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中文摘要 

本計畫針對使用在核能級控制器中的多重容錯控制器研究，內

容包括控制器架構、容錯機制、系統可靠度分析等議題，探討多重

容錯控制器執行安全功能時的容錯機制(Fault Tolerance)及可靠度

(Reliability)並建立評估機制。系統在操作中，不論使用時間長短，

都可能發生錯誤而故障。以監測診斷系統而言，任何一個故障的發

生都可能造成該監測診斷系統執行不正常、中斷、或損壞系統本身，

甚或影響受監測之系統。對一監測診斷系統之容錯機制(或容錯系統)

而言，能即時發現故障，找出故障的原因，經由重組過程及容錯控

制法則，使故障對監測診斷系統之影響降至最低，並使其繼續完成

任務，是相當重要的。研究重點包括建立容錯系統之架構；評估各

種故障可能之原因、地點、與影響；依容錯分析結果，設計平行性

與分析性備份件；配合電腦輔助設備進行系統整合測試；找出最佳

的備份件設計方法；採用 Markov Chain 模型並搭配類神經網路與基

因演算法，針對容錯系統進行可靠度之分析與改善。 
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Abstract 

The objective of the project is to develop a fault-tolerant system. 

When a system is in operation, it may encounter any failure conditions 

regardless of the operation time period. For a monitoring and 

diagnostic system, any type of fault occurrence can cause the system 

performance to be abnormal and interrupted, or even damages the 

system being monitored. Thus, for a monitoring and diagnostic system, 

it is essential to reduce the effects of failures and accomplish the 

remaining tasks. This goal can be achieved by the use of appropriate 

redundancies. The critical tasks include: establish the fault-tolerant 

structure; evaluate the causes, effects, and locations of faults; based 

upon the analysis, design the parallel and analytical redundancies; 

conduct experiments through computer-aided equipment; obtain an 

optimal deign for the parallel and analytical redundancies; analyze 

and improve the fault-tolerant system’s reliability through the Markov 

Chain model, artificial neural network, and genetic algorithm. 
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壹、計畫緣起與目的 

根據國際上運轉中核電廠儀控系統數位化更新及新建核電廠整

廠數位儀控系統之應用與申照經驗，掌握自主關鍵技術有助於申照

過程及長期運轉維護策略。因此，發展自主核能儀控產業技術，對

於持續發展核能應用、確保核能安全與減少外匯損失有具體之效

益。另外，透過自主型核能級儀控產業技術與關鍵組件認證平台之

建立，可促進國內儀控系統與零組件產業升級，除應用於核電廠外，

可擴大應用於其他工業，如火力發電、石化廠等之高可靠度安全需

求相關系統。 

多重容錯控制器研究的行為影響甚鉅，在安全數位儀控系統中

為一相當重要之議題，本計劃針對使用在核能級控制器中的多重容

錯控制器進行探討，研究內容含括控制器架構、容錯機制、系統可

靠度分析等議題，探討多重容錯控制器執行安全功能時的容錯機制

(Fault Tolerance)及可靠度(Reliability)並建立評估機制。 

本計畫之重點工作項目包括多重容錯控制器之設計與實現、多

重容錯控制器之可靠度分析、可靠度評估分析機制之建立；規劃多

重容錯控制器軟硬體與系統測試及驗證程序。 

本計畫之最終目標包含協助核能電廠建立核能級控制器容錯之

評估機制，以作為制訂國內核能級控制器設計規範之重要基礎；依

據核能級控制器設計規範，建立一套多重容錯控制器應用於核能電

廠之測試與驗證程序。 

本計畫亦期望將研究成果運用於人員訓練，內容包括藉由多重

容錯控制器的研究，建立其制訂核能級控制器設計規範之能力；藉

由多重容錯控制器測試程序的規劃，增進其整合系統安全與儀控系
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統之能力；藉由應用於核能電廠的多重容錯控制器驗證程序的建

立，增進其開發核能級控制器之能力。 
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貳、研究方法與過程 

Since 1970s, fault tolerance (FT) technologies have been widely 

developed and applied to the areas of computers [1, 2], aerospace [3, 

4], chemical engineering [5, 6] and manufacturing [7, 8], robotics [9, 

10], etc. The FT technologies are essential to not only the evaluations 

but also the enhancements of the reliability, maintainability, and 

survivability of the system. Carter and Bouricius [1] reviewed the 

redundancy techniques to self-repair the computers and improve the 

system reliability. 

This report focuses on the Partitioning and Parallel-processing of 

Markov Chain (PPMC) for a fault-tolerant system of Multi-Modular 

Redundant (MMR) controllers. A Markov Chain (MC) is formulated 

to represent the N distinct states of the MMR controllers as well as the 

failure and repair rates between any two states. The complex MC 

graph has N-square directed edges as each edge weight represents the 

transition rate of the start state directing to the end one. The system 

reliability, which is calculated in terms of the edge weights, requires 

large computational calculations. To this end, the techniques of 

partitioning MC have been studied to reduce the complexity of 

reliability analysis. The lightly weighted edges are suspended based 

on the threshold parameters and the MC is partitioned into multiple 

weakly connected sub-graphs using the sparse matrix partitioning. 

However, the partitioned MC is still a complex multidisciplinary 

system that requires a considerable amount of memory for processing 

on a single processor. To evaluate the system reliability from the 

partitioned MC in a memory-efficient manner, the task-farming 

paradigm is adopted for parallel processing. The task-farming 
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paradigm has a master-workers pattern. The master is responsible for 

decomposing a task, distributing sub-tasks among workers, and 

gathering partial results from workers to coordinate the final 

calculation for the reliability evaluation. The worker processes 

execute in a simple cycle: get a sub-task, process the sub-task, and 

send the result to the master. In addition, due to the task-farming 

paradigm’s dynamic load balancing characteristic, the proposed 

methodology can respond well to the failure of some processors, 

which simplifies the creation of robust applications that are capable of 

surviving from the loss of workers or even the master. 

The efficiency and accuracy of reliability analysis depend on the 

suspension threshold, the partition level, and the availability of 

parallel processors. The worst-case reliability is evaluated to 

compensate for inaccuracy due to the suspended edge weights. Higher 

suspension thresholds produce simpler MC models and faster 

calculations but more conservative reliabilities. The performance of 

PPMC is maximized to find the optimal suspension and partition 

levels. The proposed methodology has been successfully integrated 

with the detection and diagnosis processes in the fault-tolerant system. 

The simulation results show that, compared with the reliability 

analysis of the intact Markov Chain model, the proposed methodology 

is capable of improving the performance but also producing allowable 

accuracy of the reliability analysis. 

 

一、Reliability analysis of multi-modular redundant controllers 

Suppose the MMR controllers have N distinct states 

{1, 2, ..., }S N= , the transitions between each state are represented 
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in a Markov Chain (MC). Figure 1 illustrates the graph ( ),G S E  of 

the MC where the edge set E  is composed of 2N  directed edges: 

{ }1,1 1,2 , ,, , ..., , ...,i j N NE E E E . Each directed edge has two edge 

weights ,i jμ  and ,i jQ . The prior one is the transition probability of 

that the state i moves to the state j while the later one represents the 

rate of change of the transition probability. The total transition 

probability of that the state i moves to every state, including itself, 

equals one, namely 

 ,
1

1 for all
N

i j
j

iμ
=

=∑  (1) 

Therefore, the total rate of change of probability is zero, as in 

 Qi, j
j=1

N

∑ = 0 for all i  (2) 

Given a vector of the initial state probabilities, 

( ) 1 2
0 1 0N

ii=
= +∑p e e , at the time 0t = , the vector of the state 

probabilities, ( ) ( )1

N
i ii

t p t
=

= ∑p e , is desirable for the evaluation of 

the system reliability. 

 

 
Figure 1. N-state Markov Chain for MMR controllers. 
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(一) Continuous-time Markov chain 

To evaluate the transient behaviors of the continuous-time 

Markov Chain (CTMC), the differential equation of the transition 

probabilities is given as 

 ( ) ( )t t′ = ⋅p Q p  (3) 

In Eq. (3), Q  is the infinitesimal generator of the CTMC [11] 

and it is defined as 

 ( )
, 01 1

lim
N N

i j j i
i j

Q
δ

δ
δ→

= =

−
≡ =∑∑

A I
Q e e  (4) 

where ,1 1

N N
i j j ii j

μ
= =

≡∑ ∑A e e  is called the transition matrix. 

The differential equation (3) yields to the eigenvalue 

problem as in 

 ( )λ− =Q I p 0  (5) 

The characteristic equation is formulated by 0λ− =Q I . For the 

i -th eigenvalue iλ , the eigenvector ,1

N
i i j jj

v
=

= ∑v e  is calculated 

by ( )i iλ− =Q I v 0 . In the end, the transient state probabilities are 

given as 

 p t( ) = v1 � v N
⎡
⎣

⎤
⎦

C1 exp λ1t( )
M

CN exp λNt( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (6) 

Substituting the initial conditions to Eq. (6), the coefficients 

C1...CN  can be determined by 
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C1

M

CN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= v1 � v N
⎡
⎣

⎤
⎦
−1

p1 0( )
M

pN 0( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (7) 

where ( )1 0 1p =  and ( )0 0ip =  for i = 2...N . 

For most MC, the time-dependent state probabilities can be 

evaluated using the described method. However, the 

computational complexity increases dramatically when the 

number of states increases in the MMR controllers. It is very 

difficult to solve the large-scale eigenvalue problem and obtain 

the state probabilities in allowable working time. To this end, we 

will focus on the discrete-time approach, which requires less 

calculation. 

(二) Discrete-time Markov chain 

With the Markov property, the state variable ( )1X n +  at 

the time 1n +  depends only upon its state at the time n , ( )X n . 

That is, given the present state of the system ( )X n , the future 

state of the discrete-time Markov Chain (DTMC) ( )1X n +  is 

independent of its previous discrete-time states 

( ) ( ) ( )0 , 1 , ..., 1X X X n − . A DTMC with the finite state space S  

is time homogeneous if the Eq. (8) holds. 

 μi, j ≡ P X n+1( ) = j X n( ) = i⎡
⎣

⎤
⎦= P X 1( ) = j X 0( ) = i⎡

⎣
⎤
⎦ (8) 

for 0n ≥  and , 1...i j N= . For the DTMC, ,i jμ  is called the 

one-step transition probability at the time n . In this report, we 

assume the one-step transition probability remains constant for all 

times n . The state probabilities will be calculated using the given 
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one-step transition probabilities. 

We are interested in the probabilities P X n( ) = j⎡⎣ ⎤⎦ for all 

j ∈ S  and n ≥ 0 . Statistically, the probability P X n( ) = j⎡⎣ ⎤⎦ is 

calculated by 

 P X n( ) = j⎡⎣ ⎤⎦= P X 0( ) = i⎡⎣ ⎤⎦P X n( ) = j X 0( ) = i⎡
⎣

⎤
⎦

i=1

N

∑  (9) 

The Eq. (9) is further rewritten in the matrix form as in 

 p n( ) = A n( ) ⋅p 0( ) (10) 

where p n( ) = P X n( ) = j⎡⎣ ⎤⎦e jj=1

N∑  indicates the state 

probabilities at n ; p 0( ) = P X 0( ) = i⎡⎣ ⎤⎦eii=1

N∑  is for the initial 

probabilities; A n( ) = P X n( ) = j X 0( ) = i⎡
⎣

⎤
⎦e jeij=1

N∑i=1

N∑  is the 

matrix of the n-step transition probabilities. Since the DTMC is 

assumed to be time homogeneous, the matrix A n( )  can be 

calculated by the n-the power of A [11], as in 

 p n( ) = An ⋅p 0( )  (11) 

To sum up, the transition probabilities of the DTMC are 

calculated by the matrix operations in Eq. (11). The matrix 

multiplication algorithm has message-passing characteristics and 

is more applicable in message-passing systems, such as 

distributed memory based cluster of computers. In the section 3, 

the MC is partitioned into smaller systems in order to distribute 

the loads to several computers. In the section 4, the parallel 

processing of the MC is introduced. 

二、Partitioning of Markov chain 
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This section presents the partitioning of a large-scale MC. 

Essentially, the lightly weighted edges are suspended based on the 

threshold parameters and the MC is partitioned into multiple 

weakly connected sub-graphs using the sparse matrix partitioning. 

The created sub-graphs can be processed individually to produce 

partial results, which are combined to form the complete state 

probability distribution at a desired time instant. 

(一) Reduction of Markov chain 

In this report, we want to first reduce the complexity of the 

MC in terms of eliminating the connectivity of the weakly linked 

edges. Chou and Lin [12] have eliminated the edges of minimal 

probabilities in the MC and greatly reduced the required 

calculations. The evaluated network probability of the reduced 

Markov Chain (RMC) was slightly underestimated and can be 

utilized as a worst-case probability, that is, the true probability of 

a MC is at least higher than or equal to the worst-case probability 

in the RMC. 

A binary dependency matrix D  represents the connectivity 

of the MC, as in 

 D = Di, je jei
j=1

N

∑
i=1

N

∑  (12) 

where Di, j =1 when the i -th state is directed to the j -th one; 

otherwise, , 0i jD = . It is noted that Di, j = Dj ,i  only when there 

exist an reversible transition between the nodes i and j; however, 

,i jμ  and ,j iμ  do not need to be the same. Given a threshold 

parameter τ , the connectivity ,i jD  of the RMC is reduced to 
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zero if μi, j < τ . As a result, the dependency matrix becomes 

sparse. We want to reorder the sparse dependency matrix and 

partition them into smaller matrices in order to distribute the 

computational workloads to multiple computers. 

(二) M-Partitioning 

Figure 2 (a) shows an example of the partition of a 60 60×  

dependency matrix. Each blue dot represents a non-zero element 

in the matrix. The four red lines divide the matrix into 9 smaller 

matrices, including a M1× M1  submatrix, a M1× M2 − M1( ) 
submatrix, …, and a N − M2( ) × N − M2( )  submatrix. Each 

submatrix is required for the calculations of the state probabilities 

in Eq. (11). Given the initial permutation of the sparse matrices 

, we focus on finding the optimal permutation to 

minimize the connectivity between the partitioned systems. In 

other words, we want to reorder the dependency matrix such that 

some submatrices are closer to zero matrices, as shown in 

Figure 2 (b). In this way, the required matrix multiplications are 

reduced. 
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(a) 

 
(b) 

Figure 2. Partitions of (a) an original and (b) a reordered 

dependency matrices. 

 

Define a M -partition that partitions the dependency matrix 

of the RMC, D , into two sub-systems: 

  (13) 

where 1D  and 2D  are M M×  and N − M( )× N − M( ) 
sub-matrices respectively. The sizes of the off-diagonal matrices 
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1Φ  and 2Φ  are M × N − M( )  and N − M( ) × M  respectively. 

Meanwhile, the permutation vector is partitioned into two vectors 

 and . The partition parameter M  is 

controlled to balance the computational loads for each computer. 

When M < N 2 , the computational complexity of the first 

sub-problem is lower; on the other hand, the second sub-problem 

is more complex when M > N 2. Multiple matrix partitions can 

be accomplished using multiple M -partitions. 

Based on the M -partition, the calculation in Eq. (11) is 

partitioned as in 

  (14) 

where Ak = Di, jμi, je jeij∈Pk
∑i∈Pk

∑  is calculated based on the 

permutation kΠ . Furthermore, the off-diagonal matrices 1Ψ  and 

2Ψ  are calculated by Di, jμi, je jeij∈P2
∑i∈P1

∑  and 

   
Di, jμi, je jeij∈P1

∑i∈P2
∑  respectively. The state probabilities in the 

first and second sub-problems are then determined by 

  (15) 

  (16) 

If the permutations of the matrices and vectors are reordered such 

that the total probability in the off-diagonal matrices 1Ψ  and 2Ψ  

are close to zero, the functions 1f  and 2f  in Eqs. (15) and (16) 

become negligible. Thus, the state probabilities can be 
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approximated by the following equation: 

 pi n( ) ≅ A i
npi 0( ) (17) 

(三) Iteration process of finding the minimal coupling between 

sub-problems 

The objective of our approach is to find the permutation 

order that minimizes the total transition probability between the 

two subsystems: 

 pC = Ψ1,ij
j=1

N−M

∑
i=1

M

∑ + Ψ2,ij
j=1

M

∑
i=1

N−M

∑  (18) 

One of the possible methods is to diagonalize the dependency 

matrix D ; however, it does not ensure the coupling probability 

Cp  is minimized for the specific M -partition. In this report, an 

effective iteration process is proposed as in the following steps to 

determine the optimal permutation order: 

1.  Given the initial permutation ( )0Π  and dependency matrix 
( )0D . Calculate the initial coupling probability ( )0

Cp  using the 

Eq. (18). 

2.  Begin with ( )0
1,N M−Ψ  in the upper-right off-diagonal 

dependency matrix as the pivot element. The iteration number 

k  equals one. 

3.  Suppose the location of the pivot element is (i, j) . If the  

(i, j)-th element in ( )1
1

k−Ψ , or the ( j,i)-th element in Ψ2
k−1( ) , 

is not zero, the column number of the pivot element is denoted 

as cp
k( )  and go to step 5; otherwise, go to step 4. 

4.  If the pivot element is the last element Ψ k−1( )
M ,1 , cannot advance 
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further and go to step 10. Otherwise, move to the adjacent 

element along the zig-zag trajectory, shown in Figure 3, and 

consider it as the new pivot element. Go to step 3. 

5.  Begin with the first column, i.e. 1c = . Let  and 

nC
k( ) = nC

k−1( ) . 

6.  If ( )k
pc c= , move to the adjacent column by 1c c= + . If 

c N≤ , go to step 7; otherwise, go to step 9. 

7.  Interchange c  and ( )k
pc  in the permutation ( )1k−Π  and 

calculate the coupling probability Ip  of the interchanged 

off-diagonal dependency matrix. 

8.  If ( )k
I Cn n< , ( )k

C In n=  and assign the interchanged 

permutation as ( )kΠ . Advance to the adjacent column by 

1c c= +  and go to step 6. 

9.  If ( ) ( )1k k
C Cn n −= , the iteration process has been converged. Go to 

step 10. Otherwise, update the interchanged matrix ( )kD  

using the determined permutation ( )kΠ  and advance to the 

next iteration by 1k k= + . Go to step 4. 

10. The optimal permutation is ( )* k=Π Π  and the optimal 

reordered dependency matrix is ( )* k=D D . 
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Figure 3. Determination of pivot elements along the zig-zag 

trajectory in the off-diagonal dependency matrix. 

 

三、Parallel-processing of Markov chain 

As illustrated in the section 3.2, the partitioned MC has 

multiple transition probability sub-matrices. As also mentioned in 

the section 3, these square matrices can be processed individually 

to produce partial results, which are combined to form the 

complete state probability distribution at a desired time instant. 

However, for a large-scale MC that has been partitioned, each of 

its transition probability sub-matrices might still need a large 

memory space for processing on a single processor. Thus, the 

task-farming paradigm is adopted for parallel processing. The 

task-farming paradigm has a master-workers pattern. The master 

is responsible for decomposing a task, distributing sub-tasks 

among workers, and gathering partial results from workers to 

coordinate the final calculation for the reliability evaluation. The 

worker processes execute in a simple cycle: get a sub-task, 

process the sub-task, and send the result to the master. In addition, 

due to the task-farming paradigm’s dynamic load balancing 

characteristic, the proposed methodology can respond well to the 
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failure of some processors, which simplifies the creation of robust 

applications that are capable of surviving from the loss of workers 

or even the master. In this report, for simplicity purposes, with a 

static load balancing feature, the task-farming paradigm is used to 

implement an algorithm to obtain the state probability vector at 

any desired time instant. 

The message-passing programming paradigm is one of the 

earliest and most widely used approaches for programming 

parallel computers. Its wide-spread adoption can be attributed to 

the fact that it imposes minimal requirements on the underlying 

hardware [13]. 

The most natural message-passing architecture for matrix 

operations is a two-dimensional mesh, where each node in the 

mesh computes one element, or submatrix, of the result array. The 

mesh connections allow messages to pass between adjacent nodes 

in the mesh simultaneously. The Cannon’s algorithm [14], a 

memory efficient algorithm, is implemented for matrix 

multiplication. It uses a mesh of processors with wraparound 

connections to shift submatrices. 

For clarity, elements, instead of submatrices, of the arrays a 

and b are used to illustrate the algorithm as follows. 

Cannon’s algorithm: 

1.  Initially, processor π i, j  has elements ai, j  and bi, j  

(0 ≤ i < n, 0 ≤ j < n)  

2.  Elements are moved from their initial position to an aligned 

position. In other words, the complete i-th row of a is 

left-shifted i positions, and then the complete j-th column of b 
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is up-shifted j positions. This step places the element ai, j+i  

and the element bi+ j ,i in processor π i, j . This pair of elements 

are required to calculate the element ci , j . 

3.  Each processor π i, j  multiplies its elements. 

4.  The i-th row of a is shifted one position left, and the j-th 

column of b is shifted one position upward. This step brings 

together the adjacent elements of a and b, which are also 

required in the computation of ci , j . 

5.  Each processor π i, j  multiplies the elements brought to it and 

adds the result to the accumulating sum. 

6.  Repeat steps 4 and 5 until the final result of ci , j  is obtained. 

In other words, given n rows and n columns of elements, a 

total of n−1 shifts need to be conducted. 

Next given that both a and b have s2  submatrices. Each 

submatrix has m×m  elements. Thus, based on the above 

Cannon’s algorithm, for both a and b, the initial alignment 

requires a maximum of s−1 shift operations. Afterward, there 

are another s−1  shift operations required for computation 

purposes. Each shift operation performs a communication 

involving m×m elements. Therefore, the communication time 

tcomm  can be determined using Eq. (19). 

 tcomm = 4 s−1( ) tstartup +m2tdata( )  (19) 

Thus, the Cannon’s algorithm has a communication time 

complexity of O(sm2 ) =O(mn), where s = n m  is assumed in 
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this report. 

As for the computation aspect, each submatrix multiplication 

requires m3  multiplications and m3  additions. Therefore, with 

s−1 shifts as mentioned above, the computation time tcomp  can 

be determined using Eq. (20). 

 tcomp = 2sm3 = 2m2n (20) 

Hence, the Cannon’s algorithm has a computation time 

complexity of O(m2n). 

In this report, the Cannon’s algorithm is implemented 

through the Message Passing Interface (MPI) [15, 16]. MPI is a 

specification for building a library that provides standard 

functions for writing portable and efficient message passing 

programs to be run on a variety of parallel computers. In this 

report, the selected MPI library is a widely used open source 

library called MPICH2 [17, 18]. 
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參、主要發現與結論 

一、Numerical Examples 

In this section, we study the Markov Chains for three different 

examples to validate the proposed PPMC method.  

(一) Example 1: 60-state MC for MMR controllers 

The first example considers a randomly generated 60-state 

MC, which is composed of 277 distinct directed edges. 

Figure 4 (a) shows the dependency matrix of the 6-state MC 

while each blue dot represents one of the directed connections. 

The blank areas stand for no connections between the states. The 

subfigure (a) can also be used to represent the transition matrix; in 

this case, each blue dot is a non-zero transition probability ,i jμ . 

When the size of MC is in the order of tens of states, it is not 

necessary to reduce the MC using the threshold parameter. In the 

latter case when the MC size is larger, the reduction can help 

improve the numerical efficiency. To uniformly distribute the 

computational workloads to five computers, we partition the 

dependency matrix at the positions of {12, 24, 36, 48}M = . The 

red lines represent the desirable locations for matrix partitioning. 

According to the desirable partitioning locations, the dependency 

matrix is reordered such that the totally probability in the 

off-diagonal submatrices, shown in the gray areas in the 

subfigure (c), is minimized. The ratio of the total coupling 

probability and the total probability is 9.66 / 60 = 0.16. In other 

words, around 84 percent of workloads are uniformly distributed 

in the five diagonal submatrices. The discrete-time state 

probabilities are calculated using the Eq. (17). 
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Suppose the initial condition is given as ( )15 0 1p =  and 

( )0 0ip =  for 1...14,16...60i = , the state probabilities at the time 

10n =  are calculated using the proposed method. Furthermore, 

the numerical performances of the PPMC method are compared 

with the calculations using the original MC in Eq. (10). Three 

different simulation results are listed in Table 1. The first case 

considers the second state as the fail state. The original matrix 

multiplication shows the failure probability is 0.07% while the 

proposed method overestimates the failure rate as 12.5%. A 

worst-case reliability, 87.50%, is then found, that is, the true 

probability, 99.93%, is at least larger than or equal to the 

underestimation, 87.50%. 

The second case shows a higher failure probability of 3.06% 

when the 24th state is considered as the fail state. In this case, the 

proposed method is capable of finding the overestimated failure 

probability of 12.5% and the worst-case reliability of 87.5%. In 

the last case, the 30th state is considered as the fail state. In this 

case, the PPMC method obtains the worst-case reliability of 

99.87%, which is just slightly lower than the true probability of 

99.88%. 

Table 2 shows the comparison of computation times in this 

60-state example. The average computation time for evaluating 

the system reliability through the original MC using one 

processor is 74.97 (ms). By Cannon’s algorithm, the average 

computation time for evaluating the system reliability through the 

original MC using 25 processors is 3.48 (ms). The average 

computation time for evaluating the system reliability through the 
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PPMC method using five processors is 0.66 (ms). Compared with 

the first configuration, the second and third configurations have 

parallel speedup ratios of 21.53 and 113.77, respectively.     

 

 
(a) 

 
(b) 

Figure 4. The (a) original and (b) partitioned dependency matrices 

for the 60-state Markov Chain. 
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Table 1. Results of the 60-state Markov Chain. 

Method Index of fail state Probability of fail state System reliability
Original 2 0.07% 99.93% 
PPMC 2 12.5% 87.50% 

Original 24 3.06% 96.94% 
PPMC 24 12.5% 87.50% 

Original 30 0.12% 99.88% 
PPMC 30 0.13% 99.87% 

 

Table 2. Comparison of computation times. 

 Number of 
processors 

Computation time 
(ms) 

Speedup ratio 

Original 1 74.97 1 
Original 25 3.48 21.53 
PPMC 5 0.66 113.77 

 

 (二) Example 2: 200-state MC for MMR controllers 

The second case focuses on a 200-state MC, which contains 

605 directed edges. Figure 5 (a) shows the dependency matrix of 

the given MC. In this case, the MC reduction is also unnecessary. 

To distribute the workloads to five computers, the desirable 

partitioning locations are {40, 80,120,160}M = , indicated by the 

red lines. The off-diagonal probabilities are minimized to reorder 

the dependency matrix. As a result, the off-diagonal probability, 

the sum of probabilities in the gray areas, equals 34.33, which is 

around 17.16% over the total probability. The values in the 

off-diagonal submatrices will be neglected in Eq. (17) yielding 

the underestimated measure of system reliability. Therefore, the 
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worst-case reliability can be determined. 

We now want to demonstrate different types of simulation 

results from the first example. Suppose the 5th state is considered 

as the fail state, three different initial states are studied. The 1st 

case starts with ( ) 320 1=p e . The original matrix multiplication 

shows the fail probability of 6.63% as the PPMC overestimates 

the fail probability of 7.05%; therefore, a worst-case reliability of 

92.95% is found. Another initial condition considers ( ) 180 1=p e . 

The proposed method underestimates the reliability, i.e. 82.83% < 

true probability = 83.25%, and utilizes the worst-case measure as 

a robust estimator of the system probability. Lastly, when the 99th 

state is considered as the initial state, a lower reliability of 

77.01% is found using the original calculations. Even for the 

special situation of low reliability, the proposed method is capable 

of finding the worst-case reliability, i.e. 75.32%. Table 3 lists the 

detailed information about the simulation results. 

Table 4 shows the comparison of computation times in this 

200-state example. The average computation time for evaluating 

the system reliability through the original MC using one 

processor is 2093.91 (ms). By Cannon’s algorithm, the average 

computation time for evaluating the system reliability through the 

original MC using 25 processors is 119.49 (ms). The average 

computation time for evaluating the system reliability through the 

PPMC method using five processors is 22.34 (ms). Compared 

with the first configuration, the second and third configurations 

have parallel speedup ratios of 17.52 and 93.74, respectively. 
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(a) 

 
(b) 

Figure 5. The (a) original and (b) partitioned dependency matrices 

for the 200-state Markov Chain. 

 

Table 3. Results of the 200-state Markov Chain. 

Method 
Index of initial 

state 
Probability of fail state System reliability

Original 32 6.63% 93.37% 
PPMC 32 7.05% 92.95% 

Original 18 16.75% 83.25% 
PPMC 18 17.17% 82.83% 

Original 99 22.99% 77.01% 
PPMC 99 24.68% 75.32% 
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Table 4. Comparison of computation times 

 Number of 
processors 

Computation time 
(ms) 

Speedup ratio 

Original 1 2093.91 1 
Original 25 119.49 17.52 
PPMC 5 22.34 93.74 

 

 (三) Example 3: 480-state MC for MMR controllers 

The final example considers a large-scale MC that contains 

480 states. Figure 6 (a) shows the dependency matrix with 1899 

blue dots, that is, there are 1899 distinct directed edges in the MC. 

In a large problem like this, the matrix reduction can effectively 

improve the numerical performances. We assume the threshold 

parameter is 0.1τ = . Figure 6 (b) shows the dependency matrix 

of the reduce Markov Chain, which now only contains 710 

directed edges. The matrix permutation is then reordered and the 

resultant dependency matrix is shown in the subfigure (c). The 

total off-diagonal probability equals 110.37, which is around 23% 

of the total probability. On the other hand, 77% of the workloads 

are uniformly distributed to eight different computers. The red 

lines represent the given partitioning locations 

, 300, 360, 420}{60,120,180, 240M = . 

Table 5 lists two different cases of the simulations. The first 

case considers the 10th and 406th states as the initial and fail 

states. The proposed method is able to find the worst-case 

reliability, 99.04%, which is slightly lower than the true measure, 

99.75%. In the other case of that the 432nd and 31st states are the 

initial and fail states, the PPMC method obtains an 
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underestimation of the system reliability, i.e. 70.79% << true 

probability = 99.90%, due to the errors from the matrix reduction 

and approximated calculation in Eq. (17). However, the proposed 

method still guarantees that the true system reliability is at least 

larger than or equal to the underestimated measure. 

Table 6 shows the comparison of computation times in this 

480-state example. The average computation time for evaluating 

the system reliability through the original MC using one 

processor is 24376.94 (ms). By Cannon’s algorithm, the average 

computation time for evaluating the system reliability through the 

original MC using 16 processors is 2441.48 (ms). The average 

computation time for evaluating the system reliability through the 

PPMC method using eight processors is 75.59 (ms). Compared 

with the first configuration, the second and third configurations 

have parallel speedup ratios of 9.98 and 322.48, respectively. 

 

Table 5. Results of the 480-state Markov Chain. 

Method 
Index of 

initial state 
Index of fail 

state 
Probability of fail 

state 
System 

reliability 
Original 10 406 0.25% 99.75% 
PPMC 10 406 0.96% 99.04% 

Original 432 31 0.10% 99.90% 
PPMC 432 31 29.22% 70.79% 
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(a) 

 
(b) 

 
(c) 

Figure 6. The (a) original, (b) reduced, and (c) partitioned 

dependency matrices for the 480-state Markov Chain. 



30 

Table 6. Comparison of computation times 

 Number of 
processors 

Computation time 
(ms) 

Speedup ratio

Original 1 24376.94 1 
Original 16 2441.48 9.98 
PPMC 8 75.59 322.48 

 

二、Conclusions 

This report focuses on the reliability analysis of multi-modular 

controllers using discrete-time Markov chains. A novel approach is 

proposed to reduce and partition a large-scale Markov chain model 

into multiple independent sub-models, which can be tackled 

naturally by parallel processing in the first place. However, each of 

those sub-models might still require a huge amount of memory for 

processing on a single processor. Thus, the task-farming paradigm 

of parallel processing is used to implement a memory-efficient 

algorithm to obtain each sub-model’s result, and combine the results 

to form the complete state probability vector at any desired time 

instant. 

The results of three numerical examples reveal that, compared 

with the reliability analysis of the intact Markov Chain model, the 

proposed methodology is capable of improving the performance but 

also maintaining allowable accuracy of the reliability analysis. The 

amount of memory required on a single processor to perform matrix 

calculations is significantly reduced. The computational speed is 

significantly improved as well.  
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肆、數學符號 

a  An array in Cannon’s algorithm. 

A Transition matrix. 

A i i -th partitioned transition matrix. 

 b Another array in Cannon’s algorithm. 

c  Column number. 

cp  Column number of the pivot element in dependency matrix. 

Ci  i -th coefficient. 

D  N × N  dependency matrix. 

Di  i -th partitioned dependency matrix. 

Dij  Connectivity parameter. Dij  equals one when i -th and 

j -th states are connected; otherwise, it is zero. 

ei  i -th normal basis. 

m Dimensional parameter of submatrices for multiple 

processors. 

M  Dimensional parameter for the partitioned matrix. 

n  Time parameter in the computer processing. 

N  Number of states in Markov Chain. 

p Vector of transition probabilities. 

pC  Total probability of the partitioned Markov Chains couple 

with each other. 

pi  i -th partitioned vector of transition probabilities. 

pI  Total coupling probability for the interchanged dependency 

matrix. 

P(A) Probability of A. 
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P(A | B) Conditional probability of A given B. 

Q Infinitesimal generator of continuous-time Markov Chain. 

s A dimensional parameter. 

S  Finite state space. 

t  Time. 

X (t) Variable with Markov property at time t . 

λi  i -th eigenvalue. 

μi, j  Transition probability (failure/recovery rate) of the state i  

moves to the state j . 

v i i -th eigenvector. 

δ  A small number. 

π i, j  A processor with elements ai, j  and bi, j . 

 N ×1 permutation vector. 

 i -th partitioned permutation vector. 

τ  Threshold parameter. 

 i -th off-diagonal dependency matrix. 

 i -th off-diagonal transition matrix. 

Superscript 

′  Derivative with respect to time. 

*  Optimal solution. 

(k) N -th Iteration in finding the optimal partition. 

(n)  n-th Step in computer processing. 
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