphir, W., and Snir, M., 1998, MPI: The Complete Reference -
The MPI-2 Extensions, MIT Press, Cambridge, Massachusetts.

17.MPICH2, Argonne National Laboratory, http://www.mcs.anl.gov/
research/projects/mpich2/.

18.Gropp, W., 2002, "MPICH2: A New Start for MPI Implementations".
In Proceedings of the 9th European PVM/MPI Users' Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Springer-Verlag.

