行政院原子能委員會 委託研究計畫研究報告

(高分子太陽能電池之低能隙全波段吸收高分子合成之研究)
(Design and Synthesis of Full-Spectrum Absorption Polymers for Photovoltaic Devices)

計畫編號:1032001INER018

受委託機關(構):國立交通大學

計畫主持人: 韋光華

聯絡電話:03-5731871

E-mail address: khwei@mail.nctu.edu.tw

核研所聯絡人員:查厚錦

報告日期:103年11月28日

目 錄

目 錄	••••••	i
中文摘要	••••••	1
Abstract	••••••	2
作者及所屬」	單位	3
壹、 計畫	緣起與目的	4
貳、 研究	方法與過程	6
一、合	成全波段吸收高分子	6
二、材	料性質分析與光電效應量測	9
參、 主要	發現與結論	10
一、使	用 SELENOPHENE 作為架橋基或側鏈單元	10
(-) •	吸光性質與分子能階	10
(二)、	高分子堆叠型態分析	12
二、以	BS 做為電子受體之高分子	15
(-) •	吸光性質與分子能階	15
(二)、	高分子堆疊型態分析	16
(三)、	高分子光伏特性	16
三、相	關補充數據	18
(-) •	高分子分子量與其對效率的影響	18
(=) •	電腦模擬之高分子結構與能階	19
建、 久老	· *	23

中文摘要

在本計畫中,我們合成一系列具硒原子取代的二維共軛高分子, PBDTTTBO、 PBDTTSBO、PBDTSTBO、和 PBDTSSBO。此系列 高分子以側鏈接有 alkylthienyl 官能基的 benzodithiophene (BDT)為 予體,以接有辛烷醚的 2,1,3-benzooxadiazole (BO)為電子受體,並以 thiophene 作為予體-受體之間的間隔單元(spacer),而硒原子則分別 取代在側鏈與主鏈間隔單元上的硫原子。另外我們也以 benzoselenadiazole (BS)取代BO單元,合成另一系列的2為共軛的 高分子 PBDTTTBS、 PBDTTSBS,、 PBDTSTBS、和 PBDTSSBS。 我們系統性的分析硒原子在不同位置對高分子在吸光、電子能隙還 有分子堆疊上的影響。我們發現隨著結構的改變,高分子的元件效 率有顯著的差異(3.3 到 7.6%),證明了硒原子的位置對高分子的光伏 特性有巨大的影響。在這些高分子中,以 PBDTSTBO 與 PC71BM 混掺(1:2w/w)製作而成的元件具有最佳效率(7.6%),以及相當高的開 路電壓(0.86V)。

關鍵字: 雜原子效應、可見光吸收頻譜、高分子太陽能電池、結晶性高分子、掠角 X-光分析

Abstract

and characterized series synthesized a we two-dimensional Se atom-substituted donor (D)- π -acceptor (A) conjugated polymers—PBDTTTBO, PBDTTSBO, PBDTSTBO, and PBDTSSBO—featuring benzodithiophene (BDT) as the donor, thiophene (T) as the π -bridge, and 2,1,3-benzooxadiazole (BO) as the acceptor with different number of Se atoms at different π -conjugated locations, including the π -bridge, and side chain, respectively. On the other hand, we also replaced BO with benzoselenadiazole (BS) and synthesized another series of two-dimensional Se atom-substituted polymers. The BS unit expands the absorption window of polymers into long wavelength region, and also changes the stacking properties of polymer. We found that through the rational structural modification of the 2-D conjugated Se-substituted polymers, the resulting PCEs could vary over threefold (from 2.4 to 7.6%), highlighting the importance of careful selection of appropriate chemical structures such as the location of Se atoms when designing efficient D- π -A polymers for use in solar cells.

Keywords: heteroatom effect, visible light absorption · crystalline conjugated polymers, polymer solar cells, GIWAXs

作者及所屬單位

類	姓	所屬單位	田小叶叶双
別	名		現任職務
主持人	韋光華	國立交通大學材 料系	教授
研究人員	江建銘	國立交通大學材 料系	博士後研究員
兼任助理	藍上哲	國立交通大學材 料系	博士生

壹、 計畫緣起與目的

有機薄膜太陽能電池被視為新一代的光電轉換技術,其可撓性與溼式塗佈製程,被寄予在未來可應用噴墨,連續印刷等快速且低成本的製程方式,有助於太陽能面板的普及[1][2]。在有機薄膜太陽能電池中,最關鍵的角色是位於元件中間的主動層(Active Layer),此區塊是太陽能電池中的反應核心,控制了光能的吸收反範圍與自由載子的產生,常見的主動層的是由共軛高分子(p型材料)與奈米碳球(n型材料)混掺而構成的塊材異質介面(bulk heterojunction)。奈米碳球是一個強力的拉電子材料,一個碳球可接收六個電子,能有效吸引共軛高分子上的激子(exciton)中的電子而形成自由電子與電洞,是故為n型材料。碳球衍生物(PCBM)目前最有效的n型材料,但缺點就是此材料僅在紫光或紫外光區具有光吸收的特性,因此有機薄膜太陽能電池的吸光能力,尤其是可見光區僅由共軛高分子的吸收光譜所決定,因此大範圍吸收頻譜的高分子,同時此高分子又能與奈米碳球匹配,成了提升元件效能的關鍵。[3][4]

近年來高分子太陽能電池在光電轉換效率上已有長足的進步,在材料的發展中,有機共軛高分子以主鏈予體-受體共軛高分子最具潛力,其優點在於藉由選擇不同單體組成可對高分子的能隙與能階進行有效調整,尤其利用弱效推電子予體結合強力拉電子受體,可使高分子同時具有較低的 HOMO 能階與能隙,進而建構一高電流高電壓的太陽能元件。[3]-[5]然而利用此方法雖可將高分子吸收波長延長到 900nm (Eg < 1.4 eV),但大部分高分子的主要吸收峰的半波寬大約只有 200nm,[6][7]無法涵蓋全波段,此一侷限,

在一般常見的主動層膜厚(~100 nm)狀況下,將使得元件無法有效 吸收整個可見光的頻譜,限制了元件的效率。

在新穎元件的開發設計的範疇中,串聯式多電池元件已被開發來解決單一電池吸光範圍不足的問題,藉由兩組或兩組以上不同吸光範圍的太陽能電池以類似建造大樓的方式向上堆疊,可解決單一元件吸光不足的問題,雖然此種元件會產生電流的損耗,但可以大幅提升輸出電壓,目前二元主動層(Tandem cell)效率已達到 11%。[8]但是此種元件結構在製造上有相當高技術門檻,由於未來高分子太陽能電池將朝溼式的 R2R(roll-to-roll)製程發展,對於層與層之間的接合不同於蒸鍍法簡單,必須考慮上下兩層物質的互溶性,提升了製程難度,此外多層結構的元件可能因為堆疊的層數增加導致產品良率下降,不利於商業化的發展。相較於多層串聯式電池,標準單電池因堆疊層數較少,可減少製程上的複雜度,在生產上可加速生產漸少成本,同時也可減少能量在介面間的損耗。本計畫主要目標為,希望利用藉由調整高分子的組成,尋找具有全波段吸收的高分子,以其彌補目前單電池元件吸光不足的問題。

貳、 研究方法與過程

一、合成全波段吸收高分子

予體-受體共軛高分子的吸光頻譜可分為三個部分,一個是位於紫外光區的吸收,再來是藍光區的吸收峰,最後則是綠光或紅光的主吸收峰。紫外光區來自於各個芳香環單元的自身吸收,藍光是主鏈共軛 π 電子在 π 與 π *軌距間的躍遷(π - π * transition),而最後長波長區的主吸收峰是來自於予體與受體間的電荷轉移 (internal charge transfer)。由於共軛高分子最主要吸光不足的地方即是吸收位於藍光區的 π - π * transition 所以如何提升此處的吸光效率,是我們解決的關鍵。

PBDTTTBO

圖一: 高分子 PBDTTTBO 分子結構。

此處的吸光性質跟高分子主鏈側鏈的芳香單元的共軛性質有關,在本計畫中,敝實驗室以先前合成的高效率高分子PBDTTTBO為主要的高分子骨架^[9],將進行結構上的組成調整,希望可以提升整體高分子的吸光效率。PBDTTTBO是以benzo[1,2-b:4,5-b']dithiophene為電子予體,2,1,3-benzooxadiazole

為電子受體,並利用 thiophene 作為主鏈上的間隔單元(spacer)或是側鏈延伸共軛的芳香基團,見圖一。在此我們將引入硒原子(selenium)取代 thiophene 上的硫原子(sulfur),探討 Selenophene 對於高分子在吸光與電子傳遞上的影響,以及整體元件的效率,在圖二中展示本計畫中合成的高分子,分別將 selenophene 取代原來PBDTTTBO上的間隔單元與側鏈芳香環。

圖二: PBDTTTBO 與用 Selenophene 取代的高分子之結構與聚合 路徑。

另一方面我們也將 BO 改成 benzoselenadiazole (BS)合成一系列高分子,由於將氧原子取代成硒原子,可進步一降低高分子的能隙,使高分子的吸收向紅外光區移動,配合上側鏈與主鏈上的間隔單元取代,希望可以使高分子的光吸收頻譜對整體可見光區有更好的重疊,圖三為以 BS 做為拉電子單元的高分子。

圖三: 使用 benzoselenadiazole 做為拉電子單元的高分子之結構 與聚合路徑。

二、 材料性質分析與光電效應量測

本實驗以 GPC 測量高分子分子量,紫外光-可見光光譜儀測量高分子在可見光區的吸收,再利用循環伏安法測量高分子的軌域能階,同時,我們也利用同步輻射光源對高分子薄膜進行結晶性的分析。在光電效應部分,我們以高分子為 P型材料,碳球衍生物(PC₇₁BM)為 N型材料,製備太陽能電池的主動層。整體電池元件結構以 ITO 導電玻璃為陽極,在其上方塗布 PSDOT:PSS 為電動傳輸層,厚度約 20nm,之後再塗布上由高分子和 PC71BM 製成的主動層,最後利用熱蒸鍍法鍍上鈣當作電子傳輸層與鋁當做陰極。光電效率的量測,在標準光源 AM1.5 下進行量測。同時我們也利用 SCLC 法測量各高分子在元件狀態下的電洞遷移率。

多、 主要發現與結論

一、 使用 Selenophene 作為架橋基或側鏈單元

(一)、 吸光性質與分子能階

我們利用量測高分子薄膜的吸光強度與膜厚推算個高分的在薄膜態時的吸光效率,其吸收圖譜請參考圖四。我們可以發現在selenophene 取代 thiophene 後,吸光效率有顯著的變化,改接selenophene 的高分子在吸收係數上有明顯的提升,此結果可預期提升元件在可見光區的吸收效率,尤其高分子在 300-500nm 區間吸收相對增強,能讓元件能更有效的吸收與轉換個波段的太陽光。另外值得一提的是 selenophene 的取代位置,當 selenophene 取代高分子主建上作為間隔單元(spcaers)的 thiophene 後,高分子的吸光進一步的紅位移,光學能隙大約降低了 0.1eV。至於將 selenophene 接在高分子側鍵上並不影響整體高分子的吸光範圍。關於高分子的電子能階變化,各高分子的最高電子填滿軌域(HOMO)與最低未填滿軌域(LUMO)的能階被整理於表(一)中。當 selenophene 置於主鍵上時,高分子的 HOMO 能階被提升了約 0.6eV,這應該是由於本身擁有較高 HOMO 能階的 selenophene 參與主建整體軌域混成的關係,至於將 selenophene 接在高分子側鍵上,並不影響高分子能階的位置。

圖四:高分子在薄膜形態下的紫光-可見光吸收圖譜

表一 各高分子的電化學性質

	E_{onset}^{ox}	${ m HOMO^a}$ E_g^{opt}		LUMO ^b	НОМО	c LUMO ^c
	(V)	(eV)	(eV)	(eV)	(eV)	(eV)
PBDTTTBO	0.66	-5.46	1.78	-3.68	-4.82	-2.71
PBDTTSBO	0.60	-5.40	1.69	-3.71	-4.79	-2.75
PBDTSTBO	0.66	-5.46	1.78	-3.68	-4.81	-2.72
PBDTSSBO	0.60	-5.40	1.69	-3.71	-4.79	-2.75

^a HOMO energy levels determined from the onsets of the CV curves, using the equation HOMO = $-(4.8 + E^{\text{ox}}_{\text{onset}})$ eV. ^b LUMO energy levels determined using the equation $E_{LUMO} = E_{HOMO} + E_{\text{g}}^{\text{opt}}$

(二)、 高分子堆疊型態分析

我們利用 GIWAXs 對高分子薄膜進行結晶性分析,經由 2D 的 繞射圖,我們發現這個系列的高分子均有 face-on 的排列現象,也就 是高分子的芳香環鏈平躺在基材上,此種排列方式有助於載子沿著 垂直薄膜方向移動。當 selenophene 引入高分子的結構中,材料的 face-on 特性也隨之變化,其結晶強度會因為導入 selenophene 而增 強 , 尤其將 selenophene 置於高分子側鏈 (PBDTSTBO)。在 PBDTSTBO 的 2D-GIEAXs 繞射圖中,我們可以發現 out-of-plan 方 向有強烈的(010)繞射鋒,顯示 PBDTSTBO 具有 face-on 的優選堆疊。

圖五: 各高分子薄膜的二維掠角散射圖(2D-GIWAXs)

表二:以各高分子與碳球製作之光伏元件特性

Polymer/PC ₇₁ BM	$V_{ m oc}$	$J_{ m sc}$	η	FF	Mobility
(1:2)	(V)	(mA cm ⁻²)	(%)	(%)	$(cm^2 V^{-1} s^{-1})$
PBDTTTBO	0.85	11.8	5.9	59	1.3×10^{-3}
PBDTTSBO	0.79	11.9	4.7	50	9.7×10^{-3}
PBDTSTBO	0.86	13.9	7.6	64	8.2×10^{-3}
PBDTSSBO	0.78	10.0	3.3	42	7.4×10^{-3}

圖六: 高分子與 PC71BM 所製作之元件在各波段的外部量子轉換效率。

(三)、 高分子光伏特性

表二為各高分子的在傳統標準結構下,與碳球以最佳重量比所得的光伏特性。從表中我們可以發現,當 selenophene 置於主鏈會將元件的開路電壓,這應是由於高分子的 HOMO 提升所致,而 selenophene 接於側鏈則不引響高分子的電子能階,因此開路電壓並無明顯變化。值得一提的是,當高分子引入 selenophene 後,其元件的電洞傳導率 (hole mobility)均有明顯提升,這可能是因為 selenium 本身對電子束縛力較弱,有助於載子傳導,另一方面也可能是因為 selenophene 加強了高分子在 face-on 排列的優選特性,因此提升整體電洞遷移特性。在效率表現上 PBDTTSBO 展現出最佳的元件效率,而另外兩個使用 selenophene 效率則下降,其效率的下降可能來自於主動層形貌與高分子 HOMO 下降等緣故。

圖七:高分子在薄膜形態下的紫光-可見光吸收圖譜

二、 以BS做為電子受體之高分子

(一)、 吸光性質與分子能階

改以 BS 作為電子受體後,我們可發現高分子的吸收產生明顯的紅位移,而至於側鏈與架橋基的取代,則與先前的趨勢相同,側鏈的取代並不影響整體的吸收範圍,而當 selenophene 在主鏈上時,則高分子將進一步發生紅位移,PBDTTSBS 與 PBDTTSSBS 具有最寬廣的吸收範圍,有效涵蓋了可見光與部分紅外光的區間。但是在能階的變化上,以 BS 作為高分子受體,使得高分子的 HOMO 能階軍往上提升,這將會降低元件的開路電壓,另外值得一提的是,PBDTTSBS 與 PBDTTSSBS 雖然具有最小光學能隙,但 HOMO 的位置與另外兩個同樣使用 BS 當受體的高分子並無差別,在此處selenophene 位於主鏈上時反而只會影響 LUMO 的位置,這與 BO 為受體的高分子的狀況不同。

表三 使用 BS 為電子受體的高分子之電化學性質

	$E_{\mathit{onset}}^{\mathit{ox}}$	HOMO ^a	$E_{\it g}^{\it opt}$	LUMO ^b	HOMO ^c	LUMO ^c
	(V)	(eV)	(eV)	(eV)	(eV)	(eV)
PBDTTTBO	0.66	-5.46	1.78	-3.68	-4.82	-2.71
PBDTTTBS	0.49	-5.29	1.69	-3.60	-4.67	-2.67
PBDTTSBS	0.49	-5.29	1.56	-3.73	-4.65	-2.71
PBDTSTBS	0.49	-5.29	1.69	-3.60	-4.66	-2.67
PBDTSSBS	0.49	-5.29	1.56	-3.73	-4.64	-2.71

(二)、 高分子堆疊型態分析

經由 2D-GIWAXs 分析,我們發現當高分子導入 BS 後似乎會降低高分子的結晶性,PBDTTTBS 呈現較弱的結晶性,且也無特別明顯的優選堆疊,在當 selenophene 引入後,不論是接在側鏈或使主鏈上(PBDTTSBS 與 PBDTSTBS),均有些微的增強 face-on 的強度,而對於 PBDTSSBS,雖然有出現較強的結晶訊號,但高分子的堆疊優選特性從 face-on 似乎轉成 edge-on 的。

圖七: 各高分子薄膜的二維掠角散射圖(2D-GIWAXs)

(三)、 高分子光伏特性

使用 BS 作為受體的高分子,其與 PC71BM 所製作的光伏元件,開路電壓大幅下降到 0.7V 以下,導致整體效率備受到限制,但從 EQE 的圖譜中(圖九)可發現 PBDTTSBS 與 PBDTSTBS 的元件在整

個紫外光到近紅外光範圍均有光電轉換的能力,雖然目前效率還無 法達到太高,但由於元件尚未最佳化,於未來有機會當引入添加劑 或其他製成後,再將整體效率提升。

表四:以各高分子與碳球製作之光伏元件特性

Polymer/PC ₇₁ BM	$V_{ m oc}$	$oldsymbol{J_{ ext{sc}}}$	η	FF	Mobility
(1:2)	(V)	(mA cm ⁻²)	(%)	(%)	$(cm^2 V^{-1} s^{-1})$
PBDTTTBO	0.85	11.8	5.9 (5.76)	59	1.3×10^{-3}
PBDTTTBS	0.66	10.1	3.3 (3.25)	50	4.4×10^{-3}
PBDTTSBS	0.67	9.5	3.0 (2.87)	49	2.6×10^{-3}
PBDTSTBS	0.67	11.4	4.0 (3.88)	52	3.9×10^{-3}
PBDTSSBS	0.66	8.3	2.4 (2.38)	44	1.7×10^{-3}

圖九: 高分子與 PC71BM 所製作之元件在各波段的外部量子轉換效率。

三、 相關補充數據

(一)、 高分子分子量與其對效率的影響

在表(五)列出本計畫中所有合成並被報導之高分子分子量與其 熱裂解溫度,所有高分子的分子量均大於三萬,其分子量表示個高 分子均呈現良好的聚合度,並適合應用於有機薄膜太陽能電池。雖 然在本計畫中個高分子的分子量之間仍有些不小的落差,雖然分子 量的大小會影響效率,但從表(六)中的數據可知,當高分子大於一 定程度的分子量,其分子量對於效率上得差異並不大,因此在本計 畫中各高分子之間分子量的落差對效率所造成的影響應可忽略。

(二)、 電腦模擬之高分子結構與能階

在本計畫中,我們也應用高速電腦,以第一原理進行高分子的結構 與相關能階的計算,其計算結過表列於表(七)與表(八)中,期大致趨 勢與本計畫中的數據報導吻合。從理論所得的結果我們發現,Se 原 子的位置對於高分子的最佳構型與電子雲分布並無明顯的影響,但 對高分子的能階位置與光吸收係數卻有影響,這可能跟 π 軌域混成 時 Se 原本跟 S 原子有不同的混成係數或原子軌域種類所造成。

表五:本計畫中各高分子之分子量與熱裂解溫度										
Polymer	$M_{\rm n}^{\ a}$	$M_{ m w}^{\;\; m a}$	PDI ^a	$T_{ m d}^{\ m b}$						
PBDTTTBO	60.2k	246.8k	4.1	334						
PBDTTSBO	56.9k	221.9k	3.9	313						
PBDTSTBO	67.3k	275.9k	4.1	328						
PBDTSSBO	52.1k	197.9k	3.8	317						
PBDTTTBS	45.1k	157.9k	3.5	326						
PBDTTSBS	38.7k	119.9k	3.1	315						
PBDTSTBS	47.2k	160.5k	3.4	328						
PBDTSSBS	31.2k	87.4k	2.8	314						

表六:不同分子量之 PBDTSTBO 之光伏元件效率										
Polymer	м а	$M_{ m w}^{a}$	PDI ^a	$V_{ m oc}$	$J_{ m sc}$	η	FF	Thickness		
	M _n			(V)	$(mA cm^{-2})$	(%)	(%)	(nm)		
P4 (HM _n)	67.3k	275.9k	4.1	0.86	13.94	7.6	64	104		
P4 (MM _n)	51.8k	186.5k	3.6	0.86	13.38	7.4	64	98		
P4 (LM _n)	35.6k	89.7k	2.5	0.86	13.34	7.1	62	101		

表七:電腦模擬之最佳構型、HOMO 與 LUMO 電子雲分布圖									
Polymer	Structure	θ_{l} (°)	θ ₂ (°)	HOMO orbital	LUMO orbital				
PBDTTTBO	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array}$	56.8	6.9	Control of the contro					
PBDTTSBO	S O O O O O O O O O O O O O O O O O O O	56.3	5.8	Control of the Contro					
PBDTSTBO	Se θ_2 θ_2 θ_2 θ_2 θ_3 θ_3 θ_4 θ_3 θ_4 θ_3 θ_4 θ_5 θ_5 θ_6 θ_7 θ_8 θ_8 θ_8 θ_9 $\theta_$	57.5	6.6						
PBDTSSBO	Se Ho O O O O O O O O O O O O O O O O O O	56.9	5.6	Section of the sectio					
PBDTTTBS	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	56.9	9.2	· · · · · · · · · · · · · · · · · · ·					
PBDTTSBS	S O O O O O O O O O O O O O O O O O O O	56.4	7.5	**************************************					
PBDTSTBS	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	57.9	8.6	Portogo Para Propins					
PBDTSSBS	Se Holling No. Se Hol	57.2	7.3	**************************************					

表八:經理	表八:經理論計算所得之電子能階、與第一光學吸收峰										
Polymer	НОМО	LUMO	HLG			Absorp	tion data		$\mu_{ m g}$	$\mu_{ m ge}$	
	(eV)	(eV)	(eV)	Excited	$\lambda_{ m abs,cal}$	f^{a}	Configuration ^b	Weight ^c			
				State	(nm)			(%)			
PBDTTTBO	-4.82	-2.71	2.11	S1	684	2.116	$H \rightarrow L$	96.2	0.65	16.58	
	-4.82	-2.71	2.11	S2	607	0.089	$H \rightarrow L+1$	95.4			
PBDTTSBO	-4.79	2.75	2.04	S1	706	2.287	$H \rightarrow L$	96.5	0.55	18.51	
	-4 .79	-2.75	2.04	S2	622	0.075	$H \rightarrow L+1$	96.1			
PBDTSTBO	-4.81	-2.72	2.09	S1	689	2.108	$H \rightarrow L$	96.3	0.64	17.55	
	-4.81	-2.72	2.09	S2	609	0.089	$H \rightarrow L+1$	95.3			
PBDTSSBO	4.70	-2.75	2.04	S1	709	2.284	$H \rightarrow L$	96.5	0.51	18.53	
	<i>–</i> 4.79	-2.73	2.04	S2	624	0.072	$H \rightarrow L+1$	96.0			
PBDTTTBS	4.67	2.67	2.00	S1	735	1.435	$H \rightarrow L$	94.3	0.90	14.97	
	-4.67	-2.67	2.00	S2	669	0.120	$H \rightarrow L+1$	91.3			
PBDTTSBS	4.65	2.71	1.04	S1	759	1.574	$H \rightarrow L$	94.8	0.91	15.93	
	-4.65	-2.71	1.94	S2	686	0.113	$H \rightarrow L+1$	92.4			
PBDTSTBS	1 66	2.67	1.00	S1	740	1.438	$H \rightarrow L$	94.5	0.81	15.03	
	-4.66	-2.67	1.99	S2	671	0.121	$H \rightarrow L+1$	91.3			
PBDTSSBS	1 61	2.71	1.02	S1	762	1.577	$H \rightarrow L$	94.9	0.84	15.97	
	-4.64	-2.71	1.93	S2	688	0.111	$H \rightarrow L+1$	92.4			

肆、 参考文獻

- [1] Wienk, M. M.; Koon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; Van Hal, P. A.; Janssen, R. A. J. *Angew. Chem., Int. Ed.* **2003**, *42*, 3371.
- [2] Alstrup, J.; Jørgensen, M.; Medford, A.; Krebs, F. ACS Appl. Mater. Interfaces **2010**, 2, 2819–2827.
- [3] Su, Y. W.; Lan, S. C.; Wei, K. H. Mater. Today 2012, 15, 554.
- [4] Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
- [5] Zhou H.; Yang L.; and You W. *Macromolecules* **2012**, *45*, 607–632.
- [6] Walker B.; Tamayo, A. B.; Dung, X.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat M.; Nguyen, T. Q. Adv. Funct. Mater., 2009, 19, 306
- [7] Huo, L.; Hou, J.; Chen, H. Y.; Zhang, S.; Jiang, Y.; Chen, Y. L.; Yang, Y. *Macromolecules*, 2009, **42**, 6564.
- [8] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. *Nat. Commun.* **2013**, *4*, 1446–1455.
- [9] Jiang, J. M.; Lin, H. K.; Lin, Y. C.; Chen, H. C.; Lan, S. C.; Chang, C.K.; Wei, K. H. *Macromolecules* **2014**, 47, 70