行政院原子能委員會

放射性物料管理局

委託研究計畫研究報告

放射性廢棄物最終處置場本土 緩衝材料設計參數之研究

計畫編號:932004FCMA006 受委託機關(構):國立中央大學土木工程學系 計畫主持人:黃偉慶 報告日期:中華民國九十三年十二月二十七日

摘要

徹底解決高放射性廢料是各核能發電國家列為首要的重大環保 議題與挑戰,目前國際上一致認為採用多重障壁概念的深層地質處置 是解決高放射性廢料問題最可行的方法。依據核能先進國家的經驗, 一般選擇結晶岩為處置母岩的國家,大多依賴緩衝材料作為多重障壁 的主要安全貢獻因子。因此緩衝材料的研究發展對於整個高放射性廢 料處置計畫成敗扮演關鍵性的角色。

依據歐洲核能總署(NEA)的統計資料,黏土緩衝材料與密封回 填估計約佔全部經費(含選址作業)的14%-18%,運轉經費部分則 佔26%-42%。且處置計畫所需使用的緩衝材料數量龐大,因此各國 都傾向於在自己國家中尋找合適的黏土材料作為緩衝材料。緩衝材料 的選擇與處置場整體設計息息相關,緩衝材料至少須具備低水力傳導 性、高遲滯核種遷移能力、高熱傳導性與適當的回賬潛能,方能肩負 處置場長期安全的重責大任。

本研究的目的在於建立上述各種工程參數的實驗室試驗方法,並 求取試驗土壤(日興土與美國土)的相關參數,並與國外採用之緩衝 材料進行比較。針對國產日興土之回脹性質不如國外鈉型膨潤土的情 形,尋求可能的活化改質方法,藉以提昇日興土的回脹特性,以增加

i

其作為國內處置場緩衝材料的競爭優勢。

試驗結果顯示日興土的材料特性與法國的 FoCa 膨潤土相近,皆 為鈣型膨潤土。本研究以雙曲線模式、莫耳-庫倫破壞準則與 Hoek-Brown 經驗破壞準則建立緩衝材料的力學強度分析方法,並以三軸 試驗求取日興土的力學強度參數 C 值為 3.63MPa、ψ 值為 49.9 度。 本研究建立之熱傳導係數量測法包括穩態法與暫態法,量測之熱傳導 係數值,其範圍約在 0.3-1.0 W/mK 之間。本研究參考 ISRM 的建議 設計緩衝材料的自由回脹試驗設備,試驗結果顯示日興土在 30 水 熱環境下最大回脹量,約僅有美國土的1/7。藉由添加Na2CO3使其於 溶液相中引發離子交換程序,可使日興土改質為鈉型膨潤土,提升其 回脹量。由於離子交換的改質程序具遲滯性,故改質土的回脹歷時曲 線呈現後期上升的曲線型態。經離子交換程序後的改質日興土,最大 回脹量可提升3倍。改質土對輻射衰變熱的耐受性良好,對於200℃ 乾燥加熱與90℃的水熱環境條件下,都能發揮其回脹潛能。

ii

ABSTRACT

Deep geological disposal of high-level radioactive waste is expected to be a long-term and costly program. The results of an analysis of the factors affecting disposal cost estimates based on OECD/NEA data, revealed that costs for a clay-based buffer or seals would take up to 14% to 18% of the total cost (including siting cost) and 26% to 42% of the operation cost. According to Taiwan's preliminary disposal concept, the amount of bentonite buffer material has been estimated to be approximately 40,000 m³. From the viewpoint of economics and material supply stability, a domestic source of bentonite material is highly desired.

The objectives of this study include the following items, such as characterization of Zhisin clay, and evaluation of its potential as a buffer material based on detailed comparison with those bentonites being considered by other countries, laboratory investigation on the mechanical properties, thermal conductivity and swelling potential of Zhisin clay, and modification of Zhisin clay for enhancement in its geotechnical properties using chemical and ion exchange approaches.

Experimental results show that Zhisin clay is a Ca-bentonite, the mechanical strength was measured by UUU test. The cohesion force of Zhisin clay is 3.63 Mpa and friction angle is 39.9°. Steady-state method and transient-state method of thermal conductivity were established in this work. The thermal conductivity of bentonite is ranging from 0.3 to 1.0 W/mK. The free swelling tests were performed in accordance with the

iii

ISRM suggested procedures. The maximum swelling strain of Zhisin clay has been found to be 1/7 of Wyoming bentonite.

To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na₂CO₃ powder is introduced in this research. Experimental results show that Na₂CO₃-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Due to the ion exchange hysteresis, activated bentonite shows a different type of time-swell curve than the traditional sigmoid-shaped curve. The maximum swelling strain is 3 times as much as that of untreated Zhisin clay. The Na₂CO₃-activated Zhisin clay exhibites improved resistance to thermal environments and behaves similar to the Na-type bentonites under different hydrothermal temperatures.

中文摘要	i
英文摘要	iii
目錄	V
圖目錄	X
表目錄	XV

第一	-章	緒論		1
	1.1	研究動	1機	1
	1.2	研究目	的	2
第二	章	文獻回	〕顧	5
	2.1	緩衝林	才料的預期功能	5
	2.2	緩衝林	才料的力學強度	9
		2.2.1	雙曲線模式	9
		2.2.2	莫耳庫倫破壞理論	12
		2.2.3	Hoek-Brown 經驗破壞準則	13
	2.3	緩衝林	才料的熱傳導性質	14
		2.3.1	熱傳導係數量測方法	14
		2.3.2	緩衝材料熱傳導係數影響因素	18

2.4 緩衝材料的回脹性質	19
2.4.1 回脹型態分類	19
2.4.2 回脹行為	21
2.5 膨潤土的改質原理	22
2.5.1 黏土礦物分離純化	22
2.5.2 黏土礦物表面活化	24
2.5.3 黏土礦物離子交換	26
2.5.4 離子交換程序應用於緩衝材料之改質	
第三章 試驗材料方法	36
3.1 試驗材料	36
3.1.1 日興土	
3.1.2 美國土	36
3.1.3 石英砂	36
3.1.4 花崗岩碎石	36
3.2 材料性質分析	37
3.2.1 土壤力學基本性質試驗	37
3.2.2 礦物性質分析方法	
3.3 力學強度試驗	
3.3.1 三軸試驗	

	3.3.2 分析方法	.40
3.4	熱傳導試驗	.40
	3.4.1 美國材料測試協會對暫態熱傳導係數量测規範	.40
	3.4.2 試驗概述	.41
	3.4.3 試驗儀器	.41
3.5	回脹試驗	.45
	3.5.1 回脹試驗方法選擇	.45
	3.5.2 單向度回脹試驗	.46
3.6	改質方法	.47
	3.6.1 物理改質方法	.47
	3.6.2 酸改質方法	.48
	3.6.3 Na ₂ CO ₃ 改質	49
第四章	各國緩衝材料性質分析比較	.51
4.1	基本物理性質分析	.51
	4.1.1 比重分析	.51
	4.1.2 粒徑分析	.51
	4.1.3 阿太堡限度試驗	.52
4.2	材料性質分析	.54
	4.2.1 化學組成分析	.54

4.2.2 可交換陽離子容量分析	55
4.2.3 X 光繞射分析	55
4.2.4 熱重分析	56
第五章 力學強度試驗結果分析	60
5.1 砂質材料添加量對強度的效應	60
5.2 設計乾密度對強度的效應	63
5.3 碎石含量與Ei值關係	67
5.4 純膨潤土之乾密度與Ei之關係	70
5.5 圍壓與E _i 之關係	72
5.6 圍壓與極限軸差應力之關係	73
5.7 實驗數據與模式預測之比較	78
5.8 各國緩衝材料力學強度之比較	80
第六章 熱傳導係數試驗結果分析	83
6.1 熱探針法改良試驗結果比較	83
6.2 各國緩衝材料之熱傳導特性比較	85
第七章 回脹試驗結果分析	
7.1 黏土含量因素	88
7.2 非回脹性礦物效應	90
7.3 結構負電荷因素	90

7.4	可交換陽離子因素	91
第八章	日興土改質方法探討	96
8.1	物理改質法	96
	8.1.1 物理改質後之自由回賬	96
	8.1.2 試驗材料性質分析	100
8.2	酸活化改質法	100
	8.2.1 酸活化後之自由回脹	101
	8.2.2 試驗材料性質分析	104
8.3	Na ₂ CO ₃ 改質法	106
	8.3.1 不同改質程序之最大回脹應變量	107
	8.3.2 Na ₂ CO ₃ 改質特性	110
8.4	改質日興土在受熱狀態下之自由回脹	131
第九章	結論與建議	137
9.1	結論	
9.2	建議	139
参	考文獻	141

圖目錄

圖 2.1	黏土材料的雙曲線應力 - 應變圖	9
圖 2.2	雙曲線應力 - 應變轉換圖	10
圖 2.3	初始切線彈性模數 E_i 與圍壓 σ_3 的關係	12
圖 2.4	莫耳 - 庫倫破壞準則	13
圖 2.5	壓實膨潤土之回脹變形機制	20
圖 2.6	回脹歷時曲線關係圖	22
圖 3.1	溫度對對數時間關係圖	45
圖 3.2	回脹應變試驗儀器示意圖	47
圖 4.1	各國緩衝材料粒徑分布圖	54
圖 4.2	日興土與美國土的 X-ray 繞射	59
圖 4.3	日興土與美國土原礦的 TGA 曲線	59
圖 5.1	美國土試體應力應變關係圖	60
圖 5.2	$r_{dc} = 16.68 kN / m^3$ 美國土試體之力學強度參數	63
圖 5.3	美國土試體之應力應變關係圖	64
圖 5.4	日興土試體之應力應變關係圖	64
圖 5.5	不同膨潤土乾密度下之強度參數關係圖	65
圖 5.6	不同膨潤土體積比下之強度參數關係圖	65
圖 5.7	顆粒加強材料含量體積比對整體材料E _i 之影響值	68

圖 5.8	$r_{dc} = 16.68 kN / m^3 BH 膨潤土試體 E_i 值與測試值比較$	70
圖 5.9	BH膨潤土試體靜態壓實試驗	71
圖 5.10)BH膨潤土試體之側向束制模數-乾密度關係	71
圖 5.1]	σ_{c} 與膨潤土乾密度及碎石含量體積比分比之關係	74
圖 5.12	2m值與膨潤土乾密度及碎石含量體積百分比之關係	75
圖 6.1	美國土熱傳導係數與乾密度關係圖	84
圖 6.2	美國土熱傳導係數與孔隙率關係圖	84
圖 7.1	日興土於水熱環境30℃回脹歷時曲線	94
圖 7.2	美國土於水熱環境30℃回脹歷時曲線	94
圖 7.3	日興土與美國土在30℃水熱環境下最終回脹量	95
圖 7.4	鈣型膨潤土與鈉型膨潤土的系統能量圖	95
圖 8.1	日興土經乾篩法改質後之回脹歷時曲線	98
圖 8.2	日興土經濕篩法改質後之回脹歷時曲線	99
圖 8.3	日興土經不同物理改質後之最大回脹應變量	99
圖 8.4	日興土經物理改質後之X光繞射圖譜	100
圖 8.5	日興土經1%HCl改質活化後之回賬歷時曲線	102
圖 8.6	日興土經3%HCl改質活化後之回脹歷時曲線	103
圖 8.7	日興土經5%HCl改質活化後之回脹歷時曲線	103
圖 8.8	日興土經不同濃度HCl改質活化後之最大回脹應變量.	104

xi

圖 8.9	日興土經不同濃度HCl酸活化改質後之X光繞射圖譜105
圖 8.10	日興土酸活化改質前後之 TGA 曲線106
圖 8.11	日興土經不同濃度Na2CO3濕式浸泡改質後最大回脹應變量
圖 8.12	日興土經不同濃度乾式球磨混合後最大回脹應變量109
圖 8.13	日興土經較低添加濃度 Na ₂ CO3 乾式攪拌混合後之最大回脹應
	變量109
圖 8.14	日興土經較高添加濃度Na2CO3乾式攪拌混合後之最大回脹應
	變量110
圖 8.15	日興土經 1.5% Na ₂ CO ₃ 濕式浸泡改質後之回賬歷時曲113
圖 8.16	日興土經3% Na ₂ CO ₃ 濕式浸泡改質後之回脹歷時曲線113
圖 8.17	日興土經4.5% Na ₂ CO ₃ 濕式浸泡改質後之回脹歷時曲線114
圖 8.18	日興土經1.5% Na ₂ CO3乾式球磨攪拌改質後之回脹歷時曲線
圖 8.19	日興土經 3% Na2CO3 乾式球磨攪拌改質後之回脹歷時曲線
圖 8.20	日興土經4.5% Na ₂ CO3乾式球磨攪拌改質後之回脹歷時曲線
圖 8.21	日興土經0.25% Na ₂ CO ₃ 乾式混合攪拌改質後之回脹歷時曲線
圖 8.22	日興土經 0.5% Na ₂ CO3 乾式混合攪拌改質後之回脹歷時曲線

圖 8.23	日興土經1%Na2CO3乾式混合攪拌改質後之回脹歷時曲線
圖 8.24	日興土經1.5% Na ₂ CO3 乾式混合攪拌改質後之回脹歷時曲線
圖 8.25	日興土經 3% Na2CO3 乾式混合攪拌改質後之回脹歷時曲線
圖 8.26	日興土經4.5% Na2CO3乾式混合攪拌改質後之回脹歷時曲線
圖 8.27	回脹遲滯效應示意圖119
圖 8.28	不同濃度Na2CO3乾式球磨攪拌改質後之X光繞射圖譜120
圖 8.29	不同濃度 Na ₂ CO ₃ 乾式混合攪拌改質後之 X 光繞射圖譜120
圖 8.30	日興土於Na2CO3乾式攪拌混合改質前後之樣品TGA曲線
圖 8.31	日興土經添加Na2CO3以乾試攪拌混合改質後於不同陳化時間
	狀態下之回脹歷時曲線125
圖 8.32	日興土經添加Na2CO3以乾試攪拌混合改質後經不同陳化時間
	所得最大回脹應變量變化126
圖 8.33	日興土原礦置於 0.01M Na2CO3溶液系統中之回脹歷時曲線
圖 8.34	日興土原礦置於 0.05M Na2CO3溶液系統中之回脹歷時曲線
圖 8.35	日興土原礦置於 0.1M Na ₂ CO ₃ 溶液系統中之回賬歷時曲線

圖 8.36	日興土原礦置於1MNa2CO3溶液系統中之回脹歷時曲線
圖 8.37	
ц	· · · · · · · · · · · · · · · · · · ·
圖 8.38	日興上經 Na.CO. 乾試攪拌混合程序改質後以 200℃乾燥
	加熱所得之最大回賬應繼量
圖 8 39	日興+經Na CO 彭試攪拌混合程序改質後以 300℃ 彭煙加熱
回 0.27	的得之最大回賬應繼量
圖 8 40	用興十經15% Na CO 彭試攪拌混合程序改質後以200℃ 乾燥
國 0.10	加熱所得之回賬厤時曲線 134
圖 8 41	用興+經3% Na CO 彭討攪拌混合程序改質後以200℃ 乾燥
回 0.11	加熱所得之回賬厤時曲線 134
圖 8 4 2	日興+經45% Na CO 彭試攪拌混合程序改質後以200℃ 乾燥
國 0.12	加熱所得之回賬厤時曲線 135
圖 8 43	用興十經15% Na CO 彭試攪拌混合程序改質後以300℃ 彭煙
國 0.15	加熱所得之回賬厤時曲線
圖 8 44	日興土經 3% Na.CO. 彭試攪拌混合程序改質後以 300℃ 乾燥
Ц 0.11	加熱所得之回賬歷時曲線 136
圖 8 45	日興土經4.5% Na ₂ CO, 彭試攪拌混合程序改質後以300℃ 乾燥
ц с. ю	

加熱所得之回脹歷時曲線......136

表目錄

表 2.1	離子交換遲滯性之離子分類	32
表 2.2	常見離子種類的晶格回脹高度	33
表 2.3	常見離子種類的黏土片數目	33
表 4.1	各國緩衝材料基本物理性質分析	53
表 4.2	緩衝材料化學組成分析	57
表 4.3	各國緩衝材料的可交換陽離子含量	58
表 5.1	美國土試體之 E_i 值及 $(\sigma_1 - \sigma_3)_{ult}$ 值	66
表 5.2	日興土試體之 E_i 值及 $(\sigma_1 - \sigma_3)_{ult}$ 值	67
表 5.3	美國土試體之 m 值及 σ_c 值	74
表 5.4	美國土試體之 R_f 值	77
表 5.5	BH膨潤土試體之理論 R_f 值	78
表 5.6	BH試體理論預測強度與試驗強度的差異比較	79
表 5.7	日興土試體理論預測強度與試驗強度的差異比較	79
表 5.8	各國候選緩衝材料的剪力強度參數	82
表 6.1	美國土乾密度與熱傳導係數值結果	85
表 6.2	各國候選緩衝材料的熱傳導係數	86
表 6.3	影響熱傳導係數的因子分析整理	87
表 8.1	日興土改質前後熱重分析(TGA)變化表	122

表 8.2	日興土進行離子交換改質前後pH值變化情形	123
表 8.3	日興土經添加Na2CO3以乾試攪拌混合改質後經不同陳化	
	時所得 PI 值與 pH 值變化表	126

第一章 緒 論

1.1 研究動機

徹底解決高放射性廢料是各核能發電國家列為首要的重大環保 議題與挑戰,目前國際上一致認為採用多重障壁概念的深層地質處置 是解決高放射性廢料問題最可行的方法。依據核能先進國家的經驗, 一般選擇結晶岩為處置母岩的國家,大多依賴緩衝材料作為多重障壁 的主要安全貢獻因子。因此緩衝材料的研究發展對於整個高放射性廢 料處置計畫成敗扮演關鍵性的角色。

緩衝材料的選擇與處置場整體設計息息相關,緩衝材料至少須具 備低水力傳導性、高遲滯核種遷移能力、高熱傳導性與適當的回賬潛 能,方能肩負處置場長期安全的重責大任。依據歐洲核能總署(NEA) 的統計資料,黏土緩衝材料與密封回填佔全部經費(含選址作業)的 14%~18%,運轉經費部分則佔26%~42%。且處置計畫所需使用的緩 衝材料數量龐大,因此各國都傾向於在自己國家中尋找合適的黏土材 料作為緩衝材料。

本研究以緩衝材料的工程性質為主要研究對象,探討不同型態膨 潤土的熱傳導性質、力學性質、與回脹潛能,並進一步探索改善日興 土的方法與成效,作為未來高放射性廢棄物最終處置場的設計參考。

目前國際間常使用的緩衝材料可以區分為鈉型膨潤土(瑞典、日 本)與鈣型膨潤土(法國、南韓)兩大類。在鈉型膨潤土方面,由於 具有較高的回脹潛能,因而常會添加其他材料如石英砂以改良緩衝材 料其他特性;就鈣型膨潤土而言,由於回脹潛能不及鈉型膨潤土,影 響其作為候選緩衝材料的競爭力。

國內高放射性廢棄物最終處置研究工作正積極推展,初步處置概 念也逐步成型。然而具關鍵性的緩衝材料配比設計,則尚待進一步實 驗確定。早於民國七十四年起就對台東樟原日興土進行相關的研究, 由於日興土屬於鈣型膨潤土,其回脹性質較國外鈉型膨潤土遜色。因 此尋求可能的活化改質方法,藉以提昇日興土的回脹特性,以增加其 作為緩衝材料的競爭優勢成為一重要研究課題。另外一方面,國內將 來亦有可能進口國外鈉型膨潤土作為候選緩衝材料,因此對於此類材 料的配比設計有必要分析研究。

1.2 研究目的

本研究主要目的在於分析國內日興土與美國膨潤土的性質,為能 使本研究結果與其他先進國家相關研究結果比較,因此本研究中將各 國選用緩衝材料的各項性質加以彙整比較,包括產自於日本 Tsukinuno 的 Kunigel V1 膨潤土(另有 Kunipia 膨潤土亦為候選材 料);加拿大 Avonlea Mineral Industries 生產位於加拿大 Saskatchewan

區域的 Avonseal 膨潤土;瑞典計劃採用美國 American Colloids 生產的 MX-80 膨潤土;比利時與法國採用位於 Paris Basin 的 FoCa 膨潤土。

本研究另一重要目的在於建立緩衝材料工程性質的試驗方法,目 前各國對於工程性質的試驗方法大抵上遵循美國材料試驗協會 (ASTM)或國際岩石力學學會(ISRM)的建議,但並未有統一的 試驗規格或準則,因此建立工程性質試驗的方法論,並與文獻所載各 國緩衝材料的特性相互比較,為本研究的另一重心。

由於日興土屬於鈣型膨潤土,其回脹性質較國外鈉型膨潤土遜 色。因此尋求可能的活化改質方法,藉以提昇日興土的回脹特性,也 是本研究另一重要課題。本研究針對日興土黏土質含量偏低與可交換 陽離子為鈣離子兩項不利回脹行為的因素,利用物理方法、化學方法 與熱學方法三類活化改質方法改善日興土的基本性質與回脹性質。物 理方法主要是利用篩分析方式篩除不具回脹性的粗顆粒部分,藉以增 加日興土黏土含量而提昇其回脹量。化學方法可細分為兩種,第一種 是利用離子交換原理,採用添加 Na₂CO₃或浸泡高濃度 NaCl 促使鈣 型日興土改質為鈉型日興土;另一則是將日興土浸泡於強酸(HCl) 或強鹼(NaOH)之中,改變日興土黏土表面特性來達到活化改質效 果。熱學改質方法則是藉由高溫熱處理來增加黏土礦物活性,以改善 其回脹特性。上述三種方法在工業上作為觸媒、催化劑等工業材料的

使用頗為廣泛,但在大地材料的相關研究則較少觸及。有鑒於未來深 層地質處置場所須緩衝材料的數量與經費龐大,研發可行的改質方法 對國內黏土材料的使用將有實質的助益。

第二章 文獻回顧

2.1 緩衝材料的預期功能

設置工程障壁的目的是將高放射性廢棄物與人類環境長期隔 離,而緩衝材料是作為阻隔放射性核種外釋的主要障壁。緩衝材料在 抑止或遲緩核種遷移的能力上是由緩衝材料的水力傳導性及離子交 換能力與吸附容量等性質所決定;其支持廢料包件及維持結構完整性 的能力則取決於緩衝材料本身的抗壓強度、壓縮性、可變形性及膨脹 潛能;衰變熱的移除則與其熱傳導性質及水分移動有關。為了滿足緩 衝材料在各項功能上的需求,其材料性質必須能夠維持長時間的穩 定,而且尚須考慮地下處置坑室持續不斷變化的環境,因此工程障壁 中的緩衝材料預期須具備下述各項功能:

 適當的回賬潛能(swelling potential):處置作業期間,緩衝材料與圍 岩或廢棄物包件間會產生空隙或間隙。處置作業完成後,緩衝材 料須具備自我封塞的能力,將緩衝材料和圍岩以及緩衝材料和廢 棄物包件之間的空隙填充補滿。在處置場設計使用年限內,地下 水侵入緩衝材料恐將難以避免,因此須有適當的回賬潛能,如此 才能填塞裂縫及孔隙,以阻隔地下水的進出(王欣婷,2003)。

- 低回賬壓力:當緩衝料吸水回賬填塞於地層的裂縫或設施的空隙 之中後,如繼續吸水而無多餘空間可供回賬時,此時緩衝材料將 產生回賬壓力,並對廢棄物包件或岩體造成危害(黃偉慶等, 2001)。因此緩衝材須具備低回賬壓力,以免壓迫廢棄物包件產生 擠壓破壞,造成核種外洩。
- 3. 低乾縮量:因處置場安置廢料後為密封狀態,廢料罐的高溫將導 致周圍環境增溫,此時緩衝材料中的黏土可能因高溫乾燥收縮而 產生裂縫,如此將大幅影響緩衝材料的功能,故理想的緩衝材料 須具備微量乾縮的特性(王欣婷,2003)。
- 廢棄物包件支撐:廢棄物包件支撐係指廢棄物包件長期荷載下, 緩衝材料的承載能力與變形行為,可能之變形行為包括沉陷與潛 變,理想的緩衝材料應具有足夠的廢棄物包件支撐能力使廢棄物 包件能長時間固定在緩衝材料內(莊文壽等,2000)。
- 5. 應力緩衝效應(stress buffering effect):應力緩衝效應是當地震或其他的岩體移動發生及廢棄物包件腐蝕產物膨脹脹時,緩衝材料的存在可以將所產生的應力釋放,避免廢棄物包件直接受到擠壓而變形(莊文壽等,2000)。

- 長期穩定性:在處置場的安全評估期程內,緩衝材料必須保持其 物理性、化學性、及礦物相的穩定,不會因為核廢棄物產生的衰 變熱、廢棄物包件的荷載而發生變化。
- 7. 低析離傾向 (low segregation tendency):緩衝材料需能均匀地混合 鋪設後才能完整發揮其功能,因此必須具備低析離傾向,以防止 因運送或夯實過程中所造成之分離現象而降低其應具備之工程性 能 (Yong, 1986)。
- 8. 操作性、製造容量與高夯實效率:一般規模的處置場均可達數百萬立方公尺,因此緩衝材料必須具備製造容易、工作性佳,容易獲得且便宜等特性以符合經濟效應。由於地下處置場回填區之形狀構造因素,因此回填材料亦必須容易運輸與施工,且必須易於夯實而無需複雜的施工機具。
- 9. 低水力傳導性:由於核廢棄物與地下水接觸是導致放射性核種釋 出或遷移的主要途徑,因此緩衝材料必須具備低水力傳導的特 性。在處置場中地下水達飽和前,可延遲地下水和廢棄物包件接 觸;一旦緩衝材料達飽和後,低水力傳導性的緩衝材料可延遲地 下水中核種在緩衝材料區域的傳輸(Komine and Ogata,1999)。
- 10.高熱傳導性:熱源的產生來自於用過核燃料中的放射性核種所釋 放出來的衰變熱,緩衝材料及處置場周圍的母岩必須盡量將這些

熱量由設施往遠場地質圈傳遞;如果熱傳導率過低,則緩衝材料 可能因高溫而喪失其原有的障壁功能,而處置坑道也會因為溫度 的上升而產生額外的應力,影響近場環境的穩定性。

- 11.核種遷移遲滯能力:黏土礦物遲滯放射性核種遷移的機制,主要 是藉由黏土的吸附作用、陽離子交換作用、同型取代作用、膠凝 作 用和氧化還原作用,將核種牢牢嵌制在近場中,減低其傳輸速 率。
- 12.膠體過濾(colloid filtration):當廢棄物包件受損後,放射性核種將 溶解在地下水中,放射性核種會和黏土中膠體物質結合,因此膠 體過濾即可減緩核種的遷移。
- 13.化學緩衝效應:理想的緩衝材料應具有適當的化學緩衝能力,使 得近場環境中地下水的 pH 值能受到控制,使廢棄物包件處於微鹼 性、還原狀態環境,減低廢棄物包件的腐蝕速率以及降低放射性 核種的溶解度(Komine and Ogata,1999)。
- 14.氣體滲透性:可將廢料罐腐蝕或生物性分解所產生之氣體排出, 避免造成壓力(莊文壽等,2000)。

2.2 緩衝材料的力學強度

2.2.1 雙曲線模式

Kondner (1963)提出土壤之應力 - 應變關係可用雙曲線函 數加以描述,如圖 2.1 所示。此雙曲線應力 - 應變曲線包含兩個 常數 a 與 b,其關係式如下:

$$\sigma_1 - \sigma_3 = \frac{\varepsilon}{a + b\varepsilon}$$

(2.1)

圖 2.1 黏土材料的雙曲線應力 - 應變圖

Duncan 等人 (1970) 將此關係式加以應用,進一步推導如下: $\lim_{\varepsilon \to \infty} (\sigma_1 - \sigma_3) = \lim_{\varepsilon \to \infty} \frac{\varepsilon}{a + b\varepsilon} = \frac{1}{b} = (\sigma_1 - \sigma_3)_{ult}$ (2.2) $\frac{\partial (\sigma_1 - \sigma_3)}{\partial \varepsilon} \Big|_{\varepsilon = 0} = \frac{a}{(a + b\varepsilon)^2} \Big|_{\varepsilon = 0} = \frac{1}{a} = E_i$

(2.3)

綜合上述三式可得:

$$\sigma_1 - \sigma_3 = \frac{\varepsilon}{\frac{1}{E_i} + \frac{\varepsilon}{(\sigma_1 - \sigma_3)_{ult}}}$$

(2.4)

上述式 $(2.1) \sim (2.4)$ 中, σ_1 , σ_3 分別為最大主應力及最小主 應力; ε : 軸向應變; σ_1 - σ_3 : 軸差應力; $(\sigma_1$ - $\sigma_3)$ ult : 軸向應變 趨近無限大時之軸差應力值, 即雙曲線之漸近線與 σ_1 - σ_3 軸的截距; E_i : 初始切線模數。

如將式(2.4)改寫為:

$$\frac{\varepsilon}{\sigma_1 - \sigma_3} = \frac{1}{E_i} + \frac{\varepsilon}{(\sigma_1 - \sigma_3)_{ult}}$$
(2.5)

由式(2.5)可知,若 ε 為橫軸,以 $\frac{\varepsilon}{\sigma_1 - \sigma_3}$ 為縱軸將具有線性關係,如圖 2.2 所示;圖中截距為 $\frac{1}{E_i}$,斜率為 $\frac{1}{(\sigma_1 - \sigma_3)_{ult}}$ 。

圖 2.2 雙曲線應力 - 應變轉換圖

土壤於破壞時之軸差應力 $(\sigma_1 - \sigma_3)_f$ 尚未達到 $(\sigma_1 - \sigma_3)_{ult}$,因此 定義破壞率(Failure ratio)如下:

$$R_f = \frac{(\sigma_1 - \sigma_3)_f}{(\sigma_1 - \sigma_3)_{ult}}$$

(2.6)

*R*_f依土壤種類的不同而改變,其範圍從 0.75 到 1 之間;而式 (3.4)
可以改寫如下:

$$\sigma_1 - \sigma_3 = \frac{\varepsilon}{\frac{1}{E_i} + \frac{\varepsilon * R_f}{(\sigma_1 - \sigma_3)_f}}$$

(2.7)

在應力-應變曲 線中, *E_i* 會隨著最小主應力(圍壓)值的變化而 改變, Janbu (1963)建議 *E_i*與σ₃之間的關係如下:

$$E_i = k * p_a * \left(\frac{\sigma_3}{p_a}\right)^n \tag{2.8}$$

式中:P_a:一大氣壓 (latm = 0.1014 MPa); k:係數; n:指數。 式 (2.8) 可以改寫為式 (2.9)

$$\log\left(\frac{E_i}{p_a}\right) = \log k + n * \log\left(\frac{\sigma_3}{p_a}\right)$$
(2.9)

故在
$$\log\left(\frac{E_i}{p_a}\right)$$
 及 $\log\left(\frac{\sigma_3}{p_a}\right)$ 座標圖中, $\log k$ 為截距, n 則為斜率, 如圖

圖 2.3 初始切線彈性模數 E_i 與圍壓 σ_3 的關係

2.2.2 莫耳庫倫破壞理論

當土體中,某一個面的剪應力大於土體的抗剪強度,即產生破 壞。莫耳-庫倫(Mohr-Coulomb, 1773)破壞準則係假設材料的破 壞發生在正應力與剪應力混合的臨界狀態,而非單純沿著最大正應力 或最大剪應力的方向發生。材料之破壞包絡線與τ-σ關係圖上的莫 耳圓相切,且為一條直線,如圖 2.4 所示。材料之剪力強度可分為兩 部份,一為凝聚力(cohesion),另一為摩擦力(friction),如式(2.10) 所示:

 $\tau = c + \sigma \tan \phi$

(2.10)

式中 τ :材料破壞時,破壞面上的剪應力; σ :材料破壞時,破壞面上的正向應力;c:凝聚力; ϕ :摩擦角。

圖 2.4 莫耳 - 庫倫破壞準則

2.2.3 Hoek - Brown 經驗破壞準則

Hoek - Brown (1980) 根據大量的岩石試驗,以拋物線型的破壞 包絡線處理,最後提出經驗破壞準則如式 (2.11)。

$$\frac{\sigma_1}{\sigma_c} = \frac{\sigma_3}{\sigma_c} + \left[m \frac{\sigma_3}{\sigma_c} + s \right]^{\frac{1}{2}}$$
(2.11)

式中:

 σ_1 :破壞時之最大有效主應力; σ_3 :破壞時之最小有效主應力; σ_c :完整岩石的單壓強度;m:岩體材料參數,其值從 0.007(高度 破碎擾動岩體)至25(堅硬完整岩石);s:岩體材料參數,其值從 0 (完全破碎)至1(完整岩石)。 2.3 緩衝材料的熱傳導性質

2.3.1 熱傳導係數量測方法

物質熱傳導係數的方法,依照量測原理的不同,大致可分為穩態 與暫態兩種,分別說明如下:

(1) 穩態法 (steady state) 量測

穩態法量測熱傳導係數之基本原理為製造一穩定溫度場,直接由 熱流量與溫度梯度及距離之關係求得熱傳導係數。本法之優點為可精 確量測物體之熱傳導係數,但所需量測時間較長,且對可能因為加熱 而改變其熱傳導性質之物體較不適用,例如在不飽和的土壤試驗中, 水分會因為溫度梯度的關係而往低溫的方向擴散,影響物體本身均質 性而使試驗條件與本法原假設不符。穩態法量測熱傳導係數可進一步 區分為熱流計法及分割棒法。

熱流計法是利用穩態條件下,待測的試體置放於不隨時間變化的 溫度場中,當達到平衡狀態時,可由量測單位面積熱流量及溫度梯度 直接決定熱傳導係數。其特色為溫度與能量的變化將趨於穩定,不隨 時間改變,量測技術較為直接且可靠。但因試驗時間較長,若試體物 質含水,則物質會因溫度改變導致其組成之變化,會影響量測值。

分割棒法的原理主要為應用一已知熱傳導係數之標準試體測定 待測試體之熱傳導係數,由單向度之熱傳導理論,假設所輸入之穩定

熱流只沿單向傳遞,當系統到達熱平衡時,待測物與標準試體之熱流 密度相等,可分別量測標準試體與待測試體之溫度梯度,藉由式 (2.12),可以比較求出試體之熱傳導係數。

$$k_1 A_1 \left(\frac{\Delta T}{\Delta X}\right)_1 = k_2 A_2 \left(\frac{\Delta T}{\Delta X}\right)_2 \tag{2.12}$$

其中 k_1, k_2 為標準與待測試體之熱傳導係數; A_1, A_2 為標準與待測試 體之截面積; $\left(\frac{\Delta T}{\Lambda X}\right)_1, \left(\frac{\Delta T}{\Lambda X}\right)_2$ 為標準與待測試體之溫度梯度。

(2) 暫態法 (transient state) 量測

暫態法主要藉由產生一穩定熱源,量測溫度與時間之關係,間接 求得熱傳導係數之大小。暫態法量測熱傳導係數可分為熱探針法與雷 射反射法。

熱探針量測方法之原理係利用熱探針或具相當長徑比之線熱源 法量測熱傳導係數,利用一熱源插入試體中量測,利用已知的電壓與 電流,對應時間與溫度的變化,利用類似穩態方法以線性的溫度對時 間的變化,推求出熱傳導係數。

熱探針法可以在實驗室或現場量測中提供快速且精確的熱傳導 係數量測。這種方法最早是在 1888 年由 Schleiermacher 所提出。利 用熱探針法所設計的量測系統主要由可提供穩定熱能之加熱元件及 溫度感測元件所組成。 以一維單向度熱傳導方程式加以說明,如式(2.13)所示。假設 在 X-Y 平面上有一半無限、均質且等向性的定義域中,存在一線狀 的熱源。該熱源所提供的熱量完全沿 X 軸方向流入該定義域,且沒 有側向的熱源。定義域中沿 X 軸方向的溫度分佈和時間的關係須符 合一般富立葉定律 (General Fourier's Law)。

$$\frac{\partial T}{\partial t} = \alpha \quad \frac{\partial^2 T}{\partial x}$$
(2.13)

其中T代表在t時間之溫度,α為該定義域之熱擴散係數(Thermal diffusivity)。若將該定義域以Y軸為軸心旋轉擴張為一圓柱狀域並進 入圓柱座標系統加以敘述,則可得式(2.14)

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right)$$
(2.14)

其中r為定義域中任一點對軸心也就是熱源的垂直距離。假設在t=0 之時,每單位長度的熱源開始提供一穩定的熱源輸入q,則在定義域 中任何一點之溫度上升量△T可以由式(2.15)求得:

$$\Delta T = \frac{q}{4\pi\lambda} \left[-Ei\left(-\frac{r^2}{4\alpha t}\right) \right]$$
(2.15)

其中 $Ei(-\frac{r^2}{4\alpha t})$ 為對數積分項,k 為熱傳導係數。故若在軸心 r=0處時間為 t_1 、 t_2 時分別量測的溫度為 T_1 、 T_2 ,則可以將數據代入後相 減而得式 (2.16)

$$T_2 - T_1 = \frac{q}{4\pi\lambda} \ln\left(\frac{t_2}{t_1}\right)$$
(2.16)

移項後即可得到熱傳導係數:

$$\lambda = \frac{q}{4\pi \left(T_2 - T_1\right)} \ln \left(\frac{t_2}{t_1}\right)$$
(2.17)

熱探針法中加熱元件大多為電阻式電熱絲,利用焦耳定律可得其 在一定時間之內因為電流通過而產生之熱能:

$$W = I^{2} Rt \qquad (2.18)$$

式中 W 為功;單位為焦耳 (J); I 為電流 (A); R 為電阻 (Ω), t 為經過的時間。故功率 P 為:

$$P = \frac{W}{t} = I^{2} R$$
 (2.19)

單位為瓦特 (Watt)。

故要提供穩定的熱源輸入,只要提供一穩定之電源即可以達到此 目的。

雷射反射法主要原理為發射一短暫且高強度能量於試體中,藉由 溫度的上升以求得試體熱擴散係數,如式(2.20)所示。

$$\nabla^{2}T = \frac{C_{p}\rho}{\lambda}\frac{dT}{dt} = \frac{1}{\alpha}\frac{dT}{dt}$$
(2.20)

式中比熱可由熱量計量出,密度為已知,故可計算出熱傳導係數,此 方法優點為直接準確,試體大小可不受限制。 2.3.2 緩衝材料熱傳導係數影響因素

處置場中由於放射性物質的衰變,廢料會產生大量的熱能,而這 些熱能必須經由緩衝材料以及回填材料散發到周圍的岩盤中。這個熱 傳導的過程,可能會導致在散熱源附近的緩衝材料含水量散失,並進 而造成乾燥以及收縮碎裂。因此,一個好的緩衝材料,在不同的含水 量之下,應具有良好的熱傳導性。一般而言,緩衝材料的熱傳導係數 由下列三個因素所影響:(1)黏土種類;(2)黏土含量;(3)乾密度。 (1) 黏土種類與含量的影響

黏土混合物的熱傳導係數會隨著黏土含量的增加而降低,以蒙脫 石為基底的混合物與其他黏土礦物為基材(matrix)的材料相比,前者 有較低的熱傳導係數。這個現象可以歸因於較低的內部分子密度及內 部分子接觸面積較小,造成分子間的傳導速度降低,所以其熱傳導係 數較低。

(2) 夯實密度的影響

隨著黏土含量減少混合料之密度與熱傳導係數都明顯的增加。當 砂含量增加時夯實密度隨著增加,其原因為內部顆粒間空隙少較緊 密,熱量傳遞連續,所以熱傳導係數明顯增加。 2.4 緩衝材料的回脹性質

2.4.1 回脹型態分類

膨潤土與水接觸後的回脹反應依據含水量不同可以區分為晶格 回脹(crystalline swelling)與滲透回脹(osmotic swelling)(Norrish, 1954; Madsen & Muller-Vonmoss, 1989; Jo et al, 2001)兩類。

(1) 晶格回脹

晶格回脹主要由乾燥膨潤土與水接觸後,可交換陽離子的水合作 用造成。在完全乾燥的膨潤土中,未水合陽離子位在 TOT 夾層間的 表面,兩個 TOT 夾層間距很小,此時膨潤土的晶格間距為 0.96-1.0nm (Madsen and Muller-Vonmoos, 1989)。在如此小的距離下,黏土表面層 藉由層間陽離子和凡德瓦爾力而有非常強的結合。

膨潤土與水分接觸時內部層陽離子開始水合,進而引發 TOT 夾 層的層間擴張。圖 2.5 為含水量增加時膨潤土結構產生膨脹示意圖。 層間因水合作用形成一至多層的水層(water layer)。第一層水分子與膨 潤土礦物底面氧形成氫鍵而留在平面上,水分子經由鍵結而形成六角 環狀排列,其後各層水以氫鍵與上一層水相連結。因此當膨潤土從完 全乾燥狀態因為吸收水分產生之水合作用,將使得晶格間距呈現階段 性的增加。
由於可交換陽離子的水合反應是造成膨潤土晶格回脹的主因,因 此可交換陽離子的水合行為成為決定晶格回脹的主要因素。膨潤土中 最常見的可交換陽離子為 Ca²⁺離子與 Na⁺離子,兩者水合反應上有很 大的區別。

圖 2.5 壓實膨潤土之回脹變形機制

(2) 滲透回脹

當黏土礦物表面吸附陽離子的濃度高於系統的陽離子濃度時,整個系統產生濃度梯度,進而形成滲透壓,致使水向黏土礦物層間擴

散,使黏土進一步滲透回脹,此一作用亦稱為 Donnan 效應 (Dufrech et al, 2001)。由於高濃度梯度使得黏土層表面的負電荷勢能 (negative potential)相當高,此一勢能隨著表面距離之增加而降低,直到潛能值 為零為止(擴散雙層對其作用力為零)。當兩勢能領域重疊,會互相排 斥,造成在黏土中觀察到之滲透回脹 (Madsen and Muller-Vonmoos, 1989)。當增加孔隙水中電解質濃度,會使得電雙層厚度和回脹應力 降低,滲透回賬引起的體積增加比晶格回賬高出甚多。

2.4.2 回脹行為

圖 2.6 為黏土常見的回賬歷時曲線。Dakshanamurthy (1978)認 為回賬歷時曲線可區分為兩個階段,第一階段為乾黏土顆粒吸水進行 水合,造成蒙脫石的單位層分離,即為層間回賬或晶格回賬。第二階 段為雙層斥力造成的滲透回賬。

Sivapullaiah (1996) 則認為回脹可區分為三個階段;第一階段為 孔隙間回脹(Intervoid swelling), 孔隙間回脹一般低於總回脹的 10%。 由於孔隙間回脹是膨潤土顆粒在非回脹性顆粒間孔隙的回脹行為,因 此顆粒間回脹對整體回脹的貢獻度小。第二階段為初始回脹(Primary swelling), 當孔隙不再提供顆粒間回脹後,主要回脹便迅速發展,大 部分的回脹行為在此階段完成。依美國材料試驗學會(ASTM)的定

義,由回脹應變量對時間的回脹歷時曲線關係圖,兩折線段作切線其 延伸之交點對應之回脹量為初始回脹應變量,其對應之時間為初始回 脹完成時間。第三階段為二次回脹(Secondary swelling),當初始回脹 完成後,緩慢的回脹行為發生,稱為二次回脹。

圖 2.6 回脹歷時曲線關係圖

2.5 膨潤土的改質原理

2.5.1 黏土礦物分離純化

Nblal (1993) 所做的砂-黏土複合土壤回脹試驗結果顯示,黏土 含量越多則複合土壤的回脹量及回脹壓力越大,其原因為回脹機制的 發生主要是由於黏土顆粒吸水產生擴散雙層,而砂顆粒並不產生擴散 雙層,且粗糙的砂顆粒會使黏土顆粒堆疊產生不連續而有空隙,此一空隙將緩衝回脹行為的發生進而降低回脹量。

目前國內有關於膨潤土的研究其材料來源主要來自於台東樟原 所採取的天然膨潤土礦開採產出的。膨潤土礦中含有大量的膨潤石及 其他雜質,有鑒於膨潤土的諸多特徵,如膨脹性、吸附性等,都與膨 潤土的種類及含量有關,如何從膨潤土礦中除去雜質以獲得高品質且 具高活性的原料,進而提升其競爭優勢即成為一項重要的研究工作。 工業上常使用的純化方法大致可區分為乾、濕兩種方式(王澤民等, 1999;牛病昆,1999):

- (1)乾式法:主要採用風選。世界上高達90%以上的膨礦土均由風 選獲得,風選一般要求入料蒙脫石含量要達80%以上。首先將 礦石存放於料場上自然乾燥,使原礦含水量降至25%以下,隨 後進行粗碎、再乾燥,使水分降到6~12%,然後再以150℃烘 乾6小時左右,最後進行粉碎、研磨、分級、包裝。此一方法 所造成的空污嚴重、處理量大,但產品品質不易控制;其最大 的缺點是若烘乾溫度過高或烘乾時間過長會破壞蒙脫石層間構 造,進而影響其相關特性。
- (2) 濕式法:為了充分利用蒙脫石含量小於80%的中低品質膨礦土 資源,必須採用濕式法選礦才可獲得高純度蒙脫石精礦。濕式

法一般要求膨潤土粒徑需小於 5mm,製成 15wt%~20wt%的礦 浆,分離所得之蒙脫石再於 105℃烘乾,雖然此法耗水量大、 成本較高且脫水不易,但蒙脫石層間距構造較不會遭到破壞, 提純精土可用於精細工業的高附加價值產品,又區分為:

- 沉降法:根據 Stoke's 定律,顆粒的沉降速度與顆粒直徑的平 方成正比。沉降操作依據細顆粒的膨潤土與粗顆粒雜質懸浮在 水中具有不同的沉降速度原理進行。
- 電泳法:利用電泳現象,使帶負電荷的膨潤土顆粒聚集在陽極 上,達到膨潤土和其他雜質分離的目的,惟此一方法設備費用 高且耗電量大。
- 3. 磷酸鹽溶液提純法:於礦漿中加入 0.5wt%的磷酸鹽類,以沉 降非蒙脫石的礦物 (蒙脫石具有膨潤性),一般混合時間在五 分鐘以內,若礦漿與偏磷酸鹽過分混合,容易造成黏度增高分 離困難現象。
- 2.5.2 黏土礦物表面活化

礦物樣品中的有機質、鐵、鋁氧化物及碳酸鹽等,通常會將黏土 粉末膠結成較大的顆粒,造成樣品不易分散、比表面積變小進而降低 黏土表面吸附特性;黏土礦物顆粒表面帶有負電荷,所以表面上通常

吸附有 Ca²⁺、Mg²⁺、K⁺、Fe²⁺、Fe³⁺及 Al³⁺等多種陽離子;這些陽離 子與黏土礦物顆粒的結合力量較強,離子擴散範圍小、凝結力大,使 得黏土礦物顆粒不易散開。欲提昇黏土比表面積,改善其吸附特性最 直接的方法即是對黏土礦物進行顆粒分散的動作,工業應用上一般利 用化學分散劑對黏土礦物進行分散動作。化學分散是於懸浮狀況不佳 的懸浮液中加入各種分散劑,迫使黏土物質於處理後充分分散、懸 浮。常用的有 HCl、NaOH、Na₂CO₃、H₂O₂、NH₄OH 及 EDTA (乙二 胺四乙酸)等。由於加入的化學分散劑既能除去膠結物質,亦可改變 黏土礦物顆粒表面的離子組成,故化學分散法將可有效地於水中分散 黏土礦物顆粒,使其形成具有一定穩定性的黏土懸浮液,進而提升其 比表面積與吸附特性(趙杏媛案,1990)。

Yildiz 以酸劑催化與吸附作用的概念,利用 H₂SO₄ 對膨潤土進行 改質,並透過 XRD、DTA 與 TG 分析、比表面積測定等分析確認利 用 H₂SO₄ 對膨潤土進行改質確可使其相關物理及物化特性產生變 化。其重要結論是利用酸活化改質,H⁺離子會取代可交換陽離子,在 此過程中膨潤土之晶格結構會產生改變(因為 Al⁺³、Fe⁺²及 Mg⁺² 會被 溶濾掉),此外酸改質亦會增加膨潤土之多孔特性及提高其比表面積 (Yildiz, 2002)。 2.5.3 黏土礦物離子交換

(1) 離子交換意義

Thompson 與 Way 於 19 世紀中葉以硫酸銨溶液通過土柱後的淋 洗試驗首度發現土壤的離子交換特性,隨後針對陽離子的交換容量、 土壤及土壤中不同組成對於各種離子的親和性,以及酸鹼值改變對交 換反應的影響進行相關試驗,為土壤離子交換研究的先河。

離子交換是在特定的環境條件下(溫度、壓力、pH、水的化學 及生物組成等),黏土礦物吸附特定種類與數量的陽離子(吸附總數 量會平衡黏土顆粒的電荷),一旦環境改變,引發所吸附的離子與外 在環境提供的離子發生交換反應現象,這些反應牽涉他種陽離子置換 部分或全部吸附離子。雖然置換反應通常不至於影響黏土顆粒結構, 但可能導致土壤物理或物化性質的改變(單信瑜,1997)。

Thompson 及 Way 於其後試驗中發現陽離子交換行為是可逆的, 具有快速交換的特質(洪昆煌,1996)。其特性隨黏土種類、溶液濃 度、溫度等而不同。在高嶺石礦物中,離子交換反應幾乎是瞬間完成 的;伊利石則須數小時完成,因為部分交換位置在單體層間;蒙脫石 礦物則須更久的交換時間,因其主要離子交換能力均發生於單體層之 中(單信瑜,1997)。

離子被土壤吸附的引力雖各有不同,然通常透過適當的處理條

件,即使是被強烈吸附的陽離子也可被交換出來。對於此種可逆性的 一般原則之一項例外,即土壤有機物對於許多多價陽離子(尤其是微 量金屬)有優先吸持的現象,此類陽離子一般認為是由部分共價鍵結 所吸持,其僅能被形成更強的共價性鍵結之多價陽離子取代。此外, 離子交換反應迅速,交換步驟幾乎是瞬間完成的,反應的速率限制步 驟發生於離子從膠體表面擴散出來或從溶液中擴散到膠體表面期 間。在土壤中的反應實際情況是水溶性的離子必須通過曲折之土壤孔 隙,或經過土壤膠體上一定厚度的滯留水膜以到達交換位置;對於一 些離子交換反應,因為擴散作用導致反應發生時產生遲滯效應 (hysteresis)(隨反應方向而改變反應性質)。於實驗室中,交換反應 的試驗通常以震盪方式加速離子的移動速率,並使停滯於土壤粒子表 面的滯留水膜厚度減至最小(Bohn 等, 1985;洪崑煌, 1996)。

在中性狀況下,交換陽離子總電荷量以單位土粒質量的當量數表 示之,近於常數,而與所存在的陽離子種類無關,被視為土壤本有的 性質,稱為可交換陽離子容量 C.E.C,以 mEq/100gm 表示之,即每百 克土壤中陽離子毫克當量數。可交換陽離子容量不僅與黏土含量有 關,也與黏土種類有關,即與比表面積及電荷有關。一般而言,蒙脫 土 C.E.C. 最大,約 80~150mEq/100gm,伊利土次之,約 10~40mEq/100gm,高嶺土最低,約 3~15mEq/100gm(萬鑫森,1991)。

黏土礦物的可交換陽離子容量及吸附的離子種類對其膠體活性影響 甚大,如蒙脫石的可交換陽離子容量很大,膨脹性也大,於低濃度下 就可以形成濃稠的懸浮液,尤其是鈉蒙脫石,水化膨脹性更強;而高 嶺石的陽離子交換量相對較低、惰性較大。

影響黏土礦物可交換陽離子容量的因素主要有三種,分述如下(趙杏媛,1990):

- 黏土礦物類型:黏土礦物晶體構造不同,可交換陽離子容量會產 生很大差異,因為在引起黏土礦物陽離子交換吸附的電荷中,由 晶格內的同形異構取代所產生的電荷佔有很大比例,所以晶格內 同形異構取代越多的黏土礦物其可交換陽離子容量越大;高嶺石 礦物其構造內沒有同形異構取代現象,故其可交換陽離子容量 低;反觀蒙脫石礦物,其構造內有顯著的同形異構取代現象,故 其可交換陽離子容量大。
- 黏土礦物顆粒分散程度:顆粒邊角或非分裂顆粒表面可能也有離 子交換位置,破裂鍵可能是高嶺石的可交換陽離子容量主要來 源,但對蒙脫石的交換容量而言僅約佔20%(單信瑜,1997)。針 對同一種黏土礦物而言,破裂鍵位置的重要性隨其顆粒變小而增 大,即同種黏土礦物的陽離子交換容量隨其分散度(或比表面積) 的增加而增加。

- 3. 溶液的酸鹼條件:在黏土礦物和分散度相同的條件下,溶液越呈現鹼性,陽離子交換容量越大。由於黏土礦物其鋁氫氧八面體中的 Al-OH 鍵是兩性的,在酸性環境中,氫氧根易電離,結果使黏土礦物表面帶正電荷;在鹼性環境中,氫容易電離,進而使黏土礦物表面帶負電荷;此外,溶液中的氫氧根增加,可以靠氫鍵吸附在黏土礦物表面上,使表面負電荷增多,進而增加陽離子交換容量。
- (2)影響離子交換因素

膠體粒子表面的負電荷對陽離子的吸引可以用庫倫定律敘述,然 此種簡單敘述靜電吸引觀點的主要限制在於它無法說明在膠體表面 對同價陽離子的吸附優勢或其選擇性。陽離子的選擇優勢與其水合半 徑及水合能有關。離子半徑(或結晶半徑)較小的脫水離子其單位體 積之電荷密度較大,因此其吸引水分子能力較強。一個具有較大水合 半徑的離子,其與膠體表面結合的緊密度小於較小水合半徑之離子; 由於較小水合半徑的離子可以靠膠體表面近些,故其膠體表面的庫倫 吸引力較強,部分脫水的離子與膠體表面的結合程度更是緊密。

決定吸附或脫附某一離子的最重要因素是其價數,二價離子一般 吸持力大於單價離子,三價離子吸持力更強,而四價的針則不能以相 同當量濃度的氯化鉀來取代。在相同價數系列中,當脫水結晶離子半

徑增加時,此離子被取代的程度減少。

在特定膠體的表面,離子被取代難易有稱之為離液系列(lyotropic series)。相同濃度下,相對離子被取代程度可寫為下列次序:

$$Li^+ \doteq Na^+ > K^+ \doteq NH_4^+ > Rb^+ > Cs^+ \doteq Mg^{2+} > Dh_4^+ > Cs^+ = Mg^{2+} > Dh_4^+ > Dh_$$

 $Ca^{2+} > Sr^{2+} = Ba^{2+} > La^{3+} = Fe^{3+} > Th^{4+}$ (2.21)

相反次序則為離子與蒙脫石的膠體表面親和性或吸附強度。

歸納上述觀點可整理出影響陽離子交換的因素如下(洪昆煌, 1996):

- 離子價數:一般情況下,在溶液中離子濃度相差不大時,離子價 數越高,與黏土表面的吸附力越強,即交換到黏土表面的能力越 強;反之,若已經吸附到黏土表面上,則價數越高的離子越不易 從黏土表面上被置換下來。
- 離子半徑:當相同價數的不同離子在溶液中的濃度相近時,離子 半徑小的,其水化半徑大,離子中心離黏土表面遠,吸附力較弱;
 反之,離子半徑大的,水化半徑小,離子中心離黏土表面近,吸
 附力強。
- 離子濃度:離子濃度對吸附強弱影響符合質量作用定律,即離子 交換受每一相中不同離子的相對濃度制約。
 - (3) 離子交換遲滯性

離子交換的正向反應與逆向反應相等時,其離子交換等溫吸附線 (exchange isotherm)為同一條曲線,則該離子交換反應具有可逆性 (reversibility);反之,若兩者不相等時,則該離子交換反應具有遲 滯性 (hysteresis)。

以 Ca-Na 離子在蒙脫石交換體表面的離子交換反應為例:

$$2N_2^{+}(\bar{a}_{\mathbb{B}_{\mathbb{B}}}) + C_a X_2 \leftarrow \frac{K_{\mathbb{E}}}{K_{\underline{\varnothing}}} \rightarrow 2N_a X + C_a^{-2+}(\underline{a}_{\mathbb{B}_{\mathbb{B}}})$$
(2.22)

當kェ與k並的乘積為1時,反應完全可逆,否則具有遲滯性。

歸納多位學者的研究可將土壤中離子交換的各種離子區分為三 組,如表 2.1,相同組間離子交換不會產生遲滯現象,不同組間則可 能發生遲滯效應(Vanselow et al,1932; Tabikh et al,1960; Fripiat et al,1965; Van Bladel et al,1967; Gilbert et al,1970; Maes et al,1975; Singhal et al,1977, Wiegner et al,1935)。進一步歸納學者對離子交換 反應遲滯性的研究,發現遲滯行為可能發生的原因包括下列機制:

- 1. 交換體基質表面的電荷或交換位置異質性。
- 2. 可交換陽離子水化行為差異
- 3. 黏土礦物的去水合作用。
- 4. 晶格回脹遲滯性。
- 5. 交換體形成團粒或擬結晶致使交換位置無法取得。

然大部分文獻多將離子交換發生遲滯現象的主因歸因於第 4 項

及第5項,即由晶格回脹的遲滯性與擬結晶結構的形成。

晶格回脹的遲滯性方面,乾燥膨潤土試體與電解質溶液接觸後, 會產生回脹現象使其體積增加;回脹現象大致又可分為初期的晶格回 脹(intercrystalline swelling)與其後的滲透回脹(osmotic swelling)。晶格 回脹約呈階梯式,每次約以 2.5~3Å 逐步增加回賬;膨潤土在與不同 陽離子溶液接觸時,其晶格回脹的晶格間距均不相同,其離子種類與 晶格回脹高度整理如表 2.2。

此外,懸浮液中的黏土片(platelet)會形成團粒或擬結晶構造, 這些黏土片形成的黏土束(packet)或多或少具有平行排列,每一黏 土束包含黏土片的數目由被吸附離子特性、電解質濃度、黏土型態及 黏土濃度所控制,而這些因素亦是影響離子交換發生遲滯現象的因 素,其離子種類與黏土片數目整理如表 2.3。

組別	離子種類
1	$Li^+ \cdot Na^+$
2	$K^+ \circ NH_4^+ \circ Rb^+ \circ Cs^+$
3	$Mg^{2+} \cdot Ca^{2+} \cdot Sr^{2+} \cdot Ba^{2+} \cdot Mn^{2+} \cdot Cu^{2+} \cdot Ni^{2+}$

表 2.1 離子交換遲滯性之離子分類

表 2.2 常見離子種類的晶格回脹高度

組別	離子種類	晶格回脹高度(Å)

1	$Li^+ \cdot Na^+$	>20
2	$K^+ \cdot NH_4^+ \cdot Cs^+$	15
3	$Mg^{2+} \cdot Ca^{2+} \cdot Ba^{2+}$	19

表 2.3 常見離子種類的黏土片數目

組別	離子種類	黏土片數目/擬結晶結構
1	Li ⁺	1
1	Na ⁺	1.0~1.7
2	$K^+ \cdot NH_4^+ \cdot Rb^+ \cdot Cs^+$	1.4~3.0
3	$Mg^{2+} \sim Ba^{2+}$	2.7~7.0
3	Ca ²⁺	2.7~20

2.5.4 離子交換程序應用於緩衝材料之改質

離子交換方法在農業工程或大地工程中常被用作為土壤或地盤 改良之重要手段。簡而言之,離子交換是兩種離子在交換體上吸附與 脫附的競爭行為。本研究重點主要是希望藉由離子交換方式將日興土 從鈣型膨潤土改質成鈉型膨潤土,以提升其回脹特性。由於 Ca²⁺對黏 土表面有較強之吸附能力,因此必須透過變更離子交換反應方向方能 達成上述改質目的。Bohn 提到在實驗室中有三種方法可以用來改變 離子交換反應方向:(Bohn et al, 1985)。

(1) 利用形成不溶之沉澱物,即

CaX+Na2CO3←→Na2X+CaCO3(沉澱)(2.23)其中X為交換體之交換位置。

(2)利用高濃度之離子以淋洗或反覆洗滌多次,其反應式如下:

$$2Na^{+}_{(\bar{a};\bar{g};\bar{g})} + CaX_{2} \leftrightarrow 2NaX + Ca^{2+}_{(\bar{a};\bar{g};\bar{g})}$$

$$(2.24)$$

(3) 形成揮發性氣體,即

 $NH_4X+NaOH \leftrightarrow NaX+NH_4OH \leftrightarrow NaX+H_2O+NH_{3(\hat{n}_{2})}$ (2.25)

由於第3種改質方式程序繁複不易達成,故本研究採用第1與第 2種方法進行相關試驗。

在過去的研究中,歸鳳鐵等人以 NaCl 對鈣型膨潤土進行鈉化改 質處理,研究結果顯示, NaCl 確實可有效鈉化改質鈣型膨潤土,且 將原礦於水中分散越充分,顆粒越細反應點越多,則鈉化效果越好; 此外,其研究亦發現,常溫下改質置換反應約需 24 小時才達完全交 換,但高溫則有助於提昇離子交換速率(歸鳳鐵, 1999)。

Yildiz 利用 Na₂CO₃ 對膨潤土進行改質,並透過 XRD、DTA 與 TG 分析、比表面積測定等分析確認利用 Na₂CO₃ 對膨潤土進行改質 確可使其相關物理及物化特性產生改變,這些變化大致與其可交換陽 離子、黏土型態及添加改質劑濃度有關。試驗結果顯示 Na₂CO₃ 改質 後會增加膨潤土活性,提昇其回脹潛能及塑性 (Yildiz, 2002)。

Tessier 等人為使黏土在工業應用過程中發揮其最佳效能,遂添加 Na₂CO₃對黏土進行活化改質。其研究結果發現 Na₂CO₃ 改質可明顯改 善黏土之流變性質,諸如黏性與膨脹特性。改質前與改質後之液性限 度分別為 112%與 173%、膨脹量分別為 47%與 70%。其更進一步歸 納利用 Na₂CO₃ 改質黏土所產生的效應與現象如下:

- Na₂CO₃可使原試體中之 Ca⁺²、Mg⁺²等二價可交換離子被 Na⁺取 代。
- 2. 改質後溶液之 pH 值提昇,使得被取代後的溶液成為鹼性溶液。
- 以Na₂CO₃及(或)NaOH為溶劑之鹼性溶液可用來選擇性萃取或分 解無晶型之黏土組成。

第三章 試驗材料方法

3.1 試驗材料

3.1.1 日興土

日興土是由日興礦業公司所生產,產地位於台東縣長濱鄉樟原 村都巒山層中。日興土由第三紀火山灰、凝灰岩或安山集塊岩等,在 地下受水熱作用產生之變質礦物群而形成,目前正在開採礦區初步估 計礦藏量約有 320 萬噸(莊文淵,1998)。

3.1.2 美國土

本研究使用的參考緩衝材料為美國土,由 Black Hills 公司所開採 生產(磊盈公司進口),亦簡稱 BH 膨潤土。

3.1.3 石英砂

本研究使用的石英砂添加料為三義礦業公司開採之三義砂,經量 測其比重為 2.64。

3.1.4 花崗岩碎石

本研究中力學強度試驗之掺料採金門花崗岩, 磨碎後使用。

3.2 材料性質分析

3.2.1 土壤力學基本性質試驗

日興土及美國土分別進行自然含水量、比重試驗、土壤粒徑分析試驗、阿太堡限度試驗等基本物理性質試驗,試驗方法介紹如下。

(1) 自然含水量

自然含水量試驗的過程參照 ASTM D2216 進行。

(2) 比重試驗

土粒比重試驗過程參照 ASTM D854 進行,求得土壤顆粒之比重。

(3) 粒徑分析試驗

粒徑分析試驗程序參照 ASTM D452 (篩分析試驗)和 ASTM D422 (比重計分析試驗)進行。

(4) 阿太堡限度試驗

阿太堡限度試驗程序參照 ASTM D4318 進行量測液性限度(LL) 與塑性限度(PL)。塑性指數(PI)為液性限度與塑性限度之差值。 (5) 活性

依據 Skempton 對黏土活性(A_c)的定義如式 4.1 所示,活性可 由阿太堡限度試驗及粒徑分析試驗結果推算求得。

$$A_c = \frac{PI}{\langle 2\mu m(\%) \rangle} \tag{4.1}$$

3.2.2 礦物性質分析方法

(1) 化學成分分析

日興土與美國土的化學成分利用 X 射線螢光分析儀(X-ray fluorescence spectrometer: XRF)進行分析。

量測程序上,先將待測膨潤土粉末置於白金坩鍋內利用硼酸鋰為 助熔劑,經高溫熔融後冷卻,製成玻璃質固體薄片,再利用 XRF 進 行定量分析其化學成分。

(2) 可交換陽離子量測

量測時取約1g的待測膨潤土粉末置於離心管中,加入33mL的 1mol/L 醋酸銨加塞震盪5分鐘後,去塞。以1000 rpm 轉速離心5分 鐘,迅速倒出上澄液蒐集。再加入33 mL 醋酸銨震盪、離心、蒐集上 澄液,反覆進行三次,總計取得約99 mL 液體後,加蒸餾水到100 mL 後以濾紙過濾,利用感應耦合電漿原子發射光譜分析儀 (ICP)進行 Na⁺、K⁺、Ca²⁺、Mg²⁺陽離子濃度,以mEq/100g 土壤表示。四者陽離 子濃度之和為總可交換陽離子容量。

(3) X 光繞射分析

經過烘乾、磨細至通過 200 號篩的待測膨潤土粉末, 壓製成非定 向薄片,使用 X-Ray 粉末繞射儀 (X-Ray Powder Difractometer)進行 礦物相鑑定。本研究使用的 X-Ray 粉末繞射儀為 Seimens 公司出產 FTS-40 型 XRD 繞射儀。操作條件為以銅靶為輻射源 ($K_{\alpha 1}$ 波長 1.5418Å), 掃描速度為 0.05°/sec, 掃描範圍(20)為 3°~70°。所得 X-ray

繞射圖譜,利用 JCPDS 資料卡比對鑑定礦物相。

(4) 熱重分析

利用熱重分析(TGA)儀量測黏土粉末受熱作用的重量損失反應,取樣品置於氧化鋁坩鍋內,在空氣氣氛中以 10℃/min 的升温速 率升至 1000℃。本研究所使用 TGA 試驗儀採用日本 Seiko SSC 5000 型,其靈敏度為 0.1mg。

3.3 力學強度試驗

3.3.1 三軸試驗

本研究採用不飽和不壓密不排水三軸試驗方法求取緩衝材料試 體的力學強度參數,試驗步驟參照國際岩石力學學會(ISRM,1981) 建議方法進行,由三軸壓縮試驗可得緩衝材料力學性質的兩個參數: 凝聚力(c)與摩擦角(ψ)。在三軸試體製作上,將膨潤土與碎石分 別量取所需的重量且將材料均勻混合,利用分五層靜壓的方式,壓製 內徑7公分、高14公分的圓柱試體進行三軸試驗。

三軸試驗採用應變控制方法求取力學強度參數,當試體安置於三 軸室施加固定圍壓後,以0.7mm/min之應變速率施加軸向荷重,直到 尖峰值出現或應變量達 15%時完成。在緩衝材料破壞強度的認定上 係採應力達尖峰值(即試體破壞型態為脆性破壞),如無尖峰值(即 試體在高圍壓下產生應變硬化之情形)則採用 5%軸向應變所對應之 應力值為破壞強度。

3.3.2 分析方法

對於許多核能先進國家而言,緩衝材料力學性質之相關研究已進 行多年,雖已累積相當多的數據,然目前仍侷限於定性分析而未能進 一步發展出合理之定量分析以及使用理論來預測緩衝材料之力學強 度。其原因為試驗規劃時,配比的決定是以基質材料與顆粒加強材料 之重量比來規劃,導致試驗的變因過多而無法釐清影響緩衝材料強度 性質之變因為何。

有鑑於此,本研究放棄傳統的重量比觀念,而改採用微觀力學理 論,將緩衝材料的基質材料(膨潤土)與顆粒加強材料(花崗岩碎石) 以體積比的觀念加以混合,因此基質材料的性質(乾密度)就能有效 控制。本研究分別探討圍壓(σ₃)高低、膨潤土乾密度(γ_{dc})大小以及 膨潤土對整體材料之體積比(V_B)的變化對緩衝材料力學強度之影響。

3.4 熱傳導試驗

3.4.1 美國材料測試協會對暫態熱傳導係數量測規範

美國材料測試協會(ASTM)對應用暫態熱探針法量測土壤及軟 岩熱傳導係數之最新版規範 D5334-00,對內容摘要如下:

利用暫態量测土壤及軟岩熱傳導係數,可應用於非擾動與重模土

壞或現場取樣或實驗室之軟岩試體,此方法只適用於等向性材料。試 體溫度範圍由 20 至 100℃,可利用一限制範圍於保溫室之溫度保持 其含水量。要得到滿意的結果必須配合良好的試體尺寸與量測設備, 遵守所建議之試驗方法。

3.4.2 試驗概述

本試驗方法為利用一長徑比極大之熱探棒來模擬在一無限大之 試體中,線狀熱源的溫度改變情形,藉以量測該試體之熱傳導係數。 該熱探棒由加熱元件及溫度量測元件所組成。在置入試體後給與穩定 之已知電流及電壓,並紀錄溫度隨時間上升之關係。利用溫度和對數 時間關係圖中之準穩態直線段的分析可以求得試體之熱傳導係數。

3.4.3 試驗儀器

本研究之熱傳導試驗儀器包含下列部份:

- (1)熱探棒:必需能提供一線狀熱源,同時能利用溫度量測元件(熱 電耦或是熱敏電阻等)在加熱的過程同時量測其本身之溫度。 為了使暫態量測試驗合於ASTM規範之要求,本研究使用之熱 探棒,其規格如下:
 - 1.熱源:電阻式電熱絲,電阻為 67.0Ω,在 11.83V 的額定輸
 入電壓下可以穩定的提供 2.08W 之功率。

2.溫度量測:採用由銅-康銅(constantan,為一種銅 55%-鎳 45% 之合金)組成之T型熱電耦,其量測範圍為-185℃~400℃, 感度為 44µV/℃。配合 Agilent 34970A 資料擷取糸統,可 以精密量測至 0.1℃熱探針。長度為 14.5 公分,直徑為 0.5 公分。製作方式為將電熱絲及熱電耦,配置於不鏽鋼管中, 並在孔隙中充填氧化鎂(MgO)後,以 30000psi 之均向壓 力壓製而成。附屬套件中保護套管為保護電熱絲及熱電耦, 防止在試體壓置過程中,造成斷線現象。熱電耦接頭,為方 便連接熱電耦與資料擷取器之訊號。

(2)電阻溫度計(resistance temperature detectors, RTD):電阻溫度 計主要由鎳、銅或是白金製。其工作原理為物質受熱產生會產 生電阻之變化,率定在不同的溫度時該物質之電阻值即可由量 測電阻值而求得溫度。由於其電阻值之改變量相當小,故量測 時大多利用惠斯頓電橋(Wheastone-bridge)。其原理將電阻值 改變量轉為電壓之改變量;亦可以由電源供應器提供一恆定之 電流,量測其兩端點之電壓改變來計算所對應之溫度。電阻溫 度計之缺點為電阻值與溫度不成線性關係(需做溫度補償工 作),反應時間長,電流通過時會產生熱量而造成量測之精度 下降,以及較為脆弱,易受外加之熱應變所影響。

(3) 溫度計讀系統:可感應至 0.1K 之熱數位轉換輸出系統。

- (4)熱敏電阻(Thermistor):熱敏電阻成份為金屬氧化物所形成之 半導體,由於溫度的改變而造成晶體缺陷(defect)之改變, 進而改變其游離電子之濃度。在這種情形下其電阻值的改變量 相較於電阻溫度計而言相當大,故可以提供更高的精度。其和 電阻溫度計最大不同之處在於溫度上升時熱敏電阻之電阻值 會下降。熱敏電阻可利用惠斯頓電橋原理將電阻值改變量轉為 電壓之改變量;亦可以由電源供應器提供一恆定之電流,量測 其兩端點之電壓改變來計算所對應之溫度。但由於熱敏電阻本 身之電阻值較高,故必須以較小的輸入電流防止自發熱的情形 發生。
- (5)熱電耦(Thermal couple):熱電耦之原理為所有可導電的金屬 材質皆會因金屬內部當存在不同的溫度梯度而產生相對不同 的熱電動勢,此稱為塞貝克效應(Seebeck effect)。而當兩種 金屬形成一接點時會因為熱電動勢的不同而產生一電位差,此 電位差會因為溫度的上升而增大,故可以應用於溫度量測。由 於可以使用各種不同之金屬來組合而成熱電耦,故其應用之溫 度範圍最大。以熱電耦進行溫度量測時最重要的是必須在同一 迴路中建立參考冷接點(cold junction),用來消除和資料擷取

系統接點所產生的二次熱電動勢。最常使用的方式為冰浴法。
(6)資料擷取系統:本研究中所使用之資料擷取系統為安捷倫科技公司(Agilent Technologies)生產之 HP34970A 資料擷取系統, 其內建 DMM 可直接量測 11 種物理量,不需要用到外部信號 調整器。搭配 HP34901A20 頻道通用型多工模組,可直接進行 多組訊號之同時記錄,紀錄的測時間距可達 0.001 秒,符合 ASTM-D5334-00 要求。

本研究參考 ASTM D5334-00 量測時間為 20 分至 30 分。在本研 究中使用暫態熱探針法以量測待測試體,求得其熱傳導係數,量測過 程中,資料擷取系統主要記錄兩個物理量,即時間與溫度。處理數據 時將其繪製成溫度與對數時間圖,如圖 3.1 所示,取其穩定段如圖之 直線段,帶入式 (3.1),即可求得其熱傳導係數。

圖 3.1 溫度對對數時間關係圖

3.5 回脹試驗

3.5.1 回脹試驗方法選擇

就黏土材料的自由回脹試驗而言,國際岩石力學學會(ISRM)與美國材料試驗學會(ASTM)都有提出類似的試驗方法,兩者對回脹試驗程序相近。

比較 ISRM 及 ASTM 之試驗方法發現, ISRM 之建議試驗方法是 針對回脹性岩石所設計,而 ASTM 建議方法則是針對擾動或重模之 黏性土壤試體而設計。對於試驗程序、壓實樣品檢驗及溫度控制等項 目, ISRM 有較詳細規定,故本研究以 ISRM 之建議試驗方法為主要 參考對象。

3.5.2 單向度回脹試驗

本研究所使用之回脹試驗儀如圖 3.2 所示,而本研究僅將原試驗 儀之模具尺寸略作修正,以便能套用於不同高度之試體。該回脹試驗 儀設計係參考 ISRM 相關建議。ISRM 建議之回脹試驗方法僅要求其 在室溫下進行,因而其每一組試驗儀器均具一組盛水容器。本研究為 摒除室溫變動造成試驗之誤差而將原有之試驗概念改為由水溫控 制,亦即將試驗儀改為直接浸泡至恆溫水槽中,直至淹沒試體頂面。

試驗之步驟首先將含有試體之試驗環置於回脹應變試驗架上,並 予以組合,接著於試體上方放置透水石及壓克力墊塊,使墊塊高度高 出試體環,再架上位移計並讀取初始讀數,其後將回脹應變試驗儀直 接沒入恆溫水槽中,使水位面高於試體環高度,同時記錄時間及讀取 位移計之讀數。

就本研究而言,回脹試驗當位移計不再有任何變化,試驗方中止 進行。回脹試驗量取之位移讀數將換算成應變量,求取回脹應變與時 間之關係,應變量之計算方法如式(3.2)所示:

$$\varepsilon = \frac{\Delta H}{H_0} \times 100\% \tag{3.2}$$

其中 ΔH =試體高度變化量(mm); H_0 =試體初始高度(mm); ε =回 脹應變量。回脹平衡時之應變量即為最大回脹應變量(maximum swelling strain)。

圖 3.2 回脹應變試驗儀器示意圖

- 3.6 改質方法
- 3.6.1 物理改質方法

膨潤土的工程性質是由其所含黏土礦物種類與結構所決定。日興 土中所包含的成分相當複雜,為了提高經濟效益同時擴大其在工業方 面的應用,須在不破壞礦物本身特性與其基本結構的狀態下設計一製 程,以便得到較高純度的蒙脫石,提升原料品質。本研究所用之日興 土主要來源為台東樟原天然膨潤土,若欲從中到較高品質且具活性的 膨潤上原材,除去石英砂、高嶺土及其他雜質將成為一重要步驟。

(1) 乾篩法

目前工業應用上較為常見的純化方法可大致分為風選法、沉降

法、電泳法以及磷酸鹽溶液提純法(王澤民等,1999、牛炳昆,1999)。 本研究考慮到將來處置場開挖後所需緩衝材料數量龐大,以及處理程 序所花費的時間與經濟效益問題,乃以相同處理概念,嘗試利用實驗 室中較為簡易之篩分析方法分離日興土中粗顆粒部分,藉以提高其黏 土含量,以期提昇緩衝材之回脹性質。試驗所採用之分離粒徑為 0.075mm (200號篩),篩分方法包括乾篩與濕篩兩種。乾篩法是將日 興土直接倒置於200號篩之上,以手動方式搖動篩組致使細顆粒黏土 過篩,篩下部份予以收集並密封貯存,以備回賬試驗之用。

(2) 濕篩法

濕篩法同樣採用分離粒徑為 0.075mm (200 號篩)之篩組,將日興 土倒置於 200 號篩之上,並不斷以純水沖淋篩上物致使細顆粒黏土過 篩,篩下部份予以收集,所得之篩下物先以 105 烘乾 24 小時並密 封貯存,以備回賬試驗之用。

3.6.2 酸改質方法

酸活化膨潤土已普遍被用於吸附劑或觸媒劑等工業用途,因此酸活化處理對於提升緩衝材料的吸附核種能力有實質助益。本此原則, 本研究將黏土粉末浸泡於酸性溶液用以改變黏土表面性質,並檢驗其 回賬行為的表現。首先調配不同濃度(1%、3%、5%)之HCI溶液,

日興土以固液比1:5比例,浸泡12小時後,再以傾析法將上澄液濾除,利用除礦水反覆洗滌餘存之黏土液10次,以便將殘留之氯離子 濾除,最後將黏土液以105℃烘乾24小時備用。

3.6.3 Na₂CO₃ 改質

活化改質概念同於 NaCl 改質法,於實驗室裡以三種不同方式對 日興土添加 Na₂CO₃進行改質,分別為乾式球磨混合、乾式攪拌混合 及濕式浸泡。

(1) 乾式球磨攪拌法

首先準備不同秤取重量比(1.5%、3%、4.5%)的 Na₂CO₃粉末, 與日興土共 1000 公克倒入內裝 100 顆磨球的球磨桶中,以固定轉速 (70rpm),球磨1小時後,收集研磨後粉末貯存備用。

(2) 乾式混合攪拌法

首先準備不同秤取重量比(0.25%、0.5%、1.0%、1.5%、3.0%、 4.5%)的 Na₂CO₃粉末,經計算後將適當比例之日興土與 Na₂CO₃一 起置入空球磨桶中,以固定轉速(70rpm),均勻混合 1 小時後收集貯 存備用。本法所得之粉末僅有均勻拌合之效果,不會因磨球研磨而使 原日興土物性產生改變。

(3) 濕式浸泡法

首先調配不同濃度(1.5%、3%、4.5%)之 Na₂CO₃溶液,日興 土以固液比1:5比例,浸泡12小時後,再以傾析法將上澄液濾除, 最後將樣品以105℃烘乾24小時以備回賬試驗之用。

第四章 各國緩衝材料性質分析比較

4.1 基本物理性質分析

本節針對日興土與美國土兩種主要研究材料進行基本物理性質分析,測試項目包括比重分析、粒徑分析與阿太堡限度分析,以便掌握試驗材料的基本性質。

為能使本研究結果與其他先進國家相關研究結果比較,因此本研究中將各國選用緩衝材料基本物理性質並列,包括日本產自於 Tsukinuno 的 Kunigel V1 膨潤土;加拿大 Avonlea Mineral Industries 生產位於加拿大 Saskatchewan 區域的 Avonseal 膨潤土;瑞典計劃採 用美國 American Colloids 生產的 MX-80 膨潤土;比利時與法國採用 位於 Paris Basin 的 FoCa 膨潤土 (陳文泉, 2004)。

4.1.1 比重分析

各國膨潤土的比重分析結果如表 4.1,結果顯示日興土與美國土的比重分別為 2.67 與 2.69,與其他國家的膨潤土大致相同。

4.1.2 粒徑分析

日興土與美國土經篩分析與沉降分析結果,其粒徑分布結果如圖 4.1。由該圖可推估各國緩衝材料中砂質含量(>74μm)、坋土質含 量(74μm~2μm)、與黏土質含量(<2μm)的比例,結果彙整如 表 4.1。由該表可以看出日興土原礦的黏土質含量僅 26%,遠低於美 國土的 65%,而日興土的砂質含量(非回脹性部分)含量高達 28%, 較美國土的 2%高出許多。

4.1.3 阿太堡限度試驗

日興土與美國土的阿太堡限度量測如表 4.1。結果顯示日興土的 液性限度與塑性限度與法國的 FoCa 膨潤土相近,相較於其他不同的 鈉型膨潤土則明顯偏低。

從上述的土壤力學基本特性中可以發現,日興土的性質與法國的 FoCa 膨潤土較為相近,與其他四種膨潤土的性質相差甚遠。其主要 原因應是可交換陽離子不同所引起,日興土與 FoCa 同為鈣型膨潤 土,而其他四者為鈉型膨潤土。

	日興土	美國土	Kunigel V1	Avonseal	MX-80	FoCa
性質		(美國)	(日本)	(加拿大)	(瑞典)	(法國)
比重	2.67	2.69	2.7	2.75	2.7	2.67
砂質含量(>74μm)	28	2	3		5	
坋土質含量(74μm~2μm)	46	33	47		79	
黏土質含量(<2µm)	26	65	50	82	16	
塑性限度	18	54	21	49	70	35
液性限度	67	434	416	257	400	90
塑性指數	49	380	395	208	330	55
活度	1.88	5.85	7.9	2.54	4.02	

表 4.1 各國緩衝材料基本物理性質分析

圖 4.1 各國緩衝材料粒徑分布圖

4.2 材料性質分析

4.2.1 化學組成分析

日興土與美國土利用 X-ray 螢光繞射分析(XRF)量測,其試驗 分析結果示於表 4.2 (陳文泉, 2004)。

從該表中可以發現日興土的化學成分相較於其他國家的膨潤 土,具有下列三項特徵:第一是含鐵量(Fe₂O₃)較其他國家高,鐵 化合物可能披覆在黏土礦物表面、或在黏土中形成獨立礦物相(如黃 鐵礦)、成為可交換陽離子與原本存在的 Ca²⁺、Mg²⁺、Na⁺、K⁺等離 子進行離子交換、抑或是嵌入 TOT 夾層,使蒙脫石結構轉變為混層 抑或是產生緣泥石化(chloritization)。二是 CaO 的成分較其他黏土材 料為高,而 Na₂O 的含量則偏低。三是硫含量遠高於美國土,其他國 家未測硫含量,因此無法比較。綜合言之,國內日興土的化學成分與 法國的 FoCa 黏土成分較為類似。

4.2.2 可交換陽離子容量分析

表 4.3 所示為日興土、美國土以及各國緩衝材料的可交換陽離子 容量比較。該表顯示日興土的可交換陽離子以 Ca²⁺離子為主,與法國 FoCa 黏土相似,可推斷日興土應為鈣型膨潤土為主。美國土的可交 換陽離子以 Na⁺離子為主,與同為美國懷俄明州所產的 MX-80 膨潤 土相近,為鈉型膨潤土。

4.2.3 X 光繞射分析

日興土與美國土經繞射分析結果如圖 4.2,由該圖結果可以發現 日興土含有蒙脫石、高嶺石、伊利石、石英、方解石、石膏等礦物相。 而美國土則以蒙脫石及石英兩種礦物相最明顯。日興土中可鑑別出黃 鐵礦的繞射峰,此與化學分析中日興土的 Fe、S 含量偏高結果一致。 而日興土的石英主要波峰(2*θ*=26.67°)的相對強度遠高於美國土, 顯示日興土的非回脹性礦物含量較高於美國土。
4.2.4 熱重分析

日興土與美國土原礦的 TGA 曲線如圖 4.3 所示,其中美國土的 曲線有兩段顯著的重量損失過程。第一段為室溫至 140℃的加熱過程 產生質量變化且急速的減重,此一階段應為美國土表面的附著水與吸 附水去除所致,此反應亦稱為去水化反應(dehydration)。第二段重量 損失過程發生於 600~700℃之間,為美國土的結構水(氫氧基)受熱 移除所引起,此一反應稱為去氫氧基反應(dehydroxylation)。

日興土原礦的 TGA 曲線呈現三段重量損失過程,第一段為去水 化反應,亦發生於室溫至 140℃。第二段去氫氧基反應則發生於 450~550℃之間。由於去氫氧基溫度為黏土維持其結構完整性的臨界 溫度,因此也可以視為黏土的熱穩定性溫度。據此可知,美國土的熱 穩定性優於日興土。日興土的第三段失重過程發生於 750~850℃之 間,研判應為日興土中所含 CaCO3 雜質發生分解所引起。

56

	日興土	美國土	Kunigel V1	Avonseal	MX-80	FoCa
成分		(美國)	(日本)	(加拿大)	(瑞典)	(法國)
SiO ₂	55.43	64.55	69	61.4	56~64	56.67
Al_2O_3	20.11	17.53	13	18.1	18~21	27.63
Fe_2O_3	5.54	3.85	2.0	3.2	2.5~2.8	10.26
CaO	2.55	1.42		0.6	0.1~1.0	3.37
MgO	1.71	1.31	2.0	2.3	2.5~3.2	0.9
Na ₂ O	0.72	2.24	2.6	2.2	1.5~2.7	0.2
K ₂ O	1.35	0.40		0.4	0.2~0.4	0.18
SO ₃	2.5	0.3				

表 4.2 緩衝材料化學組成分析

	日興土	美國土	Kunigel V1	Avonseal	MX-80	FoCa
		(美國)	(日本)	(加拿大)	(瑞典)	(法國)
CEC (meq/100g)	70	82.2	52	82	79	64
K^+ (meq/100g)	1.4	4.8	1.3	0.7	2.3	1
Na^+ (meq/100g)	23.1	56.7	54.6	46.5	56.0	4
Ca ²⁺ (meq/100g)	38.7	19.6	41.9	39.5	30.1	64
$Mg^{2+}(meq/100g)$	6.8	1.1	6.6	7.0	15.6	8
Na^+/Ca^{2+} EL	0.60	2.89	1.3	1.18	1.86	0.05

表 4.3 各國緩衝材料的可交換陽離子含量

上圖:日興土;下圖:美國土

圖 4.2 日興土與美國土的 X-ray 繞射

圖 4.3 日興土與美國土原礦的 TGA 曲線

第五章 力學強度試驗結果分析

本章討論緩衝材料的力學強度行為,並分析其他國家候選緩衝材 料的力學強度的差異。

5.1 砂質材料添加量對強度的效應

圖 5.1 為美國土添加 13.8%花崗岩細粒試體在不同圍壓 σ₃下的典型的應力-應變關係圖,在各種不同配比情形下的應力-應變關係圖 亦呈現類似的結果。

圖 5.1 美國土試體應力應變關係圖

在相同膨潤土乾密度及碎石含量體積比下,試體強度會隨著圍壓 的增加而上升。當碎石含量體積比較低時,試體強度隨著圍壓增加呈 現微幅上升的趨勢;當碎石含量體積比較高時,試體強度隨著圍壓的 增加而上升的趨勢則較明顯。這是因為顆粒加強材料含量較低時,對 整體材料性質的改善不大;當顆粒加強材料含量持續增加後,對整體 材料性質的影響才趨於明顯。

在相同圍壓狀態下,隨著碎石含量體積比的增加,試體的強度會 有增加的趨勢。當圍壓較低(σ₃ =0)時,試體強度的增加相當不明 顯;而在圍壓加大後此趨勢才逐漸明朗。這是由於顆粒加強型材料在 無圍束壓力狀態下受剪動時,試體外圍部份承受張力而出現崩落狀 況,導致顆粒材料無法發揮改善強度之功能。

在相同膨潤土乾密度下,隨著碎石含量體積比的增加,試體之應 力-應變關係出現應變硬化現象所需要的圍壓值會上升。其原因為花 崗岩碎石(顆粒材料)與膨潤土(基質材料)之強度差異頗大。在碎 石含量體積比愈低的情況下,整體材料就愈接近膨潤土之材料性質; 當碎石含量體積比愈高,則整體材料就愈接近花崗岩之材料性質,也 因此出現應變硬化現象所需要的圍壓值會較大。

圖 5.2 為碎石體積比與力學強度參數的關係圖 (γ_{dc} = 16.68 kN/m³ 美國土試體)。從圖 5.2(a)中可得知試體的凝聚力會隨著碎石體積比的 增加而降低,這是由於隨著碎石體積比的增加提供凝聚力的膨潤土之 體積比降低的緣故。但由於膨潤土的用量仍在 60% 以上,因此凝聚 力的降低幅度有限,在碎石用量 0~40% 的範圍內,凝聚力僅由 2.63MPa 降至 2.20MPa,可知緩衝材料合理的碎石使用量範圍內,對 整體材料凝聚力的影響有限。

另由圖 5.2(b)中可見,緩衝材料試體之摩擦角隨碎石體積比之增 加而增大,且增大幅度相當明顯,由碎石用量 0% 時的13°,至碎石用 量 40% 時提升至 24°可見碎石用量的增加對於緩衝材料的摩擦角具有 顯著提升的效果。

由莫耳一庫倫破壞準則(τ=c+σtanφ)可知,材料之剪力強度由 凝聚力及摩擦力組成,緩衝材料中碎石用量的增加對於凝聚力的降低 效應有限,但對摩擦力的增加則具顯著效果,因此就抗剪強度及承載 能力角度而言,於緩衝材料中添加碎石確有強化力學強度的效果。

62

(a)Granite volume fraction, $V_G(\%)$ (b)Granite volume fraction, $V_G(\%)$ 圖 5.2 $\gamma_{dc} = 16.68 \text{ kN/m}^3$ 美國土試體之力學強度參數

(a)c 值與碎石體積比之關係、(b)φ 值與碎石體積比之關係

5.2 設計乾密度對強度的效應

圖 5.3 與圖 5.4 分別為美國土試體及日興土試體在固定圍壓 (4MPa)而不同膨潤土乾密度下所求得的應力 - 應變曲線關係,其他圍 壓下亦呈現類似的應力應變曲線關係。由該二圖可發現試體強度會隨 著膨潤土乾密度的上升而增加。

圖 5.3 美國土試體之應力應變關係圖 ($V_G=0\%$ 、 $\sigma_3 = 4MPa$)

圖 5.4 日興土試體之應力應變關係圖 $(V_G=0\%, \sigma_3 = 4MPa)$

圖 5.5 與圖 5.6 為不同膨潤土乾密度以及不同膨潤土體積比下之 強度參數關係圖。從圖中可以得知膨潤土乾密度對試體強度的影響較 大;這是由於在顆粒加強材料體積比較低之狀態下,整體材料之性質 與基質之材料性質較相近;故改善基質材料之力學性質能有效提升整 體材料之強度;換句話說,如果想要增加緩衝材料的強度,選擇增加 膨潤土(基質)的乾密度會比選擇增加花崗岩碎石(顆粒材料)體積 百分比還來的有效。

圖 5.5 不同膨潤土乾密度下之強度參數關係圖

圖 5.6 不同膨潤土體積比下之強度參數關係圖

增加膨潤土的乾密度,可以有效地增加緩衝材料的力學強度;但 緩衝材料出現應變硬化現象所需的圍壓值也同時增加。提升顆粒加強 複合材料的強度(包括提高膨潤土乾密度及增加顆粒材料含量)時, 其應力-應變關係會愈趨近於脆性破壞。這樣的現象對緩衝材料而言 是相當不利的,因為應力-應變曲線與應變軸之間的面積大小,代表 單位體積材料在破壞前所能吸收的能量;緩衝材料具有應變硬化之性 質時,其所能吸收的能量可達到脆性破壞狀態時所吸收能量的數倍之 多。表 5.1 與表 5.2 分別為試驗所得美國土與日興土應力-應變關係 曲線,以雙曲線模式求取彈性模數 *E_i* 及極限軸差應力(σ₁-σ₃) ut 之結果。

			Ei (MPa)				$(\sigma_1 - \sigma_3)_{i}$	ult (MPa)	I
V _G	γdc		σ_3 (MPa)			σ ₃ (MPa)	
(%)	(kN/m^3)	0	1	4	7	0	1	4	7
0	14.72	323	356	373	-	6.3	6.5	7.4	-
0	15.7	388	443	480	-	9.5	9.6	10	-
0	16.68	599	629	649	657	12.5	14.5	15.5	15.6
0	17.66	874	971	1051	_	16	17	18	_
0	18.64	1087	1251	1363	_	20.9	21.5	23.6	_
6.6	16.68	686	722	741	753	12	14	14.4	15.7
13.8	16.68	805	844	870	882	10.5	16	14	16.7
21.5	16.68	964	1014	1046	1061	10	15.5	15	17.5
29.9	16.68	1192	1253	1297	1313	10.5	13	19	17.6
39	16.68	1559	1642	1691	1714	10	13	20	19

表 5.1 美國土試體之 E_i 值及 (σ_1 - σ_3) ut 值

V _G (%)	γ_{dc} (kN/m ³)	σ_3 (MPa)	Ei (MPa)	$(\sigma_1 - \sigma_3)_{ult}$ (MPa)
0	18.6	0	537	6.9
0	18.6	1	615	7.9
0	16.7	4	394	5.1
0	17.7	4	503	6.8
0	18.6	4	668	8.5
0	19.6	4	944	10.2
0	20.6	4	1514	11.9
7.4	18.6	4	786	9
15.2	18.6	4	940	10.2
23.4	18.6	4	1144	12.1
32.3	18.6	4	1439	14.9

表 5.2 日興土試體之 Ei 值及(σ1-σ3)ult 值

5.3 碎石含量與Ei值關係

放射性廢料處置場之緩衝材料即以黏土為基質,混合碎石顆粒而 成,因此具備顆粒加強材料之特性。顆粒加強材料是於基質材料 (matrix)中嵌入一種(或數種)顆粒材料(particulate)所構成。顆 粒加強材料之整體物理性質與方向並無相關,故在巨觀上可視為等向 性材料。其物理性質的影響因素包括有各成份材料的物理性質、材料 之體積比、空間分佈方式、顆粒材料之幾何形狀及界面特性等。

根據顆粒加強複合型材料的理論可得知在基質材料性質固定之

狀態下,整體材料之*E*;值與顆粒加強材料含量體積比(顆粒加強材料的體積比定義為顆粒材料所佔體積/整體材料體積)有關;而整體材料之*E*;值可以微觀力學中之微分模式來計算。本研究選擇顆粒加強材料*E*;對基質材料*E*;之比值分別為1000/1、200/1、100/1、50/1、10/1、50/1、10/1 來計算顆粒加強材料之含量體積比對整體材料*E*;之影響值*E**

 $(定義 E^* = rac{整體材料之E_i}{基質材料之E_i}), 另外,整體材料之波松比(Poisson's ratio)$ 定為 0.25,計算結果如圖 5.7 所示。由圖中可得知,當顆粒加強材料 $<math>E_i 值為基質材料E_i 值的 50、100 及 200 倍且顆粒加強材料含量低於$ $50%時,顆粒加強材料對整體材料<math>E_i 值影響的程度可視為相同。而$ $本研究所採用的試體中,顆粒加強材料<math>E_i 值約為基質材料E_i 值的 50$ ~200 倍;故本研究便以顆粒加強材料 $E_i 值為基質材料E_i 值之 100$ 倍為相關性質之討論依據。

圖 5.7 顆粒加強材料含量體積比對整體材料 E_i 之影響值

本文以Y_{dc} = 16.68 (kN/m³)的純膨潤土試體之實驗數據代入微 分模式中基質材料之E_i值為例,以計算顆粒加強複合型材料在不同 顆粒加強材料含量體積比下之E_i預測值並與實驗值作對照,其結果 如圖 5.8 所示。由圖中可得知,以微觀力學中之微分模式來預測整體 材料之E_i值與顆粒加強材料體積比之關係可以獲得相當不錯之結 果。因此,本研究將以微分模式來預測不同碎石體積比下之E_i值, 其步驟如下:

 $1.求取基質材料與顆粒加強材料之<math>E_i$ 值。

2.求取顆粒加強複合型材料之波松比。

- 3.將基質材料與顆粒加強材料之E_i值以及整體材料之波松比代入微 觀力學中之微分模式來計算不同顆粒加強材料體積比下,整體材料 之E_i值。
- 4.亦可先以微分模式計算顆粒加強材料含量體積比對整體材料E_i之 影響值E^{*},則不同顆粒加強材料體積比下整體材料之E_i值為E^{*}與 E_i(基質)之乘積。

圖 5.8 $\gamma_{dc} = 16.68 \, kN / m^3$ BH 膨潤土試體 Ei 值與測試值比較

5.4 純膨潤土之乾密度與Ei之關係

美國土靜態壓實試驗結果如圖 5.9 所示,由圖中可得知緩衝材料 之乾密度會隨著應力增加而增加;且應力增加至無限大時,乾密度會 趨近一極限值。同時,由圖 5.9 中可計算出不同乾密度下緩衝材料之 側向束制模數(M),如圖 5.10 所示。其關係可用下列方程式表示之:

$$\gamma_d = \frac{M}{\frac{1}{0.125} + \frac{M}{20.9}}$$

(5.1)

其中, γ_d :乾密度 (kN/m^3); M: 側向束制模數 (MPa)。

圖 5.10 BH 膨潤土試體之側向束制模數-乾密度關係

在彈性力學中,側向束制模數(M)與彈性模數(E)及波松比 (ν)有關,其關係可用下式表示:

$$E = \frac{(1+\nu)(1-2\nu)}{(1-\nu)}M$$
(5.2)

含量為 0%的試體透過單壓試驗所得之 *E*_i 值與靜態壓實試驗中相同 乾密度下所對應之側向束制模數 M 來計算,運算結果當σ₃為0、1、 4MPa 時,對應之 *R*₁ 值分別為 0.7878、0.9067 與 0.9878。故對純膨潤 土而言, *E*_i與乾密度之關係可以下式來敘述:

$$\gamma_{d} = \frac{E_{i}/R_{1}}{\frac{1}{0.125} + \frac{E_{i}/R_{1}}{20.9}}$$
(5.3)

預測不同乾密度下純膨潤土之*E*_i值,與試驗所得的結果比較發現 兩者相當吻合。

5.5 圍壓與 E_i 之關係

依據 Janbu (1963) 建議 E_i 與 σ_3 之關係式,如式(5.4),可以求得 不同條件下之n值與k值。

$$E_{i} = kP_{a} \left(\frac{\sigma_{3}}{P_{a}}\right)^{n}$$
(5.4)

經由計算本研究試驗條件下,在不同碎石體積比以及不同膨潤土 乾密度下n值的變異性不大,約為0.022。而由式(5.4)可知k值則恰 為單壓試驗所得之*E*;值對大氣壓力的比值。據此,對於以美國土為 基質材料的試體而言,其整體材料之*E*;值與圍壓之間的關係可以下 式來表示:

$$E_i = E_{i(\sigma_3=0)} \left(\frac{\sigma_3}{p_a}\right)^{0.022}$$

(5.5)

其中, $E_{i(\sigma_3=0)}$ 為單軸抗壓試驗所得之 E_i 值。

5.6 圍壓與極限軸差應力之關係

為了建立預測模式,須將表 5.3 中所列極限軸差應力 $(\sigma_1 - \sigma_3)_{ult}$ 值間的關係確立。而就數學意義而言, $(\sigma_1 - \sigma_3)_{ult}$ 代表應力 - 應變曲 線中,應變到達無窮大時所對應的極限軸差應力值;但在實際上,由 於試驗無法做到無窮大的應變且圍壓亦不能無限制的增加,因此試體 破壞當時所達到的軸差應力值會比極限軸差應力值要來的小。在此, 本研究定義一折減係數 (R_f) 為破壞軸差應力值對極限軸差應力值 的比值,嘗試以 R_f 與 $(\sigma_1 - \sigma_3)_f$ 來建立碎石含量體積比、 膨潤土乾 密度及圍壓與 $(\sigma_1 - \sigma_3)_{ult}$ 間的關係。 R_f 的定義如下:

$$R_{f} = \frac{\left(\sigma_{1} - \sigma_{3}\right)_{f}}{\left(\sigma_{1} - \sigma_{3}\right)_{ult}}$$

(5.6)

其中, $(\sigma_1 - \sigma_3)_f$ 則以 Hoek-Brown 經驗破壞準則來計算。本研究 將 Hoek-Brown 經驗破壞準則寫成下式:

$$\sigma_1 - \sigma_3 = \left[m\sigma_3\sigma_c + \sigma_c^2\right]^{\frac{1}{2}}$$

(5.7)

其中, $(\sigma_1 - \sigma_3)$ 為試體破壞時之軸差應力, $\sigma_c = 完整岩石的單壓$ 強度。

本研究中 B.H.試體之 m 值及 σ_c 值列於表 5.3 中,若將 m 值及 σ_c 值 分別對膨潤土乾密度及碎石含量體積比作圖,可得圖 5.11 與圖 5.12。

V _G	γ dc	m	$\sigma_{ m c}$
(%)	(kN/m^3)		(MPa)
0	14.72	1.41	3.2
0	15.70	1.8	4.27
0	16.68	2.85	6.3
0	17.66	3.71	7.5
0	18.64	4.32	9.5
6.6	16.68	2.5	6.3
13.8	16.68	2.67	6.5
21.5	16.68	3.47	6.6
29.9	16.68	5.79	5.7
39.0	16.68	6.87	5.9

表 5.3 美國土試體之 m 值及 σ_c 值

圖 5.11 σ。與膨潤土乾密度及碎石含量體積比分比之關係

圖 5.12 m 值與膨潤土乾密度及碎石含量體積百分比之關係

由圖 5.11(a)中可獲知 σ_c 值會隨膨潤土乾密度的增加而上升;若 假設 σ_c 值與側向束制模數 M 之間為線性關係,則 σ_c 與膨潤土乾密 度間可用式 5.8 來描述,其中 R_2 為 γ_d = 16.68 (kN/m^3) 且碎石含量 為 0%時 σ_c 對 M 的比值 (R_2 = 0.0083)。

$$\gamma_{d} = \frac{\sigma_{c} / R_{2}}{\frac{1}{0.125} + \frac{\sigma_{c} / R_{2}}{20.9}}$$
(5.8)

由圖 5.11(b)中可得知,碎石含量體積比對 σ_c 值的影響相當小; 故對 $\gamma_d = 16.68(kN/m^3)$ 之不同碎石含量的 B. H. 試體而言,本研 究則取 σ_c 為一固定值 ($\sigma_c = 6.0$ MPa)。

由圖 5.12(a)中可得知, m 值會隨膨潤土乾密度的增大而增加, 假 設 m 值與式 5.9 中的側向束制模數 M 之間為線性關係,則 m 與膨潤 土乾密度間可用式 5.9 來描述,其中 R₃為 Y_d = 16.68 (kN/m³) 且碎 石含量為 0%時 m 對 M 的比值(R₃ = 0.0043)。由圖 5.12(a)中可得知, 使用式(5.8)來預測 m 值與膨潤土乾密度之關係亦是可行的。

$$\gamma_{d} = \frac{m / R_{3}}{\frac{1}{0.125} + \frac{m / R_{3}}{20.9}}$$

(5.9)

由圖 5.12(b)中可知,隨著碎石含量體積比的增加 m 值亦會增大; 若將碎石含量為 0%之 m 值與計算所得的 $E_{100/1}^*$ 相乘,則所得之曲線 與實驗所得之數據頗為接近。因此, m 值與碎石含量體積比的關係可 用式(5.10)表示;其中 m_v 為不同碎石含量體積比下的 m 值。

$$m_{v} = E_{100/1}^{*} \times m_{v=0} \tag{5.10}$$

至此已建立了m值及σ。值的預測方式,而(σ1-σ3)f的預測值 便可透過式(5.7)~式(5.9)來獲得。但式(5.6)之中,參數Rf尚未建立其 預測方法,故極限軸差應力值的預測值仍無法獲得;接下來便藉由實 驗數據來建立膨潤土乾密度、碎石含量及圍壓對參數 Rf 的影響。

將表 5.1 及表 5.3 中所列之數據,可計算出 R_f 的實驗值,如表 5.4 所示。由表中資料可得知, R_f 與圍壓及膨潤土體積比的關係皆近似線性,故本文使用式 (5.11)來描述。對本研究中的 B.H.試體而言, $L_1=0.0022$, $L_2=0.0667$, $L_3=-0.013$;因此,本文將 $V_G=0\%$, $\gamma_{dc}=16.68 kN/m^3$ 所求得之 R_f 視為 R_0 ,並依式 (5.11)計算出其他 R_f 值, 如表 5.5 所示。

$$R_f = R_0 + L_1 \times \Delta V_G + L_2 \times \Delta \sigma_3 + L_3 \times \Delta \gamma_{dc}$$
(5.11)

式中: R_f :待求之折減係數; R_0 :已知之折減係數; V_G :碎石 含量體積比(%); σ_3 :圍壓值(MPa); γ_{dc} :膨潤土乾密度(kN/m^3); $L_1 \cdot L_2 \cdot L_3$:係數。

V _G	γ dc		fa	ilure ratio,	R _f	
(%)	(kN/m^3)	$\sigma_3(MPa)$	0	1	4	7
0	14.72		0.4589	0.5303	0.6998	_
0	15.70		0.51543	0.5236	0.6812	_
0	16.68		0.51543	0.5236	0.6812	0.8037
0	17.66		0.4803	0.5393	0.7191	_
0	18.64		0.4649	0.5329	0.6758	-
6.6	16.68		0.5354	0.5318	0.7037	0.7799
13.8	16.68		0.6318	0.4825	0.7548	0.7676
21.5	16.68		0.6773	0.5259	0.7750	0.8159

表 5.4 美國土試體之 R_f值

29.9	16.68	0.57013	0.6225	0.6750	0.9223
39.0	16.68	0.6238	0.6676	0.70168	0.8301

表 5.5 BH 膨潤土試體之理論 R_f 值

V_{G}	γ dc		failure ratio, R _f			
(%)	(kN/m^3)	$\sigma_3(MPa)$	0	1	4	7
0	14.72		0.5424	0.5506	0.7083	_
0	15.70		0.52896	0.5371	0.6948	_
0	16.68		0.5369	0.6089	0.8252	1.0414
0	17.66		0.5019	0.5100	0.66775	_
0	18.64		0.4748	0.4830	0.64069	_
6.6	16.68		0.5552	0.6273	0.8435	1.0597
13.8	16.68		0.5752	0.6473	0.8635	1.0798
21.5	16.68		0.5966	0.6687	0.88499	1.1012
29.9	16.68		0.6200	0.6921	0.9083	1.1245
39.0	16.68		0.6453	0.7174	0.9336	1.1498

5.7 實驗數據與模式預測之比較

根據所計算出的理論 R_f 以及上述方程式,可以計算出理論的

 $(\sigma_1 - \sigma_3)_{ult}$;及理論之 E_i 值。據此,本文遂將預測與實驗所得之應力-應變曲線比較以表 5.6 與表 5.7 示之,可發現誤差僅在 10%範圍之內。

表 5.6 B.H.試體理論預測強度與試驗強度的差異比較

V_{G}	γ dc	理論	│理論強度-試驗強度│/試驗強度(%)			
(%)	(kN/m^3)	$\sigma_3(MPa)$	0	1	4	7
0	14.72		9.2	8	5.8	-
0	15.70		8.2	14.8	16.4	-
0	16.68		7.5	6.7	1.3	0.3
0	17.66		0.4	5.2	4.8	-
0	18.64		6	8.4	2.1	-
6.6	16.68		8.3	0.8	11.3	8.8
13.8	16.68		2	2.8	11.7	0
21.5	16.68		1	0.4	8.2	2.6
29.9	16.68		16.4	10.8	1.2	5.2
39.0	16.68		29.4	8.4	0.9	1.7

表 5.7 日興土試體理論預測強度與試驗強度的差異比較

V_{G}	γ de	理論強度	E- 試驗強度	/試驗強)	度(%)
(%)	(kN/m^3)	σ ₃ (MPa)	0	1	4
0	16.68				10.94
0	17.66				0.57
0	18.64		1.39	3.8	4.86
0	19.62				0
0	20.6				4.79
7.3	18.64				4.86
15.1	18.64				5.8
23.4	18.64				1.55
32.3	18.64				1.81

5.8 各國緩衝材料力學強度之比較

黏土材料的力學強度與其所處的環境有很大的關係,尤其是水的 作用。因此在量測力學參數時,也必須考慮水的效應。而最常見的量 測方式為三軸試驗(triaxial test),以求得土壤在各種受力狀態下之剪 力強度參數c與↓。

一般三軸試驗因其模擬現場土壤所存在的狀態及受力狀況不同 而可區分為三種不同試驗,分述如下:

(1)不壓密不排水試驗(unconsolidated undrained test,又稱 UU 試驗):UU 試驗是施加周圍壓力與增加軸向壓力直到試體破壞的過程都不允許試體排水,如此可量測出試體的總抗剪強度參數
 c、ψ。另外 UU 試驗又依據其試體的起始狀態是否飽和而可區

分為飽和 UU 試驗(SUU 試驗)與不飽和 UU 試驗(UUU 試驗)。

- (2) 壓密不排水試驗(Consolidated undrained test,又稱 CU 試驗): CU 試驗是使試體先在某一圍壓狀態下排水壓密,然後在保持不 排水的情況下,增加軸向壓力直到試體破壞。CU 試驗可以總抗 剪強度參數 c、ψ,也可以量測有效抗剪強度參數 c'、ψ'。
- (3) 壓密不排水試驗(Consolidated drained test,又稱 CD 試驗): CD 試驗是使試體先在某一圍壓狀態下排水壓密固結,然後在允 許充分排水的情況下,增加軸向壓力直到破壞。CD 試驗可以量 測有效抗剪強度參數 c'、ψ'。

在黏土材料受剪破壞強度的定義上,破壞型態為脆性破壞則採應 力達尖峰值。但若試體在高圍壓下產生應變硬化而沒有尖峰值時,則 一般會採用一定比例的軸向應變所對應之應力值為破壞強度 (failure criteria)。

表 5.8 為各國候選緩衝材料的剪力強度參數。藉由此剪力參數可 以繪出其破壞包絡線 (envelope),土壤在破壞包絡線下的受力狀態為 穩定狀態,與破壞包絡線相切時為極限平衡狀態,當超過破壞包絡線 時為土體中許多斷面之剪應力已經超過抗剪強度而破壞。

影響緩衝材料剪力參數的因素很多,包括有效應力、孔隙比、應力歷史、加載及排水速率、緩衝材料所含礦物種類、黏土的結構與組

構、壓密時間、飽和度、毛細張力等。而且選擇不同試驗(UU、CU、 CD、直剪)其所模擬的狀態不同(開挖或加載),所獲得的剪力強度 參數值所代表的意義也不相同。因此黏土材料的力學強度試驗不像水 泥材料可以量測其單軸抗壓強度、或金屬材料可以量測其抗拉與抗彎 強度而直接進行比較。

由於影響黏土材料的因素眾多,而且不同試驗的模擬背景也不同,因此其數值大小並無法直接進行比較。

緩衝材料	剪力强度参数		量测方式	試驗條件	參考文獻
	c(MPa)	$\phi(度)$			
日興土	3.63	49.9	UUU 試驗	直徑 7cm,高度 14cm,密	陳志霖,
				度 1.9Mg/m ³	2000
美國土	2.60	13	UUU 試驗	直徑 7cm,高度 14cm,密	陳志霖,
				度 1.7Mg/m ³	2000
Kunigel V (A	0	16.6	CU 試驗	直徑 5cm,高度 10cm,密	JNC,
				度 1.6Mg/m ³	1999
本)					

表 5.8 各國候選緩衝材料的剪力強度參數

第六章 熱傳導係數試驗結果分析

6.1 純膨潤土之熱傳導係數

本研究利用第三章所提出之熱傳導係數試驗法,以美國土為試驗 對象,量测膨潤土的熱傳導係數,並分析乾密度與含水量等變因對熱 傳導係數之影響。

(1) 熱傳導係數與乾密度之關係

膨潤土試體在固定體積狀況下,乾密度越大表示其所含黏土重量 越大,意即固體顆粒較多,而顆粒間接觸面積也越大,熱量經由每個 獨立土壤顆粒傳送的途徑也相對越多。易言之,熱藉由顆粒接觸方式 傳導的機會也增多,所以熱傳導係數會與膨潤土試體之乾密度具有正 相關性。圖 6.1 為美國土熱傳導係數與乾密度關係圖,圖中結果顯示 隨著乾密度增加,熱傳導係數也隨之增加,與上述的討論一致。

(2) 熱傳導係數與孔隙率之關係

本研究所採用之烘乾美國土而言,其材料組成只具有膨潤土固體 顆粒及空氣兩相組成。由於氣體之熱傳導率遠小於固體顆粒之熱傳導 率,因此隨著膨潤土試體的孔隙率增加,表示所含孔隙率越多,顆粒 接觸面積越小,所以熱傳導係數反而會減小,由圖 6.2 可知,孔隙率 越高,熱傳導係數值越低。其趨勢與上述理論相吻合。

圖 6.1 美國土熱傳導係數與乾密度關係圖

圖 6.2 美國土熱傳導係數與孔隙率關係圖

不同乾密度的烘乾美國土試體(含水量為0%)其熱傳導試驗結 果彙整如表 6.1 所示,熱傳導係數範圍為 0.23~0.39 W/mK。

乾密度(kN/m ³)	孔隙率(%)	熱傳導係數(W/mK)
14.72	44.03	0.233
15.70	40.30	0.284
16.68	36.57	0.320
17.66	32.84	0.386

表 6.1 美國土乾密度與熱傳導係數值結果

6.2 各國緩衝材料之熱傳導特性比較

表 6.2 為各國候選緩衝材料的熱傳導係數值,其範圍值約在 0.2~1.0 W/mK。必須注意的是熱傳導係數的量測值與量測方式、試體 狀態(尺寸大小、乾密度、含水量)等因素有關。表 6.3 整理多位學 者經由試驗或推導求得影響熱傳導係數因子間的關聯性。上述結果顯 示熱傳導係數的影響因素很多,包括材料組成、試體乾密度、孔隙率、 含水量、量測方法選擇等,因此進行比較或引用文獻時應先辨明材料 狀態與試驗方法才具有意義。

緩衝材料	熱傳導係數(W/mK)	量测方式	試驗條件	參考文獻
日興土	0.58	穩態法	日本 HC-074(FOX-150)熱傳導係數量測儀	林志森等,2000
美國土	0.69	穩態法	日本 HC-074(FOX-150)熱傳導係數量測儀	林志森等,2000
美國土	0.23-0.39	暫態法	乾密度 1.4-1.8 Mg/m ³ ,含水量 0%	劉俊志,2003
美國土	0.7-1.1	暂態法	乾密度 1.20-1.25 Mg/m ³ ,含水量 20-30 %	Radhakrishna and Chan, 1989
Kunigel V(日本)	0.97		乾密度 1.8Mg/m ³ ,含水量 7%	JNC, 1999
Avonseal(加拿大)	0.6-0.9	暫態法	乾密度 1.05-1.14 Mg/m ³ ,含水量 26-33%	Radhakrishna and Chan, 1989
MX-80(瑞典)	0.93		乾密度 1.75Mg/m ³	Mat. Res. Soc. 353
FoCa(法國)	0.95		乾密度 1.75Mg/m ³	Mat. Res. Soc. 353

表 6.2 各國候選緩衝材料的熱傳導係數

表 6.3 影響熱傳導係數的因子分析整理

影響因子	回歸方程式	試驗狀態	參考文獻
含水量(w)	$\lambda = 5.1837 \times 10^{-1} + 6.0002 \times 10^{-2} w + 9.7576 \times 10^{-4}$	Kunigel V(日本),密度 1.8Mg/m ³ ,含水量 7%	JNC, 1999
	$-8.002 \times 10^{-5} w^{3}$		
統體密度 (ρ) 與含	$\lambda = 0.56 + 0.60\rho + 0.4\rho^3 \{w/(w+1)\}$	MX-80 與 Montigel, 密度 1.4-2.3 Mg/m ³ , 含水量	SKB TR 94-29
水量(w)		0-12%	
孔隙率(n)與飽和	$\lambda = 0.034n^{-2.1} + (1 + \log S_r)(0.56^n 2^{1-n} - 0.034n^{-2.1})$	MX-80	SKB TR 94-29
度(Sr)			
孔隙率(n)與飽和	$2 - 2^{1-n} 2 - n S - 2 - n (1 - S)$	FoCa 黏土	SKB TR 94-29
度(Sr)	$\lambda - \lambda_s \ \lambda_w n S_r \lambda_a n (1 - S_r)$		
	λ_s 、 λ_w 、 λ_a :固相、水、空氣熱傳導係數		
溫度(T)與密度	$2 = (1 + \sqrt{\phi_a}/(\phi_a + \phi_w)) \{2 + 2 + 2 + (1 + \phi_w)\}\phi_s + 2 + \phi_a$		Kiyohashi and
(\rho_d)	$\lambda = (1 - \varphi_s)^{-1} \qquad (\lambda_s \varphi_s + \lambda_w (1 - \varphi_s))^{-1} \qquad \lambda_w \qquad \lambda_a$		Banno, 1996
	ϕ_{s} 、 ϕ_{w} 、 ϕ_{a} :固相、水、空氣的體積分率		
	$\lambda_s = 5.71 \{ \exp(-1.29 \times 10^{-3} T) \exp(-6.79 \times 10^{-4} \rho_d) \}^{0.5}$		

第七章 回脹試驗結果分析

圖 7.1 與圖 7.2 分別為日興土與美國土在 30℃水熱環境下的回脹 歷時曲線,顯示兩者皆為雙平台型曲線。

圖 7.3 為日興土與美國土在 30℃水熱環境下最終回賬量,發現兩 者相差約7倍之多。本章將從兩種膨潤土的材料特性探討回賬行為巨 大差異性的原因(陳文泉,2004)。

7.1 黏土含量因素

膨潤土中黏土質含量的定義是小於 2µm 的重量百分比,依據粒徑分析結果顯示日興土的黏土質含量僅 26%,而美國土黏土質含量高達 60%,兩者差距很大。此一差距會直接造成兩種膨潤土的基本土壤力學性質的表現有很大差異。以阿太堡限度而言,日興土原礦的 LL 與 PI 值分別約 67 與 49,而美國土原礦的 LL 與 PI 值分別高達 434 與 380。

黏土礦物的回脹潛能(以回脹量或回脹壓力表示)與其所含的黏 土含量或阿太堡限度有正比例關係。Seed 等人研究發現土壤在最佳 含水量的狀態下,其回脹潛能與黏土含量及阿太堡限度的關係可表示 成下列關係式(7.1)與式(7.2) (Seed et al, 1962)。

89

$$S = kA^{2.44}C^{3.44} \tag{7.1}$$

其中 S:回脹潛能,為回脹量百分比表之;k:常數,約等於 3.6x10⁻⁵; A:活度;C:黏土含量。

$$S = kM(PI)^{2.44}$$
 (7.2)

其中S、k定義與上式相同;M:常數,天然土壤值為60;PI為塑性指數。

Nayak 與 Christensen (1971)利用大量試驗數據進行回賬潛能與阿太 堡限度、初始含水量及黏土含量的回歸分析,可得式(7.3)結果 $S = (0.0229)(PI)^{1.45} \frac{C}{w_i} + 6.38$ (7.3)

Basma 等人(1995)利用四種不同試驗方法探討回脹性土壤的回脹 潛能評估。結果顯示無論利用何種試驗方法,回脹潛能(以回脹壓力 表示)皆隨黏土含量降低而降低。

由上述學者的研究結果可以發現,黏土含量越高、塑性指數越高 則回脹潛能越高,回脹量亦越高。日興土由於黏土質含量低、阿太堡 限度亦較低,因此日興土的回脹行為表現就不如美國土為佳。這也暗 示著未來要改善日興土的回脹性質,增加其作為緩衝材料的競爭優 勢,在原礦開採上必須著眼於增加黏土質含量的比例。 7.2 非回脹性礦物效應

日興土回賬量低於美國土的另外一因素是日興土中的含鐵量高 所造成。日興土中的含鐵量約在 5.5~10%之間,較美國土(2.0~3.8%) 高出許多。膨潤土中的鐵可能以幾種型態存在,部分鐵可能存在於黏 土 TOT 層結構中,與結構中矽或鋁形成同質異構替代,部分則為黏 土中微量鐵化合物存在(El Rayah and Rowell, 1973; Breu et al, 1993)。存在於結構中的鐵會同形異構替代部分的矽或鋁離子,造成 結構電荷增加,降低回賬量。而自由鐵或鐵化合物(氧化鐵或氫氧化 鐵) 會形成膠結材料,披覆在黏土表面或使黏土顆粒形成團束 (clump),因而降低黏土的回賬行為(Igwe et al, 1999)。

7.3 結構負電荷因素

從黏土礦物特性分析而言,日興土是以鋁蒙脫石為主要組成礦物的約黏土材料,其結構負電荷主要是由四面體層同形異構替代產生。 而美國土則為蒙脫石黏土材料,其結構負電荷主要是由八面體層同形 異構替代產生。不同的結構負電荷引發膨潤土吸水回賬的機制有很大 的區別。

黏土層間電荷分布位置與數量會影響其晶格回脹行為(Bray et al, 1998),學者研究發現層間電荷主要分布於八面體層者(如蒙脫石)

91
其回賬量會大於分布於四面體層者(如鋁蒙脫石)(Sato et al, 1992; Prost et al, 1998),造成此一差異的主要原因在於八面體層發生同形異 構替代時,如 Al³⁺被 Mg²⁺或 Fe²⁺取代時,吸附水層的水分子與黏土 表面氧原子不會有氫鍵鍵結作用發生,黏土基面(basal surface)呈 現厭水(hydrophobic)特性,黏土的親水性僅發生於層間可交換陽離 子,因此吸附水量受黏土帶電荷量特性控制(Calvet & Prost, 1971; Prost et al, 1998)。而當四面體層發生同形異構替代時,如 Si⁴⁺被 Al³⁺ 取代時,層間吸附水分子(水化陽離子)與黏土表面氧原子會有氫鍵 鍵結作用,在此狀態下黏土一水結構有較強的交互作用,因此晶格回 脹受會限制(Prost et al, 1998)。

日興土為四面體層同形異構替代而美國土為八面體層同形異構 替代,因此從黏土礦物型態的角度分析,日興土的回脹潛能會比美國 土的回脹潛能低。

7.4 可交換陽離子因素

對於日興土與美國土回脹行為差異另外一項重要原因是可交換 陽離子的差異。日興土的主要吸附可交換陽離子為 Ca²⁺; 而美國土的 主要吸附可交換陽離子為 Na⁺。

黏土表面吸附的可交换陽離子種類不同會對其回脹行為產生重

大差異,主要是黏土-水-電解質的系統勢能不同以及其引發黏土 TOT 層堆疊方式不同所引起。

黏土一水一電解質的系統勢能由擴散雙層排斥力與凡得瓦爾吸 引力決定,整體勢能會影響其晶格回賬量或晶格間距大小,而不同的 可交換陽離子種類其能量系統則有所變化。鈣型膨潤土與鈉型膨潤土 的能量系統如圖 7.4 所示 (McBride, 1994),從該圖可以發現鈉型膨 潤土與鈣型膨潤土晶格間距在 20 埃附近都有一個能量低點 (inner minimum),而其後 40 埃以上會有第二個能量低點(outer minimum), 這能量低點是處於相對穩定的狀態,也是要擴張晶格間距時所需克服 的能量障壁。至於鈣型與鈉型膨潤土在 20 埃附近的能量障壁大小不 同,其主要原因是由於兩者擴散雙層排斥力與凡得瓦爾吸引力隨 TOT 夾層間距擴張所形成的消長情況不同所引起 (McBride, 1994)。

納型膨潤土的第一個能量低點位置與過渡區的能量差異小,容易 越過而往外部能量低點趨近,因此其晶格間距會持續成長直到所有 TOT 層完全分離為止,這也是鈉型膨潤土遇水溶液呈分散結構的原 因。鈣型膨潤土的內部能量低點與過渡區的能量差異大,形成一個很 高的能量障壁,正常狀態下無法越過此一能量障壁,因此鈣型膨潤土 只能回賬到晶格間距達 20 埃為止。此時結構穩定,無法進一步發展 回賬行為,這也是鈣型膨潤土會產生擬結晶構造的原因。這種限制黏

土回賬的障壁系統是二價或多價可交換陽離子的特性,特別是當黏土 層電荷主要位於四面體層時(如鋁蒙脫石或蛭石)其趨勢會更加明顯 (McBride, 1994)。綜合上述,可以知道鈉型膨潤土的回賬量包含陽 離子水化造成晶格回賬與擴散雙層斥力造成的滲透回賬,因此理論 上,其回賬量是沒有限制性的。但鈣型膨潤土受限於其能量障壁,因 此回賬行為僅限於晶格回賬,回賬量約只有1倍(20埃)。

必須注意的是,天然的膨潤土材料若沒有特別經飽和處理,都不 會單僅含有一種可交換陽離子。當黏土系統中同時含有 Na⁺、Ca²⁺兩 種可交換陽離子時,兩者存在於黏土表面的位置並不是隨機分布的狀 態,Ca²⁺離子對黏土表面具有較強的親和力,容易群聚在一起構成擬 結晶結構,而 Na⁺離子則分布於擬結晶結構的外表面,此一現象稱為 去混合(demixing)現象(Levy & Francis, 1975; Sumner, 2000)。因此 在 Na⁺、Ca²⁺兩種可交換陽離子共存的膨潤土系統中,其擬結晶結構 所含的 TOT 夾層數目將介於兩者之間,難以定量。因此利用擴散雙 層理論推估天然的膨潤土的回脹行為,常會造成很大的偏差。

圖 7.1 日興土於水熱環境 30℃回脹歷時曲線

圖 7.2 美國土於水熱環境 30℃回脹歷時曲線

圖 7.3 日興土與美國土在 30℃水熱環境下最終回脹量

圖 7.4 鈣型膨潤土與鈉型膨潤土的系統能量圖

第八章 日興土改質方法探討

8.1 物理改質法

過去曾有相關試驗結果顯示,黏土含量越多則複合土壤的回賬量 及回賬壓力越大,其原因為回脹機制的發生主要由於黏土顆粒吸水產 生擴散雙層現象,而砂顆粒並不產生,且粗糙的砂顆粒會使黏土顆粒 堆疊產生不連續而有空隙,此一空隙將緩衝回賬行為的發生進而降低 最終回賬量(Nblal, 1993)。目前國內關於膨潤土的研究其材料來源 主要來自於台東樟原所採取的天然膨礦土開採產出的。膨潤土礦中含 有大量的膨潤石及其他雜質,如何從膨潤土礦中除去高嶺土及其他雜 質以獲得高品質且具高活性的原材,進而提升其經濟效益與競爭優勢 即成為另一項重要的研究工作。本研究基於上述概念,嘗試利用實驗 室中較為簡易之篩分析方法分離日興土中粗顆粒部分,藉以提高其黏 土含量,以期提昇緩衝材之回脹性質。試驗所採用之分離粒徑為 0.075mm(200號篩),篩分方法包括乾篩與濕篩兩種。

8.1.1 物理改質後之自由回脹

圖 8.1 所示為日興土乾篩法改質後產物的回脹歷時曲線,屬於雙 平台型;圖 8.2 所示為日興土以濕篩法改質所得產物的回賬歷時曲

線,屬於S型。圖8.3將日興土原礦、乾篩法與濕篩法之最終回賬量 加以比較,發現其回脹量以日興土原礦最高,乾篩法次之,濕篩法最 低。

探討其原因,乾篩法處理後之日興土的最終回賬量不如原礦,主 要是過篩時,部分黏土礦物凝聚成較大顆粒,無法完全通過 200 號 篩;但此外亦有部分較小粒徑之非回脹性礦物被篩至篩下,故篩下所 得之土樣並非純黏土礦物,導致回賬量降低(汪信寶等,2003)。

濕篩法所得之篩下物烘乾製成之試體,雖其黏土質含量明顯高於 原礦,但其最終回賬量卻呈更大幅度下降,此一現象應該是於濕篩處 理過程中,日興土已先行與水接觸(已發生第一次回脹),其後再以 105 烘乾(粉土乾燥收縮結構改變),最後再進行浸水回脹試驗(第 二次回賬)有關。

依據李德河等人所作回賬-收縮循環(乾濕循環)對台灣西南部泥 岩回脹性影響研究,發現乾濕循環次數增加確實會導致最終回賬量降 低(李德河等人,1989)。Al-Homoud 等人的試驗結果也顯示黏土回 脹應變量隨乾濕循環次數的增加而遞減,第一次遞減量最大,但於 4~5次循環後達平衡;此外,試驗結果發現土壤塑性限度亦隨乾濕循 環次數增加而遞減,故推論此一結果是由於乾燥時土壤產生膠結作用 (aggregation),降低了其可與水作用的表面積所致(Al-Homoud et al,

1995)。另外 Basma 等人探討不同乾燥方式對黏土工程行為影響的研 究中發現,回脹潛能與回脹壓力會隨黏土烘乾溫度的上升而下降,以 110 與60 左右烘乾黏土會明顯降低其塑性限度及塑性指數,其推 論以110 烘乾黏土雖不至於改變其土壤分類,但會降低其塑性行 為,理由是110 與60 的烘乾溫度可能導致部份土壤結構的改變 (Basma et al, 1994)。

綜合上述研究結果可知日興土使用乾篩及濕篩兩種物理改質方 法,其最大回脹應變量均無法有效提昇。

圖 8.2 日興土經濕篩法改質後之回脹歷時曲線

圖 8.3 日興土經不同物理改質後之最大回脹應變量

8.1.2 試驗材料性質分析

日興土於兩種不同物理改質方式處理後,經由X光繞射分析儀進 行分析,繞射圖譜如圖 8.4 所示。其繞射峰經 JCPDS 進行比對後發現 其所含的礦物仍然相當複雜,但大致上與日興土原礦無異,顯示兩種 物理改質手段並不至於造成其礦物組成的變化。

8.2 酸活化改質法

酸活化膨潤土已普遍被用於吸附劑或觸媒劑等工業用途,因此酸活化處理對於提升緩衝材料的吸附核種能力有實質助益。過去有學者利用酸劑催化與吸附作用的概念,以酸活化方式對膨潤土進行改質發現確實可使黏土相關物理及物化特性產生變化,並且會增加膨潤土之

多孔特性及提高其比表面積(Yildiz, 2002)。本此原則,本研究將黏 土粉末浸泡於酸性溶液用以改變黏土表面性質,並檢驗其回脹行為的 表現。

8.2.1 酸活化後之自由回脹

圖 8.5、8.6 及 8.7 為日興土經三種不同濃度 HCl 酸活化改質產物 之回賬歷時曲線,其型態均屬於標準 S 型曲線。圖 8.8 為日興土原礦 及不同濃度 HCl 酸活化改質產物之最終回賬量比較,發現其回賬量 以未處理原礦最高,1%HCl 濃度改質次之,3%HCl 濃度改質最低。

造成酸化改質後的日興土樣品最大回脹應變量不如未處理原礦 主要是黏土礦物受到強酸作用時,其化學成分會有所改變,此一改變 量及改變情形通常與酸強度及作用時間有關。黏土礦物於酸性溶液 中,高濃度的 H⁺離子可將黏土層間的可交換陽離子置換出來,即將 黏土結構八面體中的 Mg²⁺、Al³⁺及 Fe³⁺離子浸出,且方解石成分會被 酸溶液溶解而釋放 Ca²⁺,此一結果造成溶液系統離子濃度增加因而 降低電雙層厚度,而電雙層厚度的減少會導致最終回賬量降低,故試 驗環境之 pH 降低回賬量亦會下降。此外,由於原礦物中之 Mg、Ca、 Na、Al 與 Fe 等成分溶出而大幅下降,但 Si 因不易溶出而使得相對 含量大幅提升,且由於非回賬性黏土礦物較回賬性黏土礦物具有更高 之抗酸蝕能力,因此在改質後會使黏土中造成回脹之成分相對減少而 導致最終回賬量降低,上述結論與Egloffstein(1996)及Onal 等(1985) 的看法一致。另外,亦有相關研究報告指出將含蒙脫石的黏土礦物浸 泡於1M的鹽酸溶液中數天,可產生類似加速風化作用,使礦物中的 蒙脫石加速轉變成為高嶺石 (Poncelet et al, 1967),由於蒙脫石為具 有高膨脹潛能之礦物,而高嶺石不是,故此一作用結果將導致黏土礦 物最終回賬量下降。

綜合上述實驗結果可知無論以何種濃度 HCl 對日興土進行酸活 化改質,均未能有效地提升其最大回脹應變量。

圖 8.5 日興土經 1%HCl 改質活化後之回脹歷時曲線

圖 8.6 日興土經 3%HCl 改質活化後之回脹歷時曲線

圖 8.7 日興土經 5%HCl 改質活化後之回脹歷時曲線

圖 8.8 日興土經不同濃度 HCl 改質活化後之最大回脹應變量

8.2.2 試驗材料性質分析

(1) XRD 分析

日興土於三種不同濃度酸活化改質方式處理後,經由 X 光繞射 分析儀進行分析,繞射圖譜如圖 8.9 所示。其繞射峰經 JCPDS 進行比 對後發現其所含的礦物大致上與日興土原礦相近,但仍存在有些許差 異。首先觀察 C、G 峰型發現其隨著酸改質濃度增加而消失,顯示 HCI 對日興土中的 CaCO₃ 有化學侵蝕作用;其次,觀察 K、I 峰型, 發現有稍微減小趨勢,顯示部分黏土礦物也受酸作用而溶解。

圖 8.9 日興土經不同濃度 HCl 酸活化改質後之 X 光繞射圖譜

(2) 熱重分析 (TGA)

為了解日興土經各項活化改質後其產物的熱穩定性,本研究將酸 活化改質產物進行 TGA 分析,結果如圖 8.10 所示,圖中發現改質後 產物其熱重分析曲線由室溫加熱到 1000℃的溫度範圍內僅剩存二段 重量損失變化;第一段重量損失發生於室溫到 120℃左右,屬於土壤 中自由孔隙水的消散;第二段損失發生於 450℃~600℃之間,是膨潤 土內結構水的移除;相較於原礦,酸改質產物沒有發生第三段重量損 失,即*CaCO*3 的損失,此一結果是由於酸活化改質方式可溶解掉原日 興土礦中所存在的*CaCO*3,導致改質後產物在 TGA 曲線上無*CaCO*3 的

損失。

8.3 Na₂CO₃改質法

國外有研究利用 Na₂CO₃對膨潤土進行改質,並透過 XRD、DTA 與 TG 分析、比表面積測定等分析確認利用 Na₂CO₃對膨潤土進行改質 確可使其相關物理及物化特性產生改變,這些變化大致與其可交換陽 離子、黏土型態及添加濃度有關。試驗結果顯示 Na₂CO₃改質後會增加 膨潤土活性,提昇其回脹潛能及塑性(Yildiz, 2002)。本研究以相同 改質劑利用不同改質程序對國內日興土進行改質處理,改質過後樣品 除檢視其回賬潛能變化外,並透過相關材料分析試驗比較其改質前後 8.3.1 不同改質程序之最大回脹應變量

圖 8.11 為日興土原礦及以三種不同濃度 Na₂CO₃ 濕式浸泡改質產 物(1.5%、3%、4.5%)之最大回脹應變量比較,結果發現日興土經 三種不同濃度 Na₂CO₃ 濕式浸泡改質後,最終回賬量均大幅度高於未 處理原礦約 2 倍之多,可見以 Na₂CO₃ 濕式浸泡此一程序改質日興土 可大幅提升日興土之最大回脹應變量。

圖 8.12 為日興土原礦及以三種不同濃度 Na₂CO₃ 乾式球磨混合改 質產物(1.5%、3%、4.5%)之最大回脹應變量比較,由其結果發現 日興土經三種不同濃度 Na₂CO₃ 乾式球磨混合程序改質後,各組濃度 的改質試體最大回脹應變量亦大幅度高於未處理原礦,顯示以 Na₂CO₃ 乾式球磨混合改質日興土確實可大幅提升其最大回脹應變 量。

圖 8.13 及圖 8.14 分別是日興土原礦及以六種不同濃度 Na₂CO₃ 乾式攪拌混合改質產物(低濃度:0.25%、0.5%、1%)(高濃度:1.5 %、3%、4.5%)之最大回脹應變量比較,結果發現日興土無論經由 較高或較低濃度的 Na₂CO₃乾式攪拌混合改質後,其最大回脹應變量 相較於未處理原礦均有大幅度提升,其中更以較低濃度中的 1%改質 試體達到最大回脹應變量(約 380%),相當於相同乾密度狀態下未 處理原礦的3倍之多,由此結果顯示以Na₂CO₃乾式攪拌混合改質日 興土確實能有效提升日興土之最大回脹應變量。

综合上述結果發現無論以何種程序對日興土進行添加 Na₂CO₃ 改 質均能有效且大幅地提升日興土之回賬潛能,顯示以 Na₂CO₃ 改質確 實能成功地提升國產日興土的競爭優勢。日興土回脹應變量之所以能 大幅度上升主要是因為原日興土礦物中之 Ca²⁺與 Mg⁺² 等可交換陽離 子被 Na⁺取代,使得鈣型膨潤土被置換成為鈉型膨潤土所致,此一試 驗結果與 Fripiat 等人的研究結果相符(1965)。

圖 8.11 日興土經不同濃度 Na2CO3 濕式浸泡改質後最大回脹應變量

圖 8.12 日興土經不同濃度 Na2CO3 乾式球磨混合後最大回脹應變量

圖 8.13 日興土經較低添加濃度 Na₂CO₃ 乾式攪拌混合後之最大回脹

應變量

圖 8.14 日興土經較高添加濃度 Na₂CO₃乾式攪拌混合後之最大回脹 應變量

8.3.2 Na₂CO₃ 改質特性

由於 Na₂CO₃ 的改質概念是利用高濃度的 Na⁺取代 Ca²⁺與 Mg²⁺等 可交換陽離子,使鈣型膨潤土被置換成鈉型膨潤土,因此在改質前後 及改質過程中其材料行為會產生一些變化,以下就日興土在改質前後 進行相關試驗結果中所觀察到的差異作一分析比較。

(1) 回脹歷時曲線型態

圖 8.15~圖 8.26 為日興土經由三種不同程序添加 Na₂CO₃ 改質產物之回賬歷時曲線,其中圖 8.15~圖 8.17 是濕式浸泡改質試驗結果、

圖 8.18~圖 8.20 是乾式球磨混合試驗結果、圖 8.21~圖 8.26 是乾式攪 拌混合試驗結果,綜合上述三種不同程序的試驗結果發現,無論以何 種方式添加 Na₂CO₃對日興土進行改質,其歷時曲線型態多屬於後期 上升型,且隨著添加濃度越高,後期上升的現象越明顯。所謂後期上 升是指在回脹歷時曲線上會出現兩次回脹應變量加速上升期,而最終 的整體回脹應變量主要由第二次回脹行為所貢獻,稱之為後期上升 型,此一回脹歷時曲線型態不同於過去的研究結果,是國內外文獻中 首見,造成此一線型主要研判應與日興土礦物組構及離子交換反應特 性有關。

Na₂CO₃改質日興土歷時曲線中的第一段回脹加速期是Ca型膨潤 土的主要回脹,但第二段回脹加速則是由於黏土礦物中之Ca⁺²被Na⁺ 取代形成Na型膨潤土所產生之主要回脹,會造成此一結果主要是因 為離子交換反應過程中發生遲滯現象所致。

日興土於離子交換過程中之所以產生遲滯效應主要是由於日興 土原礦的主要可交換陽離子為 Ca⁺²,而鈣的水合離子(Ca(H₂O)₆²⁺)會 與膨潤土表面產生氫鍵,形成擬結晶結構,如圖 8.27 中之 A 狀態, 此擬結晶結構由約 5 個 TOT 層組成,由於此擬結晶結構之形成,導 致擴散雙層僅能在擬結晶結構外表面發展,致使此時的試體(仍屬於 Ca 型膨潤土)在與水作用時,回賬能力受限,呈現第一段小幅度回

脹。由於 Ca⁺² 對黏土表面具有較 Na⁺強的親和力,故必須以較高濃度 的 Na⁺才可將原本吸附於日興土表面上的 Ca⁺² 置換出來,此一置換過 程中 Na⁺是以逐步取代的方式由外向內漸漸置換 Ca⁺², 如圖 8.27 中之 B、C 狀態,此一階段的置換反應時間與系統溫度及系統 pH 值有關。 就本研究結果發現所有置換反應均在 5~8 天內完成,置換期間回脹量 僅以極微小的幅度上升,致使歷時曲線上呈現一段平緩線型。置換反 應完成後,原 Ca 型膨潤土被改質成為 Na 型膨潤土,即黏土層間的 可交換陽離子以 Na⁺為主,由於 Na⁺與水反應時可呈現完全水化的狀 態,故此時黏土礦物會形成所謂分散結構,如圖 8.27 中之 D 狀態。 之後黏土礦物隨即進行滲透回脹,進行滲透回脹時水分子可完全進入 黏土層間,將黏土片完全分散,致使黏土礦物可產生大量回脹應變, 即歷時曲線上出現的第二段主要回脹應變(陳文泉, 2003; Madsen, 1989; Marcial 等, 2002; Summer and Swction, 2000)。

圖 8.15 日興土經 1.5% Na₂CO₃ 濕式浸泡改質後之回脹歷時曲線

圖 8.16 日興土經 3% Na₂CO₃ 濕式浸泡改質後之回脹歷時曲線

圖 8.17 日興土經 4.5% Na₂CO₃ 濕式浸泡改質後之回脹歷時曲線

圖 8.18 日興土經 1.5% Na₂CO₃乾式球磨攪拌改質後之回脹歷時曲線

圖 8.19 日興土經 3% Na₂CO₃乾式球磨攪拌改質後之回脹歷時曲線

圖 8.20 日興土經 4.5% Na₂CO₃ 乾式球磨攪拌改質後之回脹歷時曲線

圖 8.21 日興土經 0.25% Na₂CO₃乾式混合攪拌改質後之回脹歷時曲線

圖 8.22 日興土經 0.5% Na₂CO₃ 乾式混合攪拌改質後之回脹歷時曲線

圖 8.23 日興土經 1% Na₂CO₃乾式混合攪拌改質後之回脹歷時曲線

圖 8.24 日興土經 1.5% Na₂CO₃ 乾式混合攪拌改質後之回脹歷時曲線

圖 8.25 日興土經 3% Na₂CO₃乾式混合攪拌改質後之回脹歷時曲線

圖 8.26 日興土經 4.5% Na₂CO₃ 乾式混合攪拌改質後之回脹歷時曲線

圖 8.27 回脹遲滯效應示意圖 (陳文泉, 2003)

(2) XRD 分析

日興土於不同 Na₂CO₃ 濃度添加量下,以乾式球磨混合及乾式攪 拌混合改質後,經 X 光繞射分析儀分析,其繞射圖譜如圖 8.28、8.29 所示,繞射峰經由 JCPDS 進行比對發現無論以乾式球磨混合或乾式 攪拌混合的產物,其所含的礦物大致上仍與日興土原礦無異,且整體 圖譜線型與原礦相似,顯示以添加 Na₂CO₃對日興土進行兩種改質程 序不至於改變原主要礦物組成。

圖 8.28 不同濃度 Na₂CO₃ 乾式球磨攪拌改質後之 X 光繞射圖譜

圖 8.29 不同濃度 Na₂CO₃ 乾式混合攪拌改質後之 X 光繞射圖譜

(3) 熱重分析 (TGA)

日興土經由添加不同濃度 Na₂CO₃ 以乾式攪拌混合改質後其產物 之熱重分析結果如圖 8.30 所示,由 TGA 曲線可知,試樣約於室溫到 110 之間開始產生第一次質量損失,此為黏土礦物中自由孔隙水的 脫除;450 ~600 之間產生第二段急遽下降曲線為膨潤土之結構水 移除所致;第三段重量損失仍與原礦相同,約發生於700 ~880 之 間,此一重量損失是黏土礦物中的 CaCO₃燒失所致。表 8.1 為日興土 改質前後熱重分析 (TGA) 變化表,綜合上述圖表發現,日興土在經 由不同濃度 Na₂CO₃ 以乾式攪拌混合程序改質後,其熱重損失的發生 溫度及失重百分比與原礦相近,顯示改質後的產物其材料性質與日興 土原礦相近,具有相同狀態之熱穩定性。

圖 8.30 日興土於 Na2CO3 乾式攪拌混合改質前後之樣品 TGA 曲線

	TGA 曲線變化情形					
-	第一段重量損失 第二段重量損失		第三段重量損失			
礦物種類	自由孔隙水移除	結構水移除	CaCO3 移除			
原礦						
台灣日興土	室溫~120	450~600	700~880			
美國 BH 膨潤土	室溫~100	600~780				
物理改質						
乾篩法	室溫~120	450~600	700~880			
濕篩法	室溫~120	450~600	700~880			
化學改質						
酸活化	室溫~120	450~600				
鹼活化	室溫~120	450~600	700~880			
離子交換改質						
添加 Na ₂ CO ₃						
乾式球磨混合	室溫~120	450~600	700~880			
乾式攪拌混合	室溫~120	450~600	700~880			
濕式浸泡	室溫~120	450~600	700~880			

表 8.1 日興土改質前後熱重分析 (TGA) 變化表

(4) pH 量測結果分析

日興土原礦及離子交換改質後的產物進行 pH 量測,其結果如表 8.2 所示,由表中數據發現,在試驗濃度下無論以何種程序的離子交 換改質產物其 pH 值均高於日興土原礦 (8.55),呈現鹼性狀態。

黏土礦物於分散程度相同的狀態下,溶液越呈現鹼性,可交換陽 離子交換容量越大。這是由於黏土礦物鋁氫氧八面體中的 Al-OH 鍵 是兩極的,在酸性環境下,氫氧根(OH))較容易解離,結果使黏土 礦物表面帶正電荷;相反的,在鹼性環境下,氫(H⁺)容易解離,進 而使黏土表面帶負電荷。此外,溶液中的氫氧根增多,它可以靠氫鍵 吸附於黏土礦物表面上,使表面負電荷增多,如此一來便可提升可交 換陽離子容量(趙杏媛,1990)。

表 8.2 日興土進行離子交換改質前後 pH 值變化情形

試體種類	原礦	Na ₂ CO3乾式球磨			Na ₂ CO ₃ 濕式浸泡			
		<u>1.50%</u>	<u>3%</u>	<u>4.50%</u>	<u>1.50%</u>	<u>3%</u>	<u>4.50%</u>	
pH 值	8.55	10.28	10.34	10.44	10.33	10.71	10.92	
試體種類	原礦	Na ₂ CO3 乾式攪拌			NaCl 濕式浸泡			
		<u>1.50%</u>	<u>3%</u>	<u>4.50%</u>	<u>0.5M</u>	<u>1M</u>	<u>2M</u>	
pH 值	8.55	10.36	10.45	10.53	9.62	9.57	9.53	

(5) 陳化時間(Aging Time)效應對改質成效之影響

Thompson 及 Way (1850) 認為陽離子交換行為具有快速交換的 特質(洪昆煌,1996),但亦有研究指出離子交換時程約需 48 小時。 本研究為了探討陳化時間效應對日興土改質成效的影響,於本節中分 別將日興土在添加 Na₂CO₃後當天及間隔三天、七天、十天、十四天、 二十一天、二十八天及四十二天的時間後進行回脹試驗;不同陳化時 間的改質產物亦進行阿太堡試驗及 pH 量測,以檢視其材料行為在不 同陳化時間作用下所產生的變化情形。

圖 8.31 為日興土經由 Na₂CO₃ 乾試攪拌混合改質後,其產物在不 同陳化時間作用下的回賬歷時曲線,由曲線可明顯看出日興土添加 Na₂CO₃ 改質後無論經過多長時間的陳化作用,其回賬曲線均屬於後 期上升線型,且第一次回脹應變量及開始發生二次回賬的時間大致呈 現一致狀態 (約 8000 分鐘,即進行浸水回賬試驗後的第五天)。

圖 8.32 為日興土經由 Na₂CO₃ 乾試攪拌混合改質產物(1.3g/cm³) 在不同陳化時間的最大回脹應變量變化,由圖中發現無論經過多長時 間的陳化作用,回脹試驗所得的最大回脹應變量均高於未處理原礦約 達三倍之多。

綜合上述可知日興土添加 Na₂CO₃ 改質後,無論經過多長時間的 陳化作用,其回脹曲線均屬於後其上升線型,顯示日興土礦物的離子 交換改質作用是在試體浸水之後才開始進行,此一結論同於單信瑜 (1997)所指出離子交換反應通常於液相環境中發生。此外,添加 Na₂CO₃ 以乾試攪拌混合程序對日興土進行改質後之產物,其最大回

脹應變量大小與陳化時間效應無關。

表 8.3 為日興土經添加 1%Na₂CO₃ 以乾式攪拌混合改質後於不同 陳化時間狀態下之 PI 值與 pH 值變化情形,由表中數值發現無論陳化 時間長短,其 PI 值與 pH 值均不會有太大差異,顯示以添加 Na₂CO₃ 對日興土進行改質並不會發生陳化效應,即日興土材料行為不會因陳 化時間不同而產生變異,由此也可再次驗證日興土最大回脹應變量值 不會因陳化時間不同而有所差異。

圖 8.31 日興土經添加 Na₂CO₃ 以乾試攪拌混合改質後於不同陳化時 間狀態下之回脹歷時曲線

陳化時間 (天)

圖 8.32 日興土經添加 Na₂CO₃ 以乾試攪拌混合改質後經不同陳化時間 所得最大回脹應變量變化

表 8.3 日興土經添加 Na₂CO₃以乾試攪拌混合改質後經不同陳化時間 所得 PI 值與 pH 值變化表

	陳化時間(天)							
量測項目	1	3	7	10	14	21	28	42
PI 值	30	29	30	30	29	29	30	29
pH 值	10.67	10.64	10.71	10.74	10.58	10.61	10.59	10.76

(6) Na₂CO₃ 溶液系統對日興土離子交換性質影響

透過以添加 Na₂CO₃、利用濕式浸泡改質程序改質後的日興土其回脹歷時曲線發現,以濕式浸泡程序改質的試體其第一次回脹完成時間少於以乾式球磨混合及乾式攪拌混合改質試體,其中以濕式浸泡程
序改質的試體於浸水後1小時開始發生第一次回賬,約1~2小時內完 成第一次主要回賬;其他二種改質程序試體雖亦於浸水後1小時開始 發生第一次回賬,但約需3~5天方可完成第一次主要回賬。且經由濕 式浸泡程序所改質的產物其第一次的回賬應變量也略高於其他二種 改質程序試體,其中濕式浸泡程序改質產物第一次回賬量約80% ~130%;其他二種改質程序試體的第一次的回賬應變量多在80%以 下。推論此一結果乃是由於日興土於進行濕式浸泡改質程序時,已先 初步(部分)進行了離子交換的動作,換句話說,即有部分土樣被改 質成為鈉型膨潤土,此一作用結果導致後來改質試體再與水接觸時, 其第一段的回賬量應變量略大於另外兩種乾式改質程序試體;同理, 因濕式浸泡改質時,日興土已先行進行改質動作,導致與水反應時其

為證實上述結論,本研究將日興土未處理原礦壓製成餅後,直接 置入不同濃度的 Na₂CO₃ 溶液中(0.01M、0.05M、0.1M、1M)進行 浸水回脹試驗,隨後觀察其最大應變量與回脹歷時曲線型態變化。

圖 8.32、圖 8.33、圖 8.34 及圖 8.35 為日興土未處理原礦置於不 同濃度 Na₂CO₃ 溶液系統中(0.01M、0.05M、0.1M、1M)的回賬歷 時曲線,由圖中發現其線型相較於前述三種改質程序所得之歷時曲 線,其歷時曲線線型不再屬於後期上升型態,而是偏向類似於標準 S

128

型態,造成此一差異主要是由於未處理原礦浸水後直接與 Na₂CO₃溶 液中的 Na⁺進行交換,使原來的 Ca 型膨潤土同時進行改質成 Na 型膨 潤土的反應及發生 Na 型膨潤土的主要回脹,導致歷時曲線不再出現 離子交換特有的遲滯現象。

圖 8.36 為日興土原礦置於不同濃度 Na₂CO₃ 溶液系統中之最大 回賬應變量。由圖中發現日興土於此溶液系統下最大回賬應變量,除 1M 濃度溶液系統的試體回脹應變低於未處理原礦外,其餘三種浸泡 濃度試體其最大回脹應變量均高於未處理原礦。1M 濃度溶液系統的 試體其最大回脹應變量之所以低於未處理原礦,主要是由於該系統中 的電解質濃度過高,壓迫擴散雙層,使黏土礦物的擴散雙層厚度減 少,導致其回脹應變量下降。綜合上述討論可再次驗證日興土的離子 交換反應確實需於液相中方可進行。

圖 8.33 日興土原礦置於 0.01M Na₂CO₃溶液系統中之回脹歷時曲線

圖 8.34 日興土原礦置於 0.05M Na₂CO₃ 溶液系統中之回脹歷時曲線

圖 8.35 日興土原礦置於 0.1M Na₂CO₃溶液系統中之回脹歷時曲線

圖 8.36 日興土原礦置於 1M Na₂CO₃溶液系統中之回脹歷時曲線

之最大回脹應變量

8.4 改質日興土在衰變熱狀態下之自由回脹

當處置場封閉後,在地下水尚未入侵前,因高放射性廢棄物衰變 熱導致廢棄物包件溫度升高,使周圍緩衝材料受其溫度影響,整個系 統如同乾燥加熱,為模擬此一狀況及檢視日興土經離子交換改質後產 物的熱穩定性,本研究將日興土經由 Na₂CO₃乾試攪拌混合程序改質 後粉末進行高溫加熱處理,探討在地下水入侵前衰變熱對於日興土混 合 Na₂CO₃製成緩衝材料之回脹行為影響。

由於國外對於處置場設計溫度要求需低於100 ,以防止衰變熱 對處置系統產生劣化作用,且依據 KBS-3 與 AECL 之設計指出預期 緩衝材料之最高溫度將低於 100 ,依據 BWIP 設計指出包裝材料 (packing material)的尖峰溫度可能增加到 150 (Cho, 2000)。故本研究 以 200 及 300 對日興土經離子交換改質產物進行高溫預熱處理。

圖 8.37 及圖 8.38 分別是日興土經 Na₂CO₃ 乾試攪拌混合程序改質 後土樣以 200 及 300 乾燥加熱後所得之最大回脹應變量,試驗結 果發現以改質試體於 200 受熱作用後,其最大回脹應變量仍均高於 未處理原礦,且以添加濃度為 3%之試體回賬增加幅度最大,約 155 %,顯示日興土經 Na₂CO₃ 乾試攪拌混合程序改質後之土樣,其於 200 前之熱穩定性仍為良好。反觀改質試體於 300 受熱作用後之 回賬結果,發現除添加濃度 4.5%之改質試體其最大回賬應變量大於 未處理原礦外,其於兩組均小於原礦,顯示混合 Na₂CO₃後之土樣, 受 300 以上之溫度加熱後,熱穩定性下降,使回賬能力受到影響。

圖 8.39、圖 8.40、圖 8.41、圖 8.42、圖 8.43 及圖 8.44 分別為 Na₂CO₃ 乾試攪拌混合程序改質後之土樣經 200 及 300 乾燥加熱後的回賬 歷時曲線,其結果發現以 200 預熱後之試體回賬歷時曲線均屬於後 其上升型;而以 300 預熱後之試體回賬結果,除 4.5%添加濃度之 試體曲線明顯屬於後期上升型外,其餘二添加濃度的後期上升效應均 不明顯,顯示混合 Na₂CO₃後之日興土受 300 溫度作用後可能無法 順利進行離子交換。

133

圖 8.38 日興土經 Na₂CO₃ 乾試攪拌混合程序改質後以 200 乾燥加熱 所得之最大回脹應變量

圖 8.39 日興土經 Na₂CO₃ 乾試攪拌混合程序改質後以 300 乾燥加熱

所得之最大回脹應變量

圖 8.40 日興土經1.5% Na2CO3 乾試攪拌混合程序改質後以200 乾燥

加熱所得之回脹歷時曲線

圖 8.41 日興土經 3%Na2CO3 乾試攪拌混合程序改質後以 200 乾燥

加熱所得之回脹歷時曲線

圖 8.42 日興土經 4.5% Na₂CO₃ 乾試攪拌混合程序改質後以 200 乾燥 加熱所得之回脹歷時曲線

圖 8.43 日興土經 1.5% Na2CO3 乾試攪拌混合程序改質後以 300 乾燥

加熱所得之回脹歷時曲線

圖 8.44 日興土經 3%Na₂CO₃ 乾試攪拌混合程序改質後以 300 乾燥 加熱所得之回脹歷時曲線

圖 8.45 日興土經 4.5% Na2CO3 乾試攪拌混合程序改質後以 300 乾燥

加熱所得之回脹歷時曲線

第九章 結論與建議

9.1 結論

緩衝材料是高放射性廢棄物深層地質處置場的安全貢獻來源之 一,因此確認候選緩衝材料的工程特性是高放射性廢棄物處置計畫的 重要環節。本研究主要目的即在建立緩衝材料工程特性的實驗室試驗 方法,並與其他國家候選材料的試驗結果比較。本研究使用的材料包 括台東日興土與美國 BH 膨潤土。

(一) 材料性質方面:

- 日興土的液性限度與塑性限度與法國的 FoCa 膨潤土相近,相 較於其他不同的鈉型膨潤土則明顯偏低。
- 2. 日興土的化學成分與法國的 FoCa 黏土成分較為類似。
- 日興土為鈣型膨潤土為主的膨潤土,美國土的可交換陽離子為以Na⁺離子為主的膨潤土。

X 光繞射圖譜顯示日興土的非回脹性礦物含量較高於美國土。
 (二)力學強度性質:

- 本研究藉由雙曲線模式、莫耳-庫倫破壞準則與 Hoek Brown 經驗破壞準則構建緩衝材料的力學強度分析方法。
- 2. 黏土材料的力學強度與其所處的環境有很大的關係,尤其是水

的作用。因此在量測力學參數時,也必須考慮水的效應。

- 本研究蒐集彙整各國緩衝材料力學性質的研究,但影響黏土材料的因素眾多,且不同試驗所模擬的背景也不同,因此其數值 大小並無法直接進行比較。
- (三)熱傳導性質:
 - 緩衝材料的熱傳導係數量測法包括穩態法與暫態法,各有其優 缺點,其中暫態量測方法與深層處置場現地條件較為一致。
 - 各國候選緩衝材料的熱傳導係數值,其範圍值約在 0.6~1.0
 W/mK。
- (四)回脹性質:
 - 日興土在 30℃水熱環境下最大回賬量,約僅有美國土的七分 之一。
 - 2. 造成日興土與美國土兩種膨潤土回賬量巨大差異性主要可歸因於下列三點:(1)黏土含量:日興土的粘土質含量僅26%, 而美國土黏土質含量高達60%;(2)非回賬性礦物:日興土含高量的含鐵礦物與含鈣礦物,會妨礙回賬行為的發展;(3)可交換陽離子種類與含量:日興土的主要可交換陽離子為鈣離子,在水溶液中會發展出擬結晶結構,美國土的主要可交換陽離子為鈉離子,在水溶液中會發展出分散結構,回賬行為不會

(五) 改質活化:

- 酸活化改質產物的回脹應變量低於未處理原礦,主要是高濃度 的H⁺離子將黏土層間的可交換陽離子置換出來,降低擴散雙 層厚度。
- 2. HCl 活化日興土確實可改善其表面性質、提升其比表面積。離 子交換改質方式對日興土回賬量的提昇功效最大,改質產物之 回賬應變量最大提升效果約達未處理原礦達三倍之多。
- 3.利用離子交換方法對日興土進行改質時,陳化時間因素不會影響其改質成效。綜合陳化時間對改質成效影響及 Na₂CO₃溶液 系統對日興土離子交換性質影響兩項試驗結果,證實日興土需 於液相環境下方可迅速進行離子交換反應。
- 9.2 建議
 - 本研究針對幾項重要的緩衝材料工程性質進行試驗與分析方法 的探討,但處置場的近場系統複雜,所需考量的工程性質遠較本 報告多(如核種遲滯性、長期穩定性、與其他近場單元的交互作 用等),建議未來應持續針對其他工程特性進行探討。

- 2. 建立緩衝材料的品質規範是緩衝材料相關研究的首務,建議國內相關的經營者應提出類似日本 H12 報告的整體研究規劃,作為國內相關研究的總則,並參考國外研發經驗提出緩衝材料的相關工程性質要求,將有助於工程障壁相關研究的推動。
- 3. 自從民國九十二年通過「放射性物料管理法」後,我國的高放射 性廢棄物最終處置計畫正按部就班的推動。然綜觀以往數十年的 高放計畫推動歷程,對於重要的安全貢獻因子如緩衝材料、廢料 包件等所規劃的研究內容份量有限,考量高放處置作業為一長程 研究計畫,工程障壁相關的研究規劃有必要強化。

參考文獻

- 王欣婷,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研
 - 究」,國立中央大學土木工程研究所碩士論文,中壢 (2003)。
- 王澤明、周鳳歧、馬小凡、邱立民,「膨潤土的提純及應用研究」,非 金屬礦物,第二十二卷,第三期,第19-20頁,大陸(1999)。
- 牛炳昆,「膨潤土提純研究」,化工礦物與加工,第八期,第 6-8 頁 (1999)。
- 汪信寶、陳文泉、黃偉慶,「日興土活化改質方法對其回脹性質之效 應」,第十屆大地工程學術研究研討會論文集(二)(2003)。
- 李德河、許琦、周墩堅,「泥岩剪力強度特性研究」,行政院國家科學 委員會防災科技研究報告 77-70 號(1989)。
- 洪昆煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,土壤化學,國 立編譯館(1996)。
- 黃偉慶、葉佐仁、盧俊鼎,「放射性廢棄物處置場回填材料之工程性 質」,核子科學,第三十八卷,第二期,第107-118頁(2001)。
- 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊, 第三十七期、第44-54頁(2000)。
- 莊文淵,土壤材料之核種遷移吸附特性試驗與研究,核能研究所內部 報告,INER-T2443 (1998)。
- 陳文泉,「高放射性廢棄物深層處置場緩衝材料之回脹行為研究」,國 立中央大學土木工程系博士論文,中壢(2004)。
- 單信瑜,「放射性廢料處置場緩回填材料物性及化性之介紹」,放射性 廢料最終處置核種遷移與水文地質相關技術訓練研習會(第二期) (1997)。
- 趙杏媛、張有瑜,「黏土礦物與黏土礦物分析」,海洋出版社,北京

(1990) •

萬鑫森,基礎土壤物理學,國立編譯館(1991)。

- 歸鳳鐵、陳強、侯海山,「高純鈉基膨潤土備製新工藝研究」,非金屬 礦,第二十二卷,第四期,第36-37頁,大陸(1999)。
- Al-Homoud, A. S., Basma, A. A., Husein Malkawi, I. H., Al Bashabsheh, M.A.,(1995). "Cyclic Swelling Behavior of Clays." *Journal of Geotechnical Engineering*, 121, 7, 562~565.
- Basma, A. A. (1994). "Effect of methods of drying on the engineering behavior of clays." *Applied Clay Science*, 9, 151-164.
- Bohn, H. L., McNeal, B. L., and O'Connor, G. A.(1985). Soil Chemistry,2nd ed., John Wiley & Sons, New York.
- Breu, J., Range, K.J., Kohler, E.E., and Wagner, U. (1993). "Oxidation state of iron at the interface of composite basal lining systems." *Applied Clay Science*, 8, 313-320.
- Basma, A.A., Al-Homoud, A.S., and Husein, A.(1995). "Laboratory assessment of swelling pressure of expansive soils." *Applied Clay Science*, 9, 355-368.
- Bray, H.J., Redfern, S.A.T., and Clark, S.M.(1998). "The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study." *Mineralogical Magazine*, 62(5), 647-656.
- Calvet, R., and Prost, R.(1971). "Cation migration into empty octahedral sites and surface properties of clays." *Clays and Clay Minerals*, 19, 175-186.
- Cho, W.J., Lee, J.O., and Kang, C.H.(2000). "Influence of temperature

elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository." *Annals of Nuclear Energy*, 27, 1271-1284.

- Dufreche, J.F., Marry, V., Bernard, O., and Turq, P.(2001). "Models for electrokinetic phenomena in montmorillonite." *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 195, 171-180.
- Dakshanamurthy, V.(1978). "A new method to predict swelling of expansive clayey soils." *Geotechnical Engineering*, 9, 29-38.
- Duncan, J.M., and Chang, C-Y., 1970, "Nonlinear analysis of stress and strain in soils," *Journal of the Soil Mechanics and Foundations Division*, ASCE,96,(SM5).1629~1653.
- El Rayah, H.M.E., and Rowell, D.L.(1973). "The influence of iron and aluminium hydroxides on the swelling of Na-montmorillonite and the permeability of a Na-soil." *Journal of Soil Science*, 24, 137-144.
- Egloffstein T.(1996). "Bentonite as sealing material in geosynthetic clay liners." *Geosythetics: Applications, Design and Construction*, 799-806.
- Fripiat, J. J., Cloos, P., and Ponclelet, A.,(1965). Comparaison entre les proprietes d'echange de la montmorillonite et d'une resine vis-à-vis des cations alcalines et alcalineo-terreux, I., Reversibilite des processus," *Bull. Soc. Chim. Fr.*, 134-137.
- Fripiat, J. J., Cloos, P., and Ponclelet, A.,(1965). Comparaison entre les proprietes d'echange de la montmorillonite et d'une resine vis-à-vis des cations alcalines et alcalineo-terreux, I., Reversibilite des processus," *Bull. Soc. Chim. Fr.*, 134-137.

Igwe, C.A., Akamigbo, F.O.R., and Mbagwu, J.S.C.(1999). "Chemical

and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability." *Geoderma*, 92, 111-123.

- Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B.(2001). "Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions." *Journal of Geotechnical and Geoenvironmental Engineering*,127(7), 557-567.
- Janbu, N., 1963, "Soil compressibility as determined by oedometer and triaxial tests," European Conference on Soil Mechanics and Foundation Engineering, Wissbaden, Germany,1,19~25.
- Komine, H., and Ogata, N.,(1999). "A trial design of buffer materials from the viewpoint of self-sealing." Proceeding of Radioactive Waste Management and Environmental Remediation, ASME.
- Kondner, R.L., 1963, "Hyperbolic stress-strain response: Cohesive soils," Journal of the Soil Mechanics and Foundations Division, ASCE, 89, (SM1), 115~143.
- Levy, R., and Francis, C.W.(1975). "Demixing of sodium and calcium ions in montmorillonite crystallites." *Clays and Clay Minerals*, 23, 475-476.
- Madsen, F. T., and Muller-Vonmoos, M.,(1989). "The swelling behavior of clays." *Applied Clay Science*,4,143~156.
- Maes A., and Cremers, A.,(1975). "Cation-exchange hysteresis in momtmorillonite: A pH-dependent effect." *Soil Science*,119, 198-202.
- McBride, M.(1994). Environmental chemistry of soils, Oxford University Press, New York.
- Marcial, D., Delage. P., and Cui Y. J.(2002). "On the high stress compression of bentonites." *Canadian Geotechnical Journal*,39,

812-820.

- Norrish, K.(1954). "The swelling of montmorillonite," *Discussions of the Faraday Society*, 120-134.
- Nblal,(1993). "Swelling pressure in expansive soils." Eleventh Southeast Asian Geotechnical Conf., 4-8 May, Singapore,141-146.
- Nayak, N.V., and Christensen, R.W.(1971). "Swelling characteristics of compacted expansive soils." *Clays and Clay Minerals*, 19, 251-161.
- Nblal,(1993). "Swelling pressure in expansive soils." Eleventh Southeast Asian Geotechnical Conference., 4-8 May, Singapore,141-146.
- Onal, M., Sarikaya, Y., Alemdaroglu, T., and Bozdogan, I.,(1985). "The effect of acid activation on some physicochemical properties of a bentonite." *Turkish Journal of Chemistry*,26,409~416.
- Poncelet, G. M., and G. W. Brindley,(1967). "Experimental formation of kaolinite from montmorillonite at low temperature." *Journal of the Mineralogical Society of America*,52,1161-1173.
- Prost, R., Koutit, T., Benchara, A., and Huard, E.(1998). "State and location of water adsorbed on clay minerals: consequences of the hydration and swelling-shrinkage phenomena," *Clays and Clay Minerals*, 46(2), 117-131.
- Radhakrishna, H.S. and Chan, H.T.(1989). "Thermal and physical properties of buffer-backfill materials for a nuclear fuel waste disposal vault." *Canadian Geotechnical Journal*.26,629-639.
- Sivapullaiah, P.V., Sridharan, A., and Stalin V.K.(1996). "Swelling behaviour of soil-bentonite mixtures." *Canadian Geotechnical Journal*, 33,808-814.
- Singhal, J. P., Singh, N., and Singh, R. P., (1977). "Hysteresis and

reversibility in calcium ammonium exchange in bentonite," *Journal* of Indian Chemistry Society, 54, 555-559.

- Seed, H.B., Woodward, R.J., Jr., and Lundgren, R.(1962). "Prediction of swelling potential for compacted clays." *Journal of the Soil Mechanics and Foundations Divison, ASCE*, 88(SM3), 53-87.
- Sato, T., Watanabe, T., and Otsuka, R.(1992). "Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites." *Clays and Clay Minerals*, 40(1), 103-113.
- Sumner, M.E. (2000). Handbook of soil science, 1st ed. CRC, USA.
- Summer, M. E., Swction G.,(2000). Interdisciplinary Aspects of Soil Science. Hanbook of Soil Science, 1st ed. CRC, USA.
- Thompson, H. S.(1850). "On the Absorbent Power of Soils." *J. Royal Agr. Soc*.11,68-74.
- Tabikh, A. A., Barshad, I., and Overstreet, R.,(1960). "Cation exchange hysteresis in clay minerals." *Soil Science*,90,219-226.
- Van Bladel, R., and Laudelout, H.,(1967). "Apparent irreversibility of ion-exchange reactions in clay suspensions." *Soil Science*,104, 134-137.
- Yildiz, N., and Calimli, A.(2002). "Alteration of three turkish bentonites by treatment with Na₂CO₃ and H₂SO₄." *Turkish Journal of Chemistry*, 26, 393-401.