行政院原子能委員會

委託研究計畫研究報告

龍門核電廠穩定性分析研究

Investigation into stability characteristics of Lungmen NPP

計畫編號:1012001INER006

受委託機關 (構): 財團法人核能資訊中心

計畫主持人:謝昌倫 博士

共同主持人:施純寬 教授

聯絡電話: 03-5727991

E-mail address:clhsieh@ess.nthu.edu.tw

核研所聯絡人員:林浩慈 博士

報告日期: 2012年11月20日

日錄

• •
IV
. V
. 1
. 2
. 3
3
4
5
. 9
9
.10
.11
.12
.13
.16
.17

	2.時域方法	18
	3.頻域方法	19
	(四)拉塞爾-不穩定事件後的影響與研究	21
	(五) BWROG 長期穩定性解決方案	24
ニ、	、龍門電廠的改進措施	25
	(一)針對爐心運轉安全性的主要改進措施	26
	(二)針對爐心運轉穩定性相關的主要改進措施	27
三、	、LAPUR6.0 方法論	28
	(一) LAPUR6.0 程式簡介	32
	1.可變流動面積的輸入卡號與應用方式	34
	2.加入計算局部壓降功能的輸入卡號與應用方式	35
	(二) SIMULATE-3 使用說明	35
	(三) PAPU 使用說明	37
	(四) EXAVERA 使用說明	38
	(五) DRASM 程式使用說明	39
四、	、 廠商的穩定性分析方法	41
	(一)ODYSY 程式簡介	42
	(二) ODYSY 計算程序的設定簡介	44

(三) ODYSY 穩定性方法論與分析	.45
叁、主要發現與結論	93
一、LAPUR 分析結果與 ODYSY 比較	.93
二、龍門電廠與金山、國聖電廠之穩定性分析的比較	.93
三、龍門電廠改進措施對相關重要參數的影響	.94
(一)入口收縮係數改變對於壓降的影響	.95
(二)不同型式沸水式電廠入口收縮係數與壓降的比較	.97
(三)流動面積改變對於密度反應度係數的影響	.97
(四) 不同型式沸水式電廠流動面積與密度反應度係數的比	七
較	.98
(五) 較多的汽水分離機對於爐心壓降的影響	.99
四、龍門電廠穩定性改進措施對穩定性的影響	.99
津、参考文獻 1	.14
五、附錄1	.14

表目錄

表 2.1 雙相流不穩定性分類	47
表 2.2 各類參數狀態對穩定性的影響	48
表 2.3 實驗方法之研究論文統計表	49
表 2.4 時域方法之參考論文統計表	50
表 2.5 頻域方法之參考論文統計表	51
表 2.6 研究方法優缺點比較	52
表 2.7 BWR 不穩定事件表	53
表 2.8 LAPURX 每次分析需要更動的卡號	54
表 2.9 LAPURW 每次分析需要更動的卡號	55
表 2.10 LAPURX 卡號 58~62	56
表 2.11 LAPURX 卡號 63~66	57
表 2.12 SIMULATE-3 擾動設定	58
表 3.1 LAPUR6.0 與 ODYSY 比較	101
表 3.2 三座不同型式電廠爐心相關重要參數	102
表 3.3 不同型式的三座沸水式電廠衰減率的比較	103
表 3.4 入口收縮係數對於不同型式的三座沸水式電廠影響比較 .	104

圖目錄

圖 1.1 BWR 爐心中子動力循環與熱流循環耦合機制7
圖 2.1 流體入口流速與入口次冷度的影響(BWR4) 59
圖 2.2 熱功率的影響 60
圖 2.3 系統壓力的影響 61
圖 2.4 入出、口節流限值的影響62
圖 2.5 功率分佈形狀的影響63
圖 2.6 格架對系統穩定性的影響64
圖 2.7 由 Dodewaard 穩定性圖譜區分第一型與第二型不穩定 65
圖 2.8 衰減率與無因次參數 Zuber no. 的關係 66
圖 2.9 衰減率與無因次參數 Subcooling no. 的關係 67
圖 2.10 衰減率物理意義圖示
圖 2.11 DESIRE 實驗裝置簡圖 69
圖 2.12 實驗裝置 SIRIUS-F 模擬 ABWR 電廠
圖 2.13 不穩定區域的功率-流量圖譜
圖 2.14 核一廠一號機功率/流量圖上禁區範圍的示意圖 72
圖 2.15 控制棒節距示意圖

圖	2.16	SIMULATE-3 的輸入檔編輯示意圖	74
圖	2.17	LAPURX 輸出結果-壓降分布	75
圖	2.18	LAPURX 輸出結果-通道流量與系統總壓降	76
圖	2.19	LAPURW 輸出結果-密度反應度係數	77
圖	2.20	LAPURW 輸出結果-同相與異相衰減率	77
圖	2.21	輸出檔 CAIDAS. OUT	78
圖	2.23	SIMULATE-3 的燃料軸向區間資料	80
圖	2.24	設定完成之 LAPURX 卡號 58~62	81
圖	2.25	SIMULATE-3 的燃料格架資料	82
圖	2.26	設定完成之 LAPURX 卡號 63~66	82
圖	2.27	EXAVERA 運算的流程圖	83
圖	2.28	EXAVERA 驗證	84
圖	2.29	尋找區間與間隔之示意圖	85
圖	2.30	找出最大衰減率之流程圖	86
圖	2.31	DRASM 程式的操作介面	87
圖	2.32	DRASM 結果產生畫面	88
圖	2.33	DRASM 產生的輸出檔	89
圖	2.34	DRASM 程式在 LAPUR6.0 方法論中所包含的範圍	90

圖	2.3	5 新)	汳 DRA	SM 程	式的礼	見窗	介面	••••	••••	••••	•••	•••	•••	•••	. 91
圖	2.3	6 新周	e DRA	SM 程i	式的輔	俞出 約	吉果礼	見窗	介面		•••			•••	. 92
圖	3.1	龍門	電廠	與其他	2不同	型式	气电腐	反穩定	定運車	專邊	界的	比較	ξ		105
圖	3.2	三座	不同	型式電	廠入	口收	縮係	數與	; 單相	壓陷	≧的!	北較	••	•••	106
圖	3.3	三座	不同	型式電	廠壓	降比	與衰	减率	的比	較.	•••			•••	107
圖	3.4	國聖	電廠	全長棒	與半	長棒	對空	泡分	率的	影響	影比真	較.			108
圖	3.5	國聖	電廠	全長棒	與半	長棒	對密	度反	應度	係婁	と的!	北較	••	•••	109
圖	3.6	不同	型式	電廠全	、長棒	與半	長根	*對君	度减率	率的影	影響	比彰	ξ	•••	110
圖	3.7	不同	型式	電廠面	,積比	與密	医度反	こ 應り	度係婁	发的日	七較				111
圖	3.8	不同	型式	電廠密	医反	應度	き係婁	效與君	度减率	率的日	七較	•••		•••	112
圖	3.9	不同	型式	電廠全	面沸	騰壓	霆降 孽	見雙木	目壓陷	译的 日	七較				113

中文摘要

沸水式反應器在某些特殊情形下易導致不穩定性發生,此一類型的不穩定效應是結合了中子與熱流效應,在某些特定情況下是非常敏感的。本計畫是以興建中龍門電廠做為研究主體,希望藉由此一研究發展一套處理 ABWR 同相與反相不穩定性的產生機制、理論與控制方法。

此計劃是以 SIMULATE-3 與新版的 LAPUR6.0 程式結合,再 加入其他相關的程式,建立 LAPUR6.0 方法論,再以此方法論為頻 域的分析工具,探討並分析龍門電廠爐心的穩定性特質。為了要增 進並改善以 LAPUR 程式執行計算衰減率的過程,以過去所發展的 一套自動執行輸入參數與計算衰減率的程式-DRASM 為工具,確保 執行分析結果的正確性。

藉由所建立的 DRASM 自動執行程式,執行並計算衰減率,先 與廠家所提供的運轉邊界做衰減率比對,確定誤差的範圍。藉由核 一廠、核二廠與龍門電廠在相同功率/流量運轉點比較分析,確立 龍門電廠具有優異穩定性特質。接著再進行參數靈敏度分析,藉以 探究龍門電廠的改進措施的影響,研究龍門電廠具有較小的入水孔 徑,使爐心單相壓降增加,雙相壓降減少,另外在以加大爐心控制 棒節距的方式,爐心的流動機增加,以得到較低的密度反應度係 數;這些改進措施大大增進系統的穩定性。

1

Abstract

Under certain operating conditions, just like other BWRs, Lungmen NPP (ABWRs) should be reasonably assumed that the power oscillation is susceptible to the coupling of neutron-thermohydraulic instabilities. For the purpose of investigating the characteristic of Lungmen, a well developed methodology-LAPUR6.0 methodology is used to study the stability analysis of this under construction nuclear power plant in this research.

LAPUR6.0 and SIMULATE-3 codes were deployed to establish a process to conduct the stability analysis. LAPUR6.0 methodology is based on these two codes and plus several interface programs, to analyze reactor core instability characteristics. For the sake of improving calculation process, an automatic program to perform LAPUR6.0 methodology–DRASM used to analyze stability characteristic in the research.

Moreover, the Lungmen NPP has adopted lots of design features, trying to improve the reactor stability. As for exploration to the effectiveness of these advanced designs, the study also contributes to compare the neutronic-thermohydraulic parameters versus power/flow operating points among different type of boiling water reactors. The results of the study indicate that for a given operation power/flow point, the decay ratio for Lungmen NPP is always smaller due to the neutronic-thermohydraulic parameters from the use of advanced designs.

壹、計畫源起與目的

一、沸水式核反應器穩定性特性

沸水式核反應器是以輕水作為冷卻劑,此一類型的反應冷卻 劑的主要功用有二:(1)作為冷卻劑(2)作為中子緩和劑。反 應器動態循環操作模式主要是由兩個特殊且相互作用的動力循 環迴路所構成;分別為主導熱的產生的中子迴路(neutronic loop) 與熱流,控制熱傳遞率、冷卻劑密度以及反應器爐心的流量分布 的熱水力迴路(thermal-hydraulic loop)。這兩種交互作用的動力循 環機制,是藉著中子緩和劑的密度相依性產生。改變冷卻劑密度 就會使爐心中子通率改變,導致功率產生變化又轉而影響冷卻劑 的密度。

水進入反應器爐心後,溫度逐漸接近飽和狀態且有部分蒸氣 產生。系統壓力如果上升會使得爐心部分的蒸氣氣泡體積減少, 因而使冷卻劑密度增加;冷卻劑密度的改變會引起流量與功率產 生改變。上述每一過程皆可視為伴隨時間響應並做回饋,使得冷 卻劑的密度有新的變化。流量發生改變是經由水力藕合 (hydraulic coupling)發生在全體入、出口通道冷卻劑的密度擾 動。綜合上述整個爐心的不穩定性是由兩個具有互相影響的迴路 所驅動:中子迴路與熱水力迴路是藉由與密度相關的水的功率與 杜卜勒效應(Doppler effect)的反應度變化所驅動。如圖 1.1[1] 所示。

此外依據中子通量震盪是否擴及整個反應器爐心或是只侷 限於一半的爐心區域,而區分為同相(Fundamental mode, In-phase)或是異相的不穩定性(First subcritical mode, Out-of-phase)。由於異相不穩定性所特有的局部大震盪振幅, 而爐心整體做平均功率量測後的振幅,可能並未顯現震盪的現 象,如圖 1.2[2]所示。異相的不穩定性有別於整個爐心的震盪又 可稱為區域震盪模式(Regional mode oscillation),是一種因為 中子與熱流耦合的回饋反應,而產生與空間有相依存關係的現 象。這類由於中子通量震盪而侷限於部分爐心區域,或是遍佈整 個爐心區域的這類現象,亦為沸水式反應器所特有的。

二、計畫源起

沸水式反應器(BWR)在某些特殊情形下易導致不穩定性發生,此一類型的不穩定效應是結合了中子與熱流效應,在某些特定情況下是非常敏感的,甚且有可能引起不穩定事件的發生,這也是沸水式反應器所特有的,且應持續關注的重要議題。龍門電廠是屬於進步型沸水式反應器-ABWR,為商用沸水式核能電廠

當中最新的設計。雖然其反應器設計與製造為美國奇異公司,但 美國目前沒有 ABWR 機組,現今全世界僅日本東京電力公司 (TEPCO)的柏歧刈嶼電廠有兩座 ABWR 機組運轉中,因此; 龍 門電廠一號機與二號機是全世界目前唯一即將試運轉的進步型 沸水式反應器。進步型沸水式反應器是國內近二十多年來首度新 建並即將試運轉的核電廠; 在美國有許多核能組織與機構希望能 提出永遠的解決方案: 『確保因功率震盪而超過燃料運轉設計極 限的情形不會發生或是發生時能易於被偵測且能迅速被控制與 壓制下來』,基於上述的理念,發展龍門電廠的穩定性分析研究 計畫。

三、計畫目的

目前國外專門針對進步型沸水式反應器的穩定性特質分析 的研究文獻並不多見,且國內相關研究亦甚為稀少,因此需要深 入探究進步型沸水式反應器的試運時的穩定性特質,作為爐心穩 定性分析結論的依據。為了提昇營運績效與加強運轉安全,龍門 電廠(進步型沸水式反應器-ABWR)其設計上有許多地方依據傳 統輕水式反應器之理念作了某種程度的改善。因龍門電廠嶄新之 安全設計,對國內而言尚屬陌生,但是在某些特殊情況下,但是

5

沸水式電廠所特有的-因為中子與熱流效應所引起的不穩定,仍 是需持續關注的重要議題。爲充分瞭解龍門電廠爐心燃料裝填後 試運轉的穩定性,此一研究計畫除了透過爐心穩定分析和廠商所 提供的運轉邊界做驗證之外;也將龍門電廠與金山、國聖等同類 型但不同型式的沸水式反應器做相關重要參數(例如:密度反應度 係數、壓降、入口損失係數...)做比較研究分析,藉以深入探悉 龍門電廠的穩定性特質。

圖 1.1 BWR 爐心中子動力循環與熱流循環耦合機制

Fundamental Mode

First Subcritical Mode

圖 1.2 同相震盪與異相震盪示意圖

貳、研究方法與過程

龍門電廠是屬於進步型的沸水式反應器,因龍門電廠嶄新之安 全設計,對國內而言尚屬陌生。因此,爲充分瞭解龍門電廠爐心燃 料裝填後試運轉的穩定性,此一研究計畫的實行是由探詢相關的研 究文獻作為開端,接著探究龍門電廠的改進措施,藉以了解龍門電 廠改進措施對於其穩定特質的影響。然後採用LAPUR方法論驗證 改進措施對於龍門電廠穩定特質的影響,經由與廠商所提供的分析 結果比對,以及國內不同型式的沸水式電廠的參數比較分析,既能 確保分析結果的正確性,也可深入探究龍門電廠的穩定性特質。植 因於上述的分析邏輯,此一章節著重於了解龍門電廠的改進措施與 研究方法的確立,介紹LAPUR方法論與其相關的應用程式,同時 也陳列廠商所使用的ODYSY程式;所有的分析與比較的結果將在 下一章節-"主要發現與結論"中做完整的敘述。

一、文獻回顧

拉塞爾電廠事件的發生,給核能界人士對沸水式反應器穩定分析,帶來積極的啟發性;也使得在過去20年來一直有許多學者從 事相關研究,過去已有許多學術論文與研究計畫針對傳統沸水式 反應器作爐心的穩定性分析與研究;但針對新型的核反應器 -ABWR所做的穩定性分析與研究仍甚為稀少。目前國外針對 ABWR-進步型沸水式反應器發表的論文大都偏向於安全事故分 析,而針對反應器爐心穩定性分析所發表的研究論文仍較少。在 2005年法國亞維儂所舉行的核能國際會議(NURETH11),日本 學者Masahiro Furuya (Masahiro Furuya et al., 2005) [3]以所設計 的實驗裝置SIRIUS-F來模擬ABWR爐心熱流與中子耦合機制的 穩定性分析,此一研究主要是針對整體爐心的穩定性做分析。在 2006於日本名古屋所舉行的第十五屆核子工程國際會議(ICONE 15) 學者Masahiro Furuya (Masahiro Furuya et al., 2007) [4]接續 先前所發展的實驗裝置SIRIUS-F,但以時域為分析基礎運用自回 歸模型(Auto-Regressive)的方法,檢視實驗裝置所產生的頻率並 計算ABWR異相衰減率。也因為進步型沸水式反應器與傳統沸水 式反應器所引發同相(Global Mode)異相(Regional Mode)不 穩定性的原因與機制相同,因此一些過去重要的相關研究論文仍 具有啟發性與參考價值,茲將相關重要研究論文與相關穩定性之 研究分析歸納羅列於下:

(一)不穩定的類型

在沸水式反應器中雙相流不穩定性具有主導性的因素,而此

一類型又是屬於系統的不穩定性。依照文獻所研究,常將雙相 流的不穩定性區分為靜態不穩定性與動態不穩定性。簡言之, 靜態不穩定性是一種可以用穩態定律或方程式預測的不穩定 性;而動態的不穩定性則是必須採用與時間相關的暫態方程式 能預測的不穩定性。表 2.1 是波瑞(Boure et al., 1973) [5]等,所 歸納出來的各種靜態與動態不穩定性及其機制與特性所做的 分類。至於沸水式反應器則是屬於動態不穩定性,此一類型的 流動不穩定性會由反應器功率經由空泡的反應度藕合在一 起;而形成複合型的動態不穩定性(compound dynamic instability)。

(二) 沸水式反應器穩定性的影響因素分析

沸水式反應器的爐心有為數可觀的燃料棒,其存在徑向的獨立 水力行為;但在入、出口(爐心頂部與底部)具有互相影響的 關係。此一存在的現象使得爐心燃料通道(劃分區域)易受冷 卻劑密度波的不穩定性影響。在爐心入口的壓力擾動會產生流 量的擾動,且因為流經通道而轉換成隨時間變異的冷卻劑密度 波。這些密度波會導致靜態軸向壓降的擾動,燃料棒的壓降會 與空泡分率有莫大的依存關係。上述的現象可用兩種在爐心交 互影響的回饋機制來討論:也就是熱水力回饋機制與中子回饋 機制;並且會在爐心流量與熱功率製造振盪。所以以下的章節 分別針對影響沸水式反應器穩定性的各類因素做分析;分別就 不同的動力循環機制以及與衰減率的相關的參數做討論:

1.熱流動力循環

考慮熱流動力循環,影響穩定性的參數可歸納為:流體入口 流速、單相區;雙相區的壓力降、熱功率、系統壓力、入口 與出口節流限值、入口次冷度、功率分佈的形狀與其他參數 效應。 Park 等人[4],針對上述的穩定性參數利用頻域的方 法,以奈奎斯特圖作為分析工具;探討上述參數在圖上的曲 線距離實數軸(-1,0)的遠近,作為影響穩定性大小的參考 依據,如圖 2.1~圖 2.6 所示。此處是以數學與控制理論相結 合,因為奈氏曲線所代表的是開迴路的轉移函數的表示式 為:

G×H (2.1) 而整個控制系統的穩定性的分析必須使用閉迴路的控制系統,其相對應的的表示式為:

$$\frac{G}{1+G\times H} \tag{2.2}$$

G:系統轉移函數

H:测量系統轉移函數

所以當為奈氏曲線所代表的開迴路的轉移函數愈接近-1 時,會愈易造成(2.2)式中的分母發散,而使系統愈不穩定。 最後將前述與熱流相關的參數,其對穩定性的影響,予以整 理成表 2.2。

2.中子動力循環

考慮中子動力循環所產生的不穩定性影響因素;此一因素可 由下列的論文中歸納出,在中子動力循環主要是藉由空泡反 應度來呈現其影響性。學者 Fukuda 與 Kobori[7]在 1979 年 所發表論文指出如何區分兩種存於沸水式核反應器的不穩 定性機制;第一型密度波不穩定性:指由於重力壓降所主導 的不穩定性;第二型密度波不穩定性:指在爐心,由單相與 雙相間的相互作用的摩擦所主導的不穩定性。

爲了界定第一型與第二型的密度波不穩定性,學者潘欽博士 於 1994 年所提出以無因次參數(Zuber no. & Subcooling no.)[8,9]所建構的穩定圖譜,並且藉以區分第一型與第二型 的密度波不穩定性,並由此後廣為採用。Zuber no. 以及 Subcooling no. 的定義如下:

13

$$N_{Zu} = \frac{P}{\phi \Delta h} \frac{(\rho_l - \rho_g)}{\rho_g}$$
(2.3)

$$N_{sub} = \frac{T_{sub}c_p}{\Delta h} \frac{(\rho_l - \rho_g)}{\rho_g}$$
(2.4)

(2.3)與(2.4)式中,各個參數符號所代表意義如下:

h: 混合流體熱焓

ρι: 液相的密度

- ρg: 蒸氣相的密度
- Φ: 冷卻劑的質量流率
- cp: 常壓下的比熱
- T_{sub}:冷卻劑入口次冷度

N_{Zu}: Zuber no.

N_{sub}: Subcooling no.

Van Der Hagen (1997)[10]探討自然循環的沸水式反應器獲 致,中子回授對於第二型的密度波不穩定性(常發生在高功 率與低流量的狀態),會有增加的效應;使得系統的共振頻 率會到一個較高的狀態,此一現象對於強制對流循環也有相 同的影響。對於 Zuber no. 以及 Subcooling no.在穩定圖譜 的區分與範圍可參考圖 2.9,至於這些無因次參數對於穩定 性的影響,則可由圖 2.7 與圖 2.8 其對衰減率的關係可以看 出其相對應的趨勢。

Nayak, Vijayan,(2002)[7]等人提出遲延中子對於第一型的密 度波不穩定性與第二型的密度波不穩定性,會有強烈的影 響;並指出空泡分率(void fraction)、燃料溫度以及燃料時 間常數會影響中子回授。March-Leuba 等人(1983)[1] 率先就 可能影響爐心運轉穩定的各種因素作全域分析,並且以密度 反應度係數(density reactivity coefficient, DRC) 作為主要的 參考指標。

由前述的論文回顧中可發現,針對沸水式反應器的穩定性分 析,一般皆以衰減率做為衡量的標準。此處針對衰減率以圖 2.10[12]來做簡單而易於明瞭的說明,也就是當系統運轉中 其震幅的比值。若是如圖 2.12 所示,振幅 B 小於振幅 A, 則代表前後振幅比值小於 1,系統是屬穩定狀態;反之若是 振幅 B 大於振幅 A,則代表前後振幅比值大於 1,系統是屬 不穩定狀態。為了評估且控制爐心的不穩定性,歸納出不穩 定較易發生在高功率與低爐心冷卻劑流量的情形。傳統上是 以量測爐心的功率與流量圖譜中選取某些特定點測得其衰 減率 (decay ratio),這些特定點的衰減率一般是經由平均 功率監視器 (Average Power Range Monitor : APRM)與局部 功率監視器(Local Power Range Monitor:LPRM)來做偵測 與決定。經由實驗量測衰減率發現,在全域(同相(in-phase)) 震盪模式與區域(異相(out-of-phase))震盪模式中全域會具 有低衰減率與高振幅訊號的特質,而區域則具有高衰減率與 低振幅訊號。也因此衰減率較適用於異相模式中,來作為界 定不穩定性區域的良好指標。 Cheristofer M. Mowry [13]的 研究顯示,爐心的穩定性是由該區域的空泡分佈(void distribution)所主導,而這一現象是由功率與流量的操作圖 譜所調控。Christofer M. Mowry 提出主要五項因素會嚴重影 響空泡分佈:爐心流量、爐心功率、軸向通量的形狀、爐心 與進口的次冷度;而這些因素皆會與爐心衰減率有相依的函 數關係。如方程式(2.5)所示:

 $DR_{core} = f \{AP_i, RP_i, P, W, DHS\}$ (2.5)

(三)研究方法

研究密度波震盪的方法一般可分為實驗方法、時域方法與頻域 方法。在 1988 年美國拉塞爾電廠二號機所發生的不穩定事 件,吸引全世界許多學者對沸水式反應器的注意與研究觀念的 改變。許多學者希望用時域方法與頻域方法以模式化的方式來 處理不穩定性的問題。

早期的實驗方法首推 Anderson(1970)[14]所提出流阻 (hydraulic impedance)的概念,希望用來當作預測沸水式環路 穩定性的分析工具;並利用電加熱器、震盪器及其他附屬管 路,建立沸水環路流阻測量系統,由量測數據來驗證其理 論。 Carmichael & Niemi(1978)[15] 和 Woffinden & Niemi(1981)[16]分別對 Peach Bottom 核能電廠二號機組之 第二燃料循環(Cycle 2)、第三燃料週期(Cycle 3)作暫態及穩 定性測試。所得到的數據資料對於用來驗證 BWR 穩定性分 析程式,有極大幫助。Enomoto 等人(1985)[17]利用電熱棒 束來模擬 BWR 平行管路中燃料束、格架及入口節流係數, 找出流體開始震盪之起始功率。Kruijf [18] 以 Freon-12 為工 作流體,利用所設置的 DESIER 裝置(依據比例將自然循環 的 Dodewaard 沸水式核電廠縮小),以幾何相似理論來模擬 **沸水式反應器的自然循環,來探討密度波的穩定性的性質。** 其實驗裝置如圖 2.13 所示。日本學者 Masahiro Furuya[3]以 所設計的實驗裝置 SIRIUS-F 來模擬 ABWR 爐心穩定性分 析,如圖 2.14 所示的實驗裝置,為了模擬並藉以印證 ABWR

17

的穩定性。表.2.3 則是將以實驗方法為研究依據,所做的相關文獻回顧與整理。

2. 時域方法

以時域為主的分析方法最早是 Meyer & Rose (1963) [19] 將飄 移通率的守恆方程式,由微分型式改成有限差分型式,利用 電腦程式 XITE-1 求解並預測出震盪行為。此篇論文並指出 動量積分法(momentum integral)的分析能力遠比通道積分法 (channel integral)或拉格朗日座標法(Lagrangian coordinate) 強,但其缺點為程式計算時間長,花費昂貴。 Yokomizo (1983)[20] 建立沸水式反應器爐心穩定性分析時域程式;考 量了平行通道、燃料棒徑向熱傳、燃料通道接近次冷態的準 平衡狀態的熱水力、再循環水動力。其分析結果顯示,對於 有限小振幅的擾動,爐心的震盪行為接近線性;但是必須有 花費較大的時間去做收斂運算。同時在循環的水頭擾動,會 對於空泡分率的相與振幅造成嚴重影響。March-Leuba 等人 (1984)[21]為了瞭解 BWR 在非線性不穩定區域之動力行 為,因而發展 BWR 非線性分析模式;包含了空泡反應度耦 合回饋機制、單一遲延中子群之中子動力、燃料棒熱傳導及 在循環迴路動力行為; 並配合 Vermont Yankee 測試數據求

得非線性模式的重要參數。Takigawa(1987)[22]以 STANDY-2程式,分析 Caroso 電廠的不穩定事件,藉由三 維空間的中子模式與多通道的熱流分析模式,驗證程式對於 異常事件發生的解析與預測能力。表 2.4 則是將以將此處所 參考的時域方法為研究依據,所做的相關文獻回顧與整理。 此外 Yunlin Xu 和 Thomas Downar(2009)[37]等人利用 TRACE 結合 PARCS 來分析沸水式電廠的穩定性,利用下 面三個方法產生擾動之後再利用後處理程式 DRARMAX 從 TRACE/PARCS 的輸出檔中算出衰減率跟頻率。

(1)控制棒(中子)的擾動:在 PARCS 模型中快速移動控制棒 再放回原來的位置。

(2)壓力(熱流)的擾動:在TRACE 模型中的蒸氣管路加入一個小的擾動。

(3)爐心內雜訊的模擬:利用基礎、第一方位或隨機的雜訊 組件之疊加產生瞬間的緩和劑密度回饋擾動。

3. 頻域方法

以頻域分析的方法首推由 Wallis & Heasly(1961)[18] ,利用 此一方法去分析三種簡化模式的穩定性問題,既自然對流環 路、加熱管的震盪和平行管的震盪;並利用奈奎斯特(Nyquist) 圖判定穩定與否。Lahey & Moody(1977)[19]將頻域方法應用 到 BWR 穩定性分析;利用均質模式,分析整個 BWR 流體 環路穩定性問題,由奈奎斯特圖判定穩定與否,找出穩定性 圖譜。到了 Saha & Zuber(1978)[20]以飄移通率模式,考慮 二相間熱不平衡及次冷沸騰區,用頻域方法分析管流中不穩 定現象,由 D-區分法找出穩定性圖譜。由 Wallis & Heasly Lahey & Moody 再到 Saha & Zuber 逐漸建立頻域分析完整的 分析脈絡,其後的相關研究文獻,其頻域理論大都植基於上 述的理論。

為了要達到『確保因功率震盪而超過燃料運轉設計極限的情 形不會發生或是發生時能易於被偵測且能迅速被控制與壓 制下來』的要求,在反應器爐心燃料重新裝填過程,一般皆 以頻域模式作為應用數值計算的工具;最主要原因是因為此 一方法非常適合用於預測衰減率。這類計算模式通常使用點 中子動力學的估算方法來評估,根據基本的中子通量模型分 析爐心區域(同相)的震盪。

綜上所述,因為爐心不穩定的現象主要是由中子因素(空泡 反應度)與熱流方面(密度波傳遞)兩種回饋機制所支配; 所以衰減率可視為前述兩種回饋機制的重要指標。雖然衰減 率適用於推算區域的不穩定性,但區域的不穩定性被認知為 因中子的因素所引起,而中子回饋的預支配效能會低於爐心 的不穩定性,這是因為次臨界高模態與爐心尺度效應的熱流 回饋機制扮演主導的角色。以一個實用的角度來看,通常需 要以數值的方法預測潛在的區域震盪;或是在功率與流量的 函數圖譜中劃定不穩定的區域。這些工作較適合以線性頻域 的方法來做評估與計算界定。學者 March-Leuba [23]提出應 用 LAPUR 程式去處理根據理想的均質模式的次臨界點動力 模型。Hotta Akitoshi(2000) [38]等人由次臨界第一方位角模 式的衰減率,配合奈奎斯特圖與相關的功率形式做為參考指 標,推論出軸向功率動量距離加權的權值觀念。表 2.5 則是 將以將此處所參考的頻域方法為研究依據,所做的相關文獻 回顧與整理。表 2.6 是以上三種研究方法的優缺點,做一概 括性的比較。

(四)拉塞爾-不穩定事件後的影響與研究

BWR 熱流穩定性事件最早於 1982 年義大利的 Caorso 電廠[24] 在非穩定區域(圖 2.13)操作時,發生異相(Out-of-phase) 功率共振事件,直到 1988 年美國 LaSalle-2 電廠測試閥門時, 雖然在穩定區域範圍內運轉,但人為的開啟閥門產生的脈衝, 影響飼水控制系統,造成2個再循環泵浦跳脫,流量減少至自 然對流的情況,導致功率降低並且振盪,最後導致反應器急停 結果。因為此事件為在正常運轉的模式下突發的現象,引起了 美國核能管制委員會 (NRC) 與 BWR 電廠的重視[25]。其它 有關 BWR 熱流穩定性事件可參考表 2.7 [25,26,27],在表 2.7 中列述了至 2004 年為止共約 10 件不穩定性事件。

在 1988 年 3 月 9 日,美國 LaSalle-2 電廠測試閥門時,人為的 失誤造成兩個再循環泵浦跳脫,導致功率震盪。由於此一事件 給予學者一些新的研究方向,此後的研究重點主要在於試圖將 沸水式核反應器的不穩定性,希望透過時域與頻域的方法予以 模式化,並且找出所能安全運轉的操作區域。學者 March-Lebua(1990)[28]率先提出並且證明,爐心同相與異相的 振盪是取決於中子回授增益、入口流量回授增益。同時也有許 多學者透過時域、頻域的研究方法,將爐心振盪的問題做模式 化分析。時域方面主要有 Muto(1990)[29]是將與空間相依的爐 心暫態程式 STANDY 為基礎,模擬拉塞爾電廠的不穩定事 件;探究爐心震盪時的熱功率限值與其他參數的影響。 Araya(1991)[30]是利用 RETRAN 程式為分析工具,以點動態 模式出發,探究拉塞爾電廠事件中功率振盪與入口流量的控制 是非常重要的因素。此外王仲容博士與施純寬教授也針對爐心 以及肇始功率的振盪機制與發生做系列的研究[31],先由探究 各類參數效應對於系統穩定性的影響,接著由實驗中觀察雙相 流圖譜與振盪的機制;得出振盪的主要肇因為因為實驗狀況處 於流譜之彈狀流與攪拌流的過渡區而造成流譜變化的不穩 定。另外又藉助 RETRAN 程式的分析模式做校驗,並配合國 內核一與核二廠進行穩定性分析研究,參照 LaSalle 功率震盪 事故的分析結果,得到除非核二廠所使用的阻流板流阻係數很 小,否則在此類事故暫態下不易產生振盪[32,33]。

在拉塞爾電廠事件發生後,以頻域方式探討實際核反應器穩定 性分析,或是將所發展的理論與發生不穩定事件的核反應器作 比對;則更趨熱絡。目前有許多分析程式是根據頻域分析的理 論基礎,例如: STAIF 與 LAPUR。March-Leuba[28]以 LAPUR 程式,分析核電廠的實驗數據並與模擬結果驗證。Rao(1995)[34] 以爐心點動態模式,分析中子回授與熱流回授交互作用機制所 產生的不穩定性,並且評估相關參數的影響性,例如:爐心入 口流速、燃料時間常數...。Hatta & Takeuchi(1995,2000)[35,36]

23

共同發表兩篇以 Lapur 為分析工具,驗證 Ringhals 一號機的 區域不穩定性;並由次臨界第一方位角模式的衰減率,再配合 奈奎斯特圖與相關的功率型式作為參考指標,推出軸向功率動 量距離加權的權值觀念,並經由實際的測試驗證此一方法適用 於爐心與區域的不穩定模式。此外藉由衰減率的決定,來訂立 整個爐心的指標,並進而建立核反應器即時監控系統。國內目 前也採用 LAPUR 程式並建立其方法論,驗證爐心重新裝填時 廠商的裝填分析結果,此外藉由參數靈敏度分析得知熱流相關 參數如爐心壓降,中子相關參數如密度反應度係數具有重要的 影響性[40, 41]。此一研究計畫是採用 LAPUR6.0 方法論,深 入分析龍門電廠的穩定性特質。

(五) BWROG 長期穩定性解決方案

為了避免爐心發生穩定性的問題,BWROG(BWR owners group) 提出了以下幾種解決的方案,分別為建立禁區(exclusion region)、Quadrant-Based APRM Scram 和偵測與壓制 (OPRM-based detect and suppress)這三種。方案I是在功率流量 圖上建立一個禁區,此禁區為爐心較易產生不穩定振盪現象的 區域,故當電廠操作進入禁區時,應馬上利用急停或插入部分 控制棒的保護動作而離開禁區,以預防不穩定的振盪發生;圖 2.14 是核一廠運轉功率/流量圖[39],黑色的部分即為禁區。方 案 II 只對 BWR2 反應器有效,此種反應器具有四分之一爐心 的 APRM 系統(quadrant-based APRM system),能有效的偵測 出同相與異相振盪的產生。若爐心發生振盪時,利用急停的保 護動作,而排除爐心的不穩定現象。方案 III 是利用數群緊密 相連之 LPRM 信號,並將其以電子方式結合成 OPRM 格點信 號,此信號經由 option III 偵測演算邏輯決定何時需急停反應 器。其中最常使用的方法是建立禁區,目前國內的核一、核二 與龍門電廠是採取方案 I 和方案 III 併行的方式來預防不穩定 的現象發生。

二、龍門電廠的改進措施

龍門核電廠是屬於進步型沸水式反應器,其與傳統的沸水式 反應皆是以輕水作為冷卻劑,此一類型的反應冷卻劑的主要功用 有二:(A).作為冷卻劑,(B).作為中子緩和劑。反應器動態循環 操作模式主要是由兩個特殊且相互作用的動力循環迴路所構 成;分別為主導熱的產生的中子迴路(neutronic loop)與熱流,控 制熱傳遞率、冷卻劑密度以及反應器爐心的流量分布的熱水力迴

25

路(thermal-hydraulic loop)。沸水式反應器在某些特殊情形下易導 致不穩定性發生,此一類型的不穩定效應是結合了中子與熱流效 應,在某些特定情況下是非常敏感的。相較於傳統的沸水式反應 器,ABWR 此一類型的反應器所做的改良方針主要是針對提升 經濟效益、提升運轉發電與維護性能與強化可靠性與安全性等三 個主要方向作改革。此處根據龍門電廠

- (一)針對爐心運轉安全性的主要改進措施
 - 根據核四的訓練教材[42]所述,與爐心運轉安全性有關的主要 改變為:
 - (1) 基於保守的應力限值、運轉經驗及實驗測試,確認直接熱交換循環之爐壓(約70.3 Kg/cm²)最為適當,可以 降低護套溫度與應力。
 - (2) 採取低冷卻水的溫度,高熱傳導係數,及中性的爐水水質之策略,以降低鋯合金護套的溫度並減少因溫度 過高而引起的護套腐蝕與氫化現象,以達到高燃耗燃 料之目標。此外,整個爐心燃料護套的溫度都相當接 近,可以減低氫化遷移現象並降低熱應力。
 - (3) 使用龐大的照射過燃料資料庫統計結果作為核燃料 之熱機(thermal-mechanical)設計的基礎。設計的熱通

量與最大線性熱產生率(GE12B 燃料為 13.4Kw/ft)業 已經過照射後核燃料數據驗証。

- (4)使用極保守的功率分佈做為爐心設計與安全分析的 基礎,以確保實際運轉週期之運轉彈性與可靠性。
- (5) 整個運轉週期中,燃料束的最高功率仍遠低於臨界功率限值。
- (6) 採用多部內部循環水泵取代傳統的再循環泵,提高運 轉可靠度。

(二)針對爐心運轉穩定性相關的主要改進措施

根據龍門電廠最終安全 FSAR[43] 第四章的所列舉的主要是下列四點:

(1)較小的注水口(Small inlet orifice)

會增加單相壓降(single-phase pressure drop),可改善爐心 與通道的穩定性。

(2)較大的控制棒節距(Wider control rod pitch)

使流體的流動面積增加,可減少負的空泡反應度係數(the void reactivity coefficient become less negative),可改善爐 心與通道的穩定性,如圖 2.15 所示。

(3) 較多的汽水分離機(More steam separators)

使雙相流壓降少,增加系統穩定性。

(4)自動的選擇性控制插棒 (Automatic SCRRI)

可防止電廠爐心運作進入較不穩定的第三區域(least stable region III)

上述的改進措施中較小的注水口與較大的控制棒節距,會 直接影響爐心的穩定性特質,因此會針對(1)與(2)的改進措施 以LAPUR 方法論為分析工具,比較國內金山電廠與國聖電場 的相關參數並作靈敏度分析深入探究龍門電廠的穩定性。

三、LAPUR6.0方法論

研究密度波震盪的方法可分為實驗方法、時域方法與頻域 方法。在1988年美國拉塞爾電廠二號機所發生的不穩定事件,吸 引全世界許多學者對沸水式反應器的注意與研究觀念的改變。許 多學者希望用時域方法與頻域方法以模式化的方式來處理不穩 定性的問題。因為沸水式反應器所具有的獨特不穩定性,一般都 會訂定一穩定運轉邊界以區隔並有效抑制不穩定事件的發生。因 此使用頻域的方法是最為有效且為NRC與BWROG所廣泛使 用,同時也是因為此一方法非常適合用於預測衰減率。目前針對 每次裝填燃料時必須分析評估反應度不穩定性,通道水動力不穩 定性;此外功率的操作範圍與界定震盪的合理振幅,一般皆須仰 賴尋求適當的衰減率(decay ratio)作為依據。上述的不穩定性與各
類動態參數皆可由LAPUR作分析,因爲LAPUR為一頻域計算程 式,主要在針對BWR電廠運轉穩定性做振幅衰減率分析。過去 所使用的LAPUR版本為 5.2,經過去年成功引進並發展新版 LAPUR6.0的方法論,使得新版程式能針對半長燃料棒做分析。

目前的LAPUR6.0分析過程可以劃分為五個部分,執行 SIMULATE-3、執行PAPU和EXEVERA、編輯LAPURX和 LAPURW輸入檔、比較LAPUR與SIMULATE-3的誤差、最後是 讀取LAPUR的輸出檔。

首先是執行SIMULATE-3,先選定要分析的功率/流量點和 燃耗值,接著編輯SIMULATE-3輸入檔,要修改的地方有三個: 1.功率、流量、壓力和入口次冷度,2.燃耗值,3.棒位圖,如圖 2.16所示。修改完後將輸入檔上傳到FTP然後執行 SIMULATE-3,最後會得到KINETIC、.U、.S三個輸出檔。PAPU 和EXEVERA是專門用來處理SIMULATE-3與LAPUR的熱流模 式差異性與中子模式差異性。因為核一、核二與核四所得到的 KINETIC檔格式會略有不同,所以要先將格式調成一樣另存成 infile 檔當作PAPU的輸入檔,最後執行PAPU得到輸出檔 papusal,輸出Doppler係數跟密度反應度係數表提供給LAPURW 輸入檔使用。EXEVERA能夠讀取.S檔,將爐心燃料束分區,輸 出每個分區的軸向功率、進口流量與K loss值,提供給LAPURX 的輸入檔使用。

在LAPUR6.0分析過程中,LAPURW的輸入檔編輯跟5.2版本 一樣,LAPURX的部分則是有新增卡號,其餘卡號也是維持跟 LAPUR5.2一樣。當執行運算所需的輸入檔都準備好之後,接著 就開始LAPUR程式的運算,先執行LAPURX.EXE進行穩態時的 初始化計算並且產生熱流爐心參數所需的資料映圖穩態,產生輸 出檔LAPURX.OUT和CAIDAS.OUT;再執行LAPURW.EXE決定 燃料傳輸函數、冷卻劑傳輸函數、冷卻劑動態參數、反應度回饋 與中子及系統的傳輸函數等,得到輸出檔LAPURW.OUT。此時 程式的執行順序需注意,一定要先執行LAPURX.EXE才可以執 行LAPURW.EXE,否則結果會出現錯誤。執行完之後,此時的 輸出檔還不是最後的結果,必須要先比較LAPUR和 SIMULATE-3的爐心壓力降、區域流量和爐心的密度反應度係數 的比較,以確保其誤差在規定的範圍內;依據西班牙IBERINCO 方法論規定的誤差範圍,爐心的壓力降為±2%、區域流量為 ±10%、爐心的密度反應度係數為±1%。假如爐心壓力降或區域 流量超出誤差範圍,則需要調整LAPURX輸入檔。以目前所使用 的12個通道來區分爐心燃料棒,假如是使用摩擦模型I,就必須

調整卡號37的三個摩擦倍率X1、X2、X3,其中X1是調整通道1 到10的摩擦壓降,X2是通道11,X3是通道12。如果是使用摩擦 模型II,則是調整卡號74-76,也就是公式(51)中的那三個參數 AJUSTAA、AJUSTAB、AJUSTAC,然後再執行LAPUR,再重 新與SIMULATE-3進行誤差比較,直到所有的誤差都在規定的誤 差範圍內。若是爐心的密度反應度係數超出誤差範圍,則必須調 整LAPURW的卡號28,也就是密度反應度係數倍率W,直到其 誤差在規定範圍內。

當三項誤差都符合誤差規定時,就可以讀取LAPUR的輸出 檔,這個輸出檔才是最後我們要的結果;LAPUR運算完之後會 得 到 三 個 輸 出 檔 LAPURX.OUT 、 CAIDAS.OUT 和 LAPURW.OUT。使用者可以從LAPURX.OUT裡面找到每個通道 的詳細壓降、沸騰起始點、功率、流量和乾度,還有許多參數(例 如壓降、乾度、空泡分率以及熱焓等)在沸騰區域的軸向分布, 如圖2.17和圖2.18所示;LAPURW的輸出結果包含爐心同相衰減 率、異相衰減率、通道衰減率、密度反應度係數以及分析的頻率, 如圖2.19和圖2.20所示。CAIDAS.OUT是LAPUR6.0新加入的輸出 檔,如圖2.21;由於LAPUR5.2是將未沸騰區域視為一個節點, 所以在LAPURX.OUT裡面只有沸騰區域的軸向數據,並沒有包 含進出口以及未沸騰區,因此LAPUR6.0多產生這個檔案紀錄各 種壓降、乾度以及其他參數的軸向變化,如此一來就可以與 SIMULATE-3進行軸向壓降分布的比較。圖2.22為目前的 LAPUR6.0分析流程圖。目前自動化程式DRASM的更新已經完 成,已將新卡號的編輯加入;以下的章節主要是針對方法論中各 個程式做介紹。

(一) LAPUR6.0 程式簡介

LAPUR 為美國橡木山國家實驗室(Oak Ridge National Laboratory, ORNL)針對沸水式核能電廠(BWR)所開發的一套 爐心穩定性分析軟體;可獨立執行於 IBM PC 相容之個人電腦 (PC)平台上。而在此的 LAPUR 方法論所論述及說明的則以 6.0 版為主,可簡稱為 LAPUR6.0。LAPUR6.0 由兩個獨立的模組 程式組成—LAPURX 與 LAPURW。其中, LAPURX 用在穩定 態(steady state)模組,用來處理冷卻劑與燃料的穩定態統御方 程式;LAPURW 用在動態(dynamics)模組,用來處理冷卻劑、 燃料與中子場在頻域上的動態方程式。為了考慮在分析時的熱 水流熱力反應度回饋詳細情形,其流程為先把資料寫入輸入檔 LAPURX.DAT 中,此輸入檔會由 LAPURX.EXE 執行,然後

產生輸出檔 LAPURX.OUT。LAPURX 可以完成穩態時的初始 化計算並且產生熱流爐心參數所需的資料映圖(maps),資料映 圖會儲存在兩個檔案裡面,所包含的資料檔會依序給 LAPURW 使用。LAPURX 產生的穩定態爐心參數資料包含: 每一個通道的通道流率、壓力降與出口乾度(或是功率),還有 沿著每一通道的每一節點的冷卻劑密度、空泡比(void fraction)、焓值、乾度、速度與摩擦組成因子,另外,還有每 組動態計算所需的係數。LAPURW 則決定燃料傳輸函數 (transfer function)、冷卻劑傳輸函數、冷卻劑動態參數、反應 度回饋與中子及系統的傳輸函數等。由於 LAPUR6.0 跟 LAPUR5.2 分析過程很類似, 且 LAPURW 的輸入檔編輯跟 5.2 版本一樣[44],主要的差異在於 LAURX.dat 的輸入卡號編 輯,表 2.8 和表 2.9 是隨著每次分析需要更改到的卡號,詳細 的卡號編輯過程可參考 LAPUR5.2 方法論的報告[7]。至於 LAPURX 中新版程式的輸入卡號,此主要是介紹針對可變流 動面積的輸入卡號與計算局部壓降功能的輸入卡號,新版的程 式有提共兩種不同的摩擦模式做選擇,根據一篇本研究團隊所 發表於 NUTHOS-9 的研究論文顯示,摩擦模型 I 會具有較大 的衰减率,因此僅針對摩擦模型I的輸入方式分述如下:

1.可變流動面積的輸入卡號與應用方式

在 LAPUR5.2 程式中,通道的流動面積是利用卡號 19 跟 20 指定,只能針對不同的燃料種類做改變,不能夠隨著高度改 變流動面積,因此在碰到具有半長燃料棒的燃料組件時,沒 有辨法有效的模擬,只能當成全部燃料皆為全長棒模擬,這 對於穩定性分析有不小的影響。而在 LAPUR6.0 中,透過新 增卡號的方式,加入了模擬不同高度具有不同流動面積的燃 料組件的能力。依據使用者手冊,有關可變流動面積的輸入 是在卡號 58 到 62, 如表 2.10 所示, 使用者需要輸入每個軸 向區間的高度以及相對應的流動面積和水力直徑。這部分的 設定在這邊是參考 SIMULATE-3 輸出檔,開啟.u 檔之後, 搜尋「BWR.ZON」, 選取 case2 的資料, 就會看到像圖 2.23 所示,它會詳細列出每個軸向區間的高度、流動面積、熱周 長和水力直徑,一一對應輸入 LAPURX 卡號 58 到 62 就完 成可變動流動面積的設定。要注意的是,因為 SIMULATE-3 設定燃料底部為高度 0,所以進口的地方高度是負的,而 LAPUR 是設定進口處高度為 0,所以在輸入高度的時候,

要把 SIMULATE-3 的值再加上進口到燃料底部的高度才是 真正的高度,設定完成的卡號 58~62 則如圖 2.24 所示。

2.加入計算局部壓降功能的輸入卡號與應用方式

LAPUR6.0 的特點之一可以計算由燃料格架(spacer)造成的 壓降,依據使用者手冊[47],有關局部壓降的設定是在卡號 63 到 66,如表 2.2 所示,使用者需要輸入每個燃料格架的 高度以及相對應的損失係數。這部分的設定仍然是參考 SIMULATE-3 輸出檔,開啟.u 檔之後,搜尋「Fuel Spacers」, 選取 case2 的資料,就會看到像圖 2.25 所示,每個燃料格架 的高度以及相對應的損失係數,一一對應輸入 LAPURX 卡 號 63 到 66 就完成局部壓降的設定,這邊的高度輸入一樣要 加上進口到燃料底部的高度才是真正的高度。設定完成的卡 號 63~66 則如圖 2.26 所示。

(二) SIMULATE-3 使用說明

SIMULATE-3 [48]是一套三維的爐心模擬程式,可用來分析計算在不同狀態下的爐心熱流與中子狀態、安全參數及進行爐心內燃料管理研究。在分析過程中使用 SIMULATE-3 程式

在不同的功率/流量狀態點下,進行中子與熱流的資料分析, 例如:計算組件依存洩漏量(assembly dependent leakage)與水泵 流量、爐心支撐板洩漏到旁通區域的量、爐心入口溫度、使用 不同的裂變產物選項來進行運算、特殊的控制棒組成等,分析 出來的資料數據將提供給後續步驟使用。另外利用 SIMULATE-3 運行反應度擾動計算,包含 Doppler、壓力與緩 和劑溫度的擾動;緩和劑溫度擾動數值必須小到足以再現入口 温度的擾動,但不能太小而發生計算的擾動誤差。壓力擾動範 圍將給予一相似的爐心平均密度變化,如同上述入口溫度擾動 一樣, SIMULATE-3 擾動設定如表 2.12 所示。SIMULATE-3 運算完畢後則會產生三個輸出檔,分別為.S 檔、.U 檔、KINETIC 檔,其中 KINETIC 檔提供給 PAPU 使用, S 檔提供給 EXAVERA 使用與計算密度反應度係數, U 檔則提供給 LAPURX 與 LAPURW 使用。簡單的說, SIMULATE-3 提供了 二項資料數據給 LAPUR 使用,第一項為在不同的狀態下所計 算出的爐心水流與中子狀態,第二項為經由一連串的反應度擾 動,所計算出的動態參數。

(三) PAPU 使用說明

PAPU[49]為 Valencia Polytechnic 大學的化工系與核工系 以 GPC 程式為基礎,而發展出的程式,是專門用來處理 SIMULATE-3 與 LAPUR 的熱流模式差異性與中子模式差異 性。因為 LAPUR 的中子是點動態模式,而 SIMULATE-3 是 二維或三維中子特性,而 PAPU 中有所謂的中子動態參數產生 器可以將 SIMULATE-3 的結果轉成 LAPUR 所需要的中子相 關數值,故利用從 SIMULATE-3 所得到的資料數據(KINETIC 輸出檔),可計算出 Doppler 與密度反應度係數而提供給 LAPUR 使用。PAPU 的輸入檔有五個:Infile、Papudat、 Ajustfile、Tempe、及 Tthfile。Papudat 提供一些選擇性的輸入; 而 Ajustfile 則調整參數的初始值、誤差範圍、及運算次數。其 中的 Tempe 與 Tthfile 則是非必須的輸入檔, 可省略。Infile 是 將 SIMULATE 的輸出檔更改檔名而得到的,其提供有關中子 動能與熱流的基本數據與擾動數據。Infile 之中含有三種參數 擾動:

(1)Doppler擾動(doppler perturbation, DDP),跟燃料溫度 有關。

(2)壓力擾動 (pressure perturbation, PRE),可提供計算反

應度密度係數與空泡分率變化。

(3) 緩和劑擾動(moderator temperature coefficient perturbation, MTC),就是中子對水直接加熱產生的擾

動,可提供計算密度反應度係數與空泡分率變化。

PAPU 的輸出檔有兩個: Papusal 與 Output。Papusal 為提供點 動能反應度係數,包括一個 Doppler 係數與密度反應度係數 表,分別以 CDOPP 與 REACTDE 名稱列出。其餘 LAPURW 不需要的計算結果則以 Output 檔案儲存。

(四) EXAVERA 使用說明

西班牙的 LAPUR 方法論是用 EXTRAF 程式來處理 LAPUR 和 SIMULATE-3 二者程式在熱流方面的差異,但是西 班牙並沒有提供 EXTRAF 程式,所以由核研所與清華大學施 純寬教授共同研發了 EXAVERA 程式[50],其目的就是在處理 SIMULATE-3 與 LAPUR 因運算模式不同所衍生輸出檔案格式 不同的問題。LAPUR 是以點動態模式分析中子,而 SIMULATE-3 則是具備有二維與三維的功能來分析中子特 性,若無適當的轉換輸出資料的處理程式,則由 SIMULATE-3 所輸出的資料檔,須經由人工輸入並做轉換排列格式與比對的 過程,再輸入 EXCEL 程式中做運算。以上的流程耗時且易有 錯誤產生,因此極需發展一套處理輸出資料的程式,以大幅縮 短時程且確保運算結果的正確性,確保處理與轉換資料過程的 正確、迅速與效率;圖 2.27 為 EXAVERA 運算的流程圖。 EXAVERA 程式的驗證可由圖 2.28 針對核二廠二號機 cycle17-功率/流量點: 88%P/60F%所做的驗證,針對最外圍燃料通道的 分區(ch6),可以證明此一程式所分析整理的結果與 EXCEL 整 理計算的結果相同。程式初期的研發主要是針對核一、核二 廠,後來又為了龍門電廠的爐心特性需求,將程式燃料分區功 能予以擴充,由六個分區增加到十二個分區,燃料的種類也能 依使用者需要自行擴增。目前 EXAVERA 的程式功能,已足 以應付國內三座沸水式核電廠的需求。

(五) DRASM 程式使用說明

因為LAPUR分析過程中的輸入檔編輯以及誤差範圍計算 都是以人工輸入與調整的方式來進行,再加上要不停比對誤 差,很容易發生人為疏失而對分析結果造成影響。因此,核研 所與清華大學施純寬教授合作,合力發展出了 DRASM(decay ratio automatically search method)程式,此程式能幫助我們自動

建立輸入檔,並找出符合誤差範圍的最大衰減率,大幅地減少 人為疏失與縮短分析時間。此程式是使用 Dev C++所撰寫, 整 個程式架構可以分為二個部分。第一部分將人工把參數輸入 LAPUR 輸入檔的過程改成由程式讀取檔案和寫入檔案的語法 達到電腦自動輸入至 LAPUR 輸入檔的目的。LAPUR 共有二 個輸入檔 LAPURX.DAT 和 LAPURW.DAT,首先建立 Olapurx.DAT 和 Olapurw.DAT 二個檔案當做範本讓程式複 製,當需要插入程式一開始抓出的參數時,複製就先暫停,待 參數插入後再繼續複製;另外在複製到 LAPURX.DAT 卡號 37 和 LAPURW.DAT 卡號 28 的位置時,先暫停複製插入 for() 迴圈提供的的摩擦倍率數值,最後再複製剩下的部份來完成輸 入檔。在進入 for()迴圈之前,程式會自動擷取 SIMULATE-3 的壓降、十二個通道的流量以及計算密度反應度係數所需的參 數並算出 SIMULATE-3 的密度反應度係數,之後再將 for()迴 圈內 LAPUR 跑出來的值與 SIMULATE-3 的值做比較, 若誤 差是在規定的誤差範圍內,則將此組數值寫入 result 檔中;如 超出誤差範圍,則在螢幕上顯示"out of range"。第二部分則是 誤差比較的過程,一開始先固定密度反應度係數倍率 W,只 試著調整出摩擦倍率 X1、X2、X3 的所有組合,等到找出發

生最大衰減率時的三個摩擦倍率後再調整 W,以此方式便可 以輕鬆的找到最大衰減率。而對於每一個倍率係數皆採取先用 大間隔(step)跑大區間(range),找到最大值發生的區間後再切成 更小的間隔去跑那個區間,圖 2.29 之示意圖以 x 為例子顯示 上述過程。由於 LAPUR 計算出來的衰減率只有到小數後第二 位,因此當倍率係數的間隔小到一個程度時,算出來的衰減率 就不會有太大變化,因此程式設定摩擦倍率跑到間隔 0.01、密 度反應度係數倍率跑到間隔 0.001 時即結束搜尋。每一個間隔 找到的倍率結果會顯示在 output 檔裡面,方便分析者檢視搜尋 的過程。詳細的搜尋流程圖如圖 2.18 所示,其操作書面、最 後的結果產生畫面與輸出檔如圖 2.30、圖 2.31、圖 2.32 與圖 2.33 所示。圖 2.34 是 DRASM 程式在 LAPUR 方法論中包含、 處理的範圍。此一程式已可直行新版的 LAPUR6.0 程式,完整 執行 LAPUR6.0 方法論。為了要增進 DRASM 程式的實用性與 操作簡易化,經由此一研究計畫投注部分人力發展屬於視窗介 面的新版 DRASM 程式,如圖 2.35 所示;所有的輸出結果, 也都以視窗介面方程呈現,如圖 2.36 所示。

四、廠商的穩定性分析方法

(一)ODYSY 程式簡介

ODYSY 是核四廠廠家使用的穩定性分析軟體,也是 GE 最佳的工程電腦程式,程式包含了一個反應器爐心與其所連接 的冷卻水循環系統具有的線性化與小擾動的頻域模式。 ODYSY 程式能分析單一通道與爐心(core-wide)的流體力學的 穩定性(hydrodynamic stability),也能分析熱流、動態因素造成 爐心的不穩定性與單一通道的熱流不穩定性。可應用於穩定性 長期解決方案、新燃料執照審核。ODYSY 是以 ODYN 暫態模 式為基礎的程式,包含了一個軸向一維動態模式。此外 ODYSY 具有軸向可變的空泡與 Doppler 反應度回饋(reactivity feedback),並且在燃料棒的模式化上具有一調適性(flexibility) 功能,此功能能讓程式去調整在燃料束幾何形態中的軸向變化 (axial variations)。此項調整軸向變化的能力使 ODYSY 能理想 的評估具有軸向可變幾何性(varying geometry)的燃料裝置的 穩定性。現今, GE 有 2 種模式可用來進行穩定性執照計算 (stability licensing calculations)。第一種為 FABLE, 是用來進 行禁區(exclusion region)計算的程式。FABLE 可應用在執照計 算上,例如:穩定性長期解決方法(stability long term solution Option)I-D、II 與進階項目 1-A(E1A) 。FABLE 也可以應用在 新的燃料執照上(需符合 GESTAR II 的 22 號修正案 (Amendment 22 of GESTAR II))。第二種為 ODYSY,可使用在 E1A 邊界形成與再負載驗證分析(reload validation analyses) 上。FABLE 是 GE 的工程電腦程式,以 REDY 暫態分析模式 為基礎的程式。ODYN 改良了暫態模式的精準性,故在精準性 上超越了 REDY。ODYSY 則改良了頻域模式化(frequency domain modeling),而在此部分也超越了 FABLE,故由上述可 知,ODYSY 是一個與 FABLE 相同的程式,且 ODYSY 的能 力比 FABLE 更為優越。GE 為了使 ODYSY 能取代 FABLE, 故製作了執照專題報告(LTR,licensing topical report); NRC 於 2001 年 4 月 20 日同意 GE 以 ODYSY 取代 FABLE。

ODYSY 超越 FABLE 的優點 :

- (1)ODYSY 的軸向幾何變化(axial geometry variation)提供較 多的進階燃料設計的精確模式化(accurate modeling)。
- (2) ODYSY 的一維動態模式有進行一改良行動,故超越了

FABLE 的點動態模式

- (3)ODYSY 的 exposure-dependent 計算提供了較精準的爐心 與熱通道衰減比率計算。
- (4)在 ODYSY 的爐心與熱通道衰減比率計算上,一個經驗的

輸出調整是不需要的。

(5)ODYSY 是操作在電腦平台上且可與 PANAC11 連接。

(二) ODYSY 計算程序的設定簡介

ODYSY 在 BWR 穩定性執照計算上保持了與 FABLE 相同 的性質。ODYSY 包含了點動態模式、燃料熱傳模式、通道熱 流模式與再循環系統模式。在設計參數與評估狀態的現象模式 化(phenomenological modeling)上 ODYSY 是高於 FABLE 的。 ODYSY 的衰減比率計算程序基本上如同 FABLE 一樣,除了 以下所敘述的:

(1) ODYSY 模式包含 Doppler 反應度回饋。

(2) ODYSY 程序不能使用 1.6 的間隙熱傳導倍率。

(3) ODYSY 的格架摩擦損失係數是建立在乾淨格架上。

- (4)至多 19 個通道群被使用在模式徑向功率分布上(model the radial power distribution)。
- (5)對 ODYSY 而言,一個經驗的(empirical)衰減比率調整是 不需要的。
- (6)為了計算最佳評估結果,ODYSY 程序設定了一個保守的 爐心衰減比率增加數值(adder)。

穩定性禁區的臨界參數是指爐心與通道衰減比率的計算,臨界 參數的值是由控制的物理現象決定的。為了要描述這些現象與 其對臨界參數所造成的影響,所以發展出了現象鑑定與分級表 (PIRTs, phenomena identification and ranking tables)。但由於現 象鑑定與分級跟事故的時間相關,且 ODYSY 不是時域模式, 故二者有相當程度的不同。因此 ODYSY 的頻域模式回應是建 立在設計參數 (design parameters) 與評估狀態 (evaluated conditions)上,所以可以從這二個觀點來發展 PIRT。 PIRT 的 發展只是在於將重要的現象在臨界參數上的影響分類, 無關於 程式是否有能力處理現象。

(三) ODYSY 穩定性方法論與分析

其流程大致如下所敘述:

- (1)選擇功率/流量點來進行衰減比率的評估。通常最嚴重的點(最大的衰減比率)是在 HFCL 與 NCL 的交會處。
- (2)利用 PANACEA 來得到週期(cycle)與燃耗 (exposure)的 資料以提供給 ODYSY 使用。
- (3)先進行 ODYSY 爐心與通道衰減比率的最佳評估計 算。

(4)增加 0.15 的一個保守的衰減比率相加數值(adder),來得

到衰减比率。

(5)在功率/流量圖上畫出分析的結果。

表 2.1 雙相流不穩定性分類

類	別	型式	機制	特性
靜態不	基本靜態不 穩定性	流衝或 雷 第 內 葛不穩定性	$\frac{\partial \Delta P}{\partial G}\Big _{int} \leq \frac{\partial \Delta P}{\partial G}\Big _{ext}$	流體經過一大振幅變 化突然進入一穩定狀 態
穩 定		沸騰危機(臨界 熱通率)	無法有效地自加熱表面 將熱量帶走	壁溫突然升高流動也 發生震盪
性	基本 鬆 弛 不 穩定性	流 場 型 態 轉 換 的不穩定性	氣泡流比起環形流有較 小的空泡但有較高壓降	循環性的流場型態與 流量變化
	複合式 鬆 弛 不穩定性	氣泡產生,衝流 或流塞	介穩態條件的週期性調 整,一般是因缺少成核 址	週期性的過熱與劇烈 的蒸發,可能有爆漲 與再填入
動	基本動態不 穩定性	聲波的震盪	壓力波的共振	壓力波在系統傳播與 時間相關的高頻震盪 (10~100Hz)
態不穩		密度波的震盪	與流量、密度及壓力降 相關之時間延遲與回饋	連續波在系統傳輸時 有 關 的 低 頻 震 盪 (1Hz)
定性	複合式動態	熱震盪	各種熱傳遞係數與流動 動態相互作用	發生於膜沸騰
	不穩定性	沸水式核反應 器不穩定性	空泡反應度、流體動態 行為與熱傳間相耦合的 交互作用	發生於低壓且具短時 間常數與低壓狀態
		平行通道不穩 定性	少數平行通道間的相互 作用	各種模式的流動重組
	次要現象複 合式動態不 穩定性	壓力降震盪	流衝初期動力作用,介 於通道與可壓縮體積之 間	極低頻的週期震盪 (0.1Hz)

影響參數狀態	對穩定性的影響
入口流速低	較不穩定
入口次冷度低	較不穩定
高功率	較不穩定
系統壓力較低	較不穩定
入口節流限值低	較不穩定
出口節流限值高	較不穩定
有格架的影響	較不穩定

表 2.2 各類參數狀態對穩定性的影響

作者	論文出處	貢獻與影響
Anderson,	Nucl. Appl. &	利用電加熱器實驗裝置,提出流阻
T.T., 1970	Tech., vol.9, pp.422-433	(hydraulic impedance)的概念,預測
	, 1970	沸水式環路穩定性。
Carmichael	EPRI NP-564.	作暫態及穩定性測試,所得到的數
& Niemi		據資料對於用來驗證 BWR 穩定性
		分析程式,有極大幫助。
Enomo,	Proceedings of the	模擬 BWR 平行管路中燃料束、格
et.al.	Third Int. Topical	架及入口節流係數,找出流體開始
	Meeting on Reactor Thermal	震盪之起始功率
	Hydraulics,	
Kruijf, et.al.	Nuclear Engineer	以幾何相似理論來模擬沸水式反應器
	and Design 229	的自然循環,來探討密度波的穩定性
	75-80, 2004	的性質
Masahiro	(NURETH-11),	以實驗裝置 SIRIUS-F 模擬 ABWR
Furuya	Avignon,	爐心,並確認此類型電廠具有極佳
	France, 2005	的穩定特性。

表 2.3 實驗方法之研究論文統計表

作者	論文出處	貢獻與影響
Meyer & Rose	J, Heat Trans. ASME, 1963	指出動量積分法(momentum integral) 的分析能力遠比通道積分法強。
Yokomizo	Nucl. Sci, and Tech., Vol. 20, pp. 63-76, 1983,	爐心的震盪行為接近線性,但是必須 有花費較大的時間去做收斂運算。同 時在循環的水頭擾動,會對於空泡分 率的相與振幅造成嚴重影響。
March-Leuba	Trans. Am. Nucl. Soc., Vol. 46, 1984	發展 BWR 非線性分析模式;包含了 空泡反應度耦合回饋機制、單一遲延 中子群之中子動力、燃料棒熱傳導及 在循環迴路動力行為。
Takigawa	Nucl. Tech., vol. 79, 210-218,1987	藉由三維空間的中子模式與多通道 的熱流分析模式,驗證程式對於異常 事件發生的解析與預測能力。
Araya, F., et. al.,	Nucl. Technol. 93, 82-90, 1991.	功率振盪與入口流量的控制是非常 重要的因素。

表 2.4 時域方法之參考論文統計表

作者	論文出處	貢獻與影響
Wallis &	J. Heat	分析三種簡化模式的穩定性問題,既自
Heasly	Transfer,	然對流環路、加熱管的震盪和平行管的
	ASME, pp.	震盪;並利用奈奎斯特(Nyquist)圖判定
	363-369, 1961	穩定與否。
Lahey &	American	分析整個 BWR 流體環路穩定性問題,
Moody	Nuclear Society,	由奈奎斯特圖判定穩定與否,找出穩定
	Hinsdale, I11.	性圖譜
	1977	
Saha &	Int. J. Heat	以飄移通率模式,考慮二相間熱不平衡
Zuber	Mass Transfer,	及次冷沸騰區,用頻域方法分析管流中
	Vol. 21, pp.	不穩定現象,由D-區分法找出穩定性圖
	415-216, 1978	i o
March	NUREG/CR-56	提出並且證明,爐心同相與異相的振
-Lebua	05, ORNL	盪,是取決於中子回授增益、入口流量
	/TM-1162,	回授增益。
	1990.	
Hotta	Nucl. Eng.	由次臨界第一方位角模式的衰減率,再
Akitoshi,	Design, 200,	配合奈奎斯特圖與相關的功率型式作為
et al.,	pp. 201-220,	參考指標,推出軸向功率動量距離加權
·	2000	的權值觀念。

表 2.5 頻域方法之參考論文統計表

	優點	缺 點
實	可實際觀察到不穩定的震盪	無法模擬到所有的實際情況;
驗	情形,所得的實驗數據可做為	費用龐大且費時。
方	評斷理論模式預測之正確性	
法	的参考基準。	
時	可以看系統隨時間變化的震	分析方法複雜,有時不易分辨
域	盪情形,了解系統的震盪現	數值與物理不穩定性,以及計
方	象,並且可以預測非線性的震	算結果往往仍須轉換成頻域才
法	盪行為。	能進一步分析。
頻	分析簡便;可容易找出系統穩	線性化過程需要假設震盪很
域	定性的圖譜。	小,在某些大振幅震盪下,可
方		能就不適用。此外,也沒有能
法		力分析發生不穩定的現象後的
		各種熱流現象。

表 2.6 研究方法優缺點比較

Power Plant	Year	Happening	Cause of Event	Oscillation
		Status		Туре
Caorso-Italy	1982	Start Up	Operation in unstable area	Out-of-
				phase
TVO 1-Finland	1987	Start Up	Loss of 1 feedwater	In-phase
			preheater	
LaSalle 2-USA	1988	Power	Trip of 2 recirc pumps,	In-phase
		Operation	loss of 1 feedw preheater	
Forsmark 1-Sweden	1989	Start Up	Operation in unstable area	In-phase
Ringhals 1-Sweden	1989	Start Up	Operation in unstable area	Out-of-phase
Oskarshamn 2-Sweden	1990	Power	Operation in unstable area	In-phase
		Operation		
Cofrentes-Spain	1991	Start Up	Low feedwater	Out-of-
			temperature	phase
Isar 1-Germany	1991	Power	Trip of 4 recirc pumps	In-phase
		Operation		
WNP 2-USA	1992	Start Up	Skewed radial and axial	In-phase
			power shape	
Laguna Verde 1-Mexico	1995	Start Up	Closure of the control	In-phase
			valves of recir pumps	
Forsmark 1-Sweden	1996	Start Up	Operation in unstable area	In-phase
Oskarshamn 3-Sweden	1998	Start Up	Operation in unstable area	
Oskarshamn 2-Sweden	1999	Start Up	A turbine trip with pump runback	
NMP-2, USA	2003	Start Up		
Perry, USA	2004	Start Up		

表 2.7 BWR 不穩定事件表

Card 1	PPSI	爐心壓力
	ENTBTU	爐心入口冷卻水焓值
	POWT	爐心熱功率
	WLBSHR	爐心流量
	CWBYP	在總流量中,爐心旁通流量所佔的分率
	CPROMP	在爐心熱功率中,中子與 射線直接對水加熱
		所佔的分率
	CPRBYP	同上,但為在旁通區域
	UNITS	使用單位選項,若為0則使用公制單位,為1
		則使用英制單位。
Card 5	POWN	節點的相對功率
Card 7	NPOW	核區域數目,即第IX熱區域屬於第IP功率區域
Card 9	FPOW	區域的相對功率
Card 10	ЕКСРМ	區域的入口收縮係數
Card 11	EKEPM	區域的出口收縮係數
Card 13	ZELP	從通道入口量起到壓力均勻點的高度(cm)
Card 14	NCH	區域的燃料束數目
Card 32	HGAPM	間隙熱傳導係數
Card 37	EKFM	軸向區間的摩擦倍率

表 2.8 LAPURX 每次分析需要更動的卡號

表 2.9 LAPURW 每次分析需要更動的卡號

Card 2	NCHXJ	通道數目(同LAPURX,卡號14)
Card 4	TAUPY	再循環時間常數
	GAINPY	再循環增益值
Card 7	BTFR	延遲中子衰減常數表
Card 8	XLAND	衰减熱常數表
Card 12	ELST	中子壽命表
Card 17	CDOPP	Doppler反應係數
Card 21	REACT1	密度反應係數表
Card28	REAMUL	密度反應度係數倍率

表 2.10 LAPURX 卡號 58~62

Card58	NXE(IX)	熱區域的數目,IX
	NDIMV	第 IX 熱區域可變流動面積的通道類型
Card59	NTDV	可變流動面積通道類型的數目
	NODV(NV)	可變流動面積通道軸向區間的數目
Card60	DZVM(NV,	可變流動面積 NV 類型通道第 I 個軸向區間的高
Cardoo	I)	度(cm)
Card61	AVM(NV, I)	可變流動面積 NV 類型通道第 I 個軸向區間的沸
		腾區域流動截面積(cm^2)
Card62	DEVM(NV,	可變流動面積 NV 類型通道第 I 個軸向區間的水
	I)	力直徑(cm)

表 2.11 LAPURX 卡號 63~66

Card63	NDIMLL(IX)	第 IX 熱區域局部壓降的類型
Card64	NTDLL	局部壓降通道類型的數目
	NODLL(NLL)	局部壓降通道的軸向區間的數目
Card65	DZLLM(NLL, I)	局部壓降通道第 I 個軸向區間的高度(cm)
Card66	EKLLM	局部壓降通道第 I 個軸向區間的局部壓降 常數

表 2.12 SIMULATE-3 擾動設定

DOPPLER	'DDP' 20.° F 'DDP' 40 ° F. 'DDP' -20 ° F.	
PRESSURE	'PRE' 50.psia 'PRE' 75 psia.'PRE' 100 psia.	
	'PRE' -50 psia.	
MODERATOR	'MTC' +10 ° F. 'MTC' -10°F.	
TEMP COEFF	'MTC' -5°F. 'MTC' +5°F.	

圖 2.1 流體入口流速與入口次冷度的影響(BWR4) [6]

圖 2.2 熱功率的影響[6]

圖 2.3 系統壓力的影響[6]

圖 2.4 入出、口節流限值的影響[6]

圖 2.5 功率分佈形狀的影響[6]

圖 2.6 格架對系統穩定性的影響[6]

圖 2.7 由 Dodewaard 穩定性圖譜區分第一型與第二型不穩定[10]

圖 2.8 衰減率與無因次參數 Zuber no. 的關係[10]

圖 2.9 衰減率與無因次參數 Subcooling no. 的關係[10]

衰減率(Decay Ratio)=B/A

圖 2.10 衰減率物理意義圖示[10]

ľ

圖 2.11 DESIRE 實驗裝置簡圖[18]

圖 2.12 實驗裝置 SIRIUS-F 模擬 ABWR 電廠[3]

圖 2.13 不穩定區域的功率-流量圖譜[24]

圖 2.14 核一廠一號機功率/流量圖上禁區範圍的示意圖[37]

圖 2.15 控制棒節距示意圖

圖 2.16 SIMULATE-3 的輸入檔編輯示意圖

S	TEADY STAT	E PRESSURE DROPS	(KG/CM2)	FLOW RATE=	5.67321E+01	G/S CM2				
			DENSITY HEAD	FRICTION	ACCELERATION	EXPANSION-IRR	LOCAL O	ONTRACTION-IRR	CONTRACTION	TOTAL
	INLET	CONFIGURATION	00.000E+00	00.000E+00					5.6600E-02	5.6600E-02
	NON	BOILING REGION	23.703E-03	90.775E-04	10.706E-06	00.000E+00	00.000E+00	00.000E+00		3.2791E-02
	SUBCOOLED	BOILING REGION	75.729E-03	46.691E-03	10.258E-03	00.000E+00	00.000E+00	11.707E-03		1.4438E-01
	BULK	BOILING REGION	39.223E-03	12.960E-02	76.897E-04	54.925E-06	00.000E+00	36.958E-03		2.1352E-01
	EXIT	CONFIGURATION	00.000E+00	00.000E+00					-2.9954E-03	-2.9954E-03

圖 2.17 LAPURX 輸出結果-壓降分布

1 **** STEADY STATE FLOW DISTRIBUTION *** M = 4 QPL = 4.44298E-01 ITERATION NO OF WTP = 2 TOTAL FLOW RATE =SUM WNO(IX)/1000. = 2.31967E+03 KG/S IX NCH POWFR QG QX QP WNO 1 23 3.7560E-03 5.5832E+01 3.5779E-01 4.4429E-01 1.2141E+0 2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4331E+0 5 28 3.1228E-03 6.2511E+01 2.5067E+01 4.4430E-01 1.4835E+0 6 29 3.0217E-03 6.4225E+01 2.3269E+01 4.4430E-01 1.6549E+0 7 30 2.9390E-03 6.4900E+01 2.2178E+01 4.4430E-01 1.7610E+0 7 30 2.9390E-03 6.6355E+01 2.0026E+01 4.4428E+01 1.8409E+0 10 43 2.05688E+03 6.7341E+01 1.7762E+01 4.4428E+01 2.0076E+0 9 34 2.5688E+03 6.7341E+01 1.7762E+01 4.4436E+01 2.1648E+0 10 43 2.0514E+03 7.0465E+01 1.2174E+01 4.4544E+01 2.8649E+0 11 46 1.5611E+03 6.9082E+01 8.1450E+02 4.4436E+01 3.0046E+0 12 68 7.8867E+04 3.9213E+01 6.6079E+02 4.4436E+01 3.0046E+0 12 68 7.8867E+04 3.9213E+01 6.6079E+02 4.4590E+01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- 4.423 2.0578 .717 2 24 2 148.44 94.35 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3578 .717 2 24 2 135.80 100.36 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2827 .928 7 30 2 119.91 107.93 .4443 .2018 .944 8 32 2 113.18 110.35 .4443 .2013 .984 9 34 2 104.81 .111.99 .4443 .2013 .984 8 32 2 .113.18 110.35 .4443 .2013 .984 9 34 2 104.81 .111.99 .4443 .2013 .984 8 32 2 .113.18 110.35 .4443 .2018 .944 8 32 2 .113.18 110.35 .4443 .2013 .984 9 34 2 104.81 .111.99 .4443 .2014 .815 1.728 12 68 2 .32.18 .65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -0000000000000000000000000000000										
M = 4 QPL = 4.44298E-01 ITERATION NO OF WTP = 2 TOTAL FLOW RATE =SUM WNO(IX)/1000. = 2.31967E+03 KG/S IX NCH POWFR QG QX QP WNO 1 23 3.7560E-03 5.5832E+01 3.5779E-01 4.4429E-01 1.2141E+0 2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.2874E+0 5 28 3.1228E-03 6.2511E+01 2.5067E-01 4.4430E-01 1.4835E+0 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4430E-01 1.7610E+0 7 30 2.9390E-03 6.44205E+01 2.3269E-01 4.4430E-01 1.7610E+0 8 32 2.7740E-03 6.6355E+01 2.026E+01 4.4430E-01 1.7610E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4436E-01 2.1648E+0 10 43 2.0514E+03 7.0465E+01 1.2174E+01 4.4436E-01 2.1648E+0 11 46 1.5611E+03 6.9082E+01 8.1450E+02 4.4436E+01 2.8649E+0 11 46 1.5611E+03 6.9082E+01 8.1450E+02 4.4436E+01 3.0046E+0 12 68 7.8867E+04 3.9213E+01 6.6079E+02 4.4436E+01 3.0046E+0 12 68 7.8867E+04 3.9213E+01 6.6079E+02 4.4436E+01 3.0046E+0 12 68 7.8867E+04 3.9213E+01 8.1450E+02 4.4436E+01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- 5 28 2 127.41 103.96 4.4443 .3383 .729 3 25 2 141.59 97.92 4.4443 .30502 .776 4 26 2 135.80 100.36 4.4442 .2507 .862 6 29 2 123.29 106.81 4.4444 .2327 .928 7 30 2 119.91 107.93 4.4443 .2018 .944 8 322 2 113.18 110.35 4.4443 .2018 .944 8 322 2 113.18 110.35 4.4443 .2018 .944 8 32 2 113.18 110.35 4.4443 .2018 .944 8 32 2 113.18 110.35 4.4443 .2018 .944 8 32 2 113.18 110.35 4.4443 .2013 .984 9 34 2 104.81 111.99 4.4443 .2013 .984 9 34 2 104.81 111.99 4.4443 .2013 .984 8 32 2 113.18 110.35 4.4443 .2013 .984 9 34 2 104.81 111.99 4.4443 .2013 .984 8 32 2 113.18 110.35 4.4443 .2013 .984 9 34 2 104.81 111.99 4.4443 .2013 .984 8 32 2 113.18 110.35 4.4443 .2013 .984 8 34 2 104.81 111.99 4.4443 .2014 .2015 1.728 12 68 2 32.18 65.214459 .0661 2.020	1 ***	STEADY	STATE	FLOW DIS	STRIBUTION **	*				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$										
TOTAL FLOW RATE =SUM WNO(IX)/1000. = 2.31967E+03 KG/S IX NCH POWFR QG QX QP WNO 1 23 3.7560E-03 5.5832E+01 3.5779E-01 4.4429E-01 1.2141E+0 2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 3 25 3.4704E-03 5.8881E+01 3.0623E-01 4.4430E-01 1.3918E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4835E+0 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4436E-01 1.7610E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4436E-01 1.7610E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4436E-01 2.8649E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4436E-01 2.1648E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- 5 28 2 127.41 103.96 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2018 .944 8 32 2 113.18 110.53 .4443 .2018 .944 8 32 2 113.18 110.53 .4443 .2018 .944 8 32 2 113.18 110.95 .4443 .2018 .944 8 32 2 113.18 110.75 .4454 .2117 .1333 11 46 2 6 3.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -0000000000000000000000000000000	M =	4 QPI	2 = 4.44	4298E-01	ITERATION N	O OF WTP = 2				
IX NCH POWFR OG OX OP WNO 1 23 3.7560E-03 5.5832E+01 3.5779E-01 4.4429E-01 1.2141E+0 2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 3 25 3.4704E-03 5.8881E+01 3.0623E-01 4.4430E-01 1.3918E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4835E+0 5 28 3.1228E-03 6.2511E+01 2.5067E-01 4.4430E-01 1.6549E+0 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4436E-01 1.6549E+0 6 29 3.0217E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.6549E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4428E-01 2.1076E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4436E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4436E-01 2.1648E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- 9 32 2.153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .203 .984 8 32 2 113.18 110.35 .4443 .203 .984 8 32 2 113.18 110.35 .4443 .2117 1.333 1 46 2 6.50 11.19.91 107.93 .4443 .2117 1.333 1 46 2 6.50 11.19.91 107.93 .44443 .2218 .944 8 32 2 113.18 110.35 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .203 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.333 11 46 2 6.50 114.88 .4444 .051 1.778 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	TOTAL	L FLÓW	RATE =	SUM WNO(I	(X)/1000. = 2	.31967E+03 KG/S				
1 21 3.7560E-03 5.5832E+01 3.5779E-01 4.4429E-01 1.2141E-01 2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 3 25 3.4704E-03 5.6881E+01 3.0623E-01 4.4430E-01 1.2874E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4835E+0 5 28 3.1228E-03 6.2511E+01 2.5067E-01 4.4428E-01 1.6549E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 8 32 2.7740E-03 6.6355E+01 2.0026E-01 4.4428E-01 2.0076E+0 9 34 2.6688E-03 6.7341E+01 1.2174E-01 4.4544E-01 2.8649E+0 10 43 2.0514E-03 7.0465E+01 8.12774E-01 4.4544E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.44390E-01 2.5212E+0 POWCOR= 8.9296E+02 ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00-	тх	NCH	D	WED	0G	OX	OP	WN	JO	
2 24 3.6383E-03 5.6732E+01 3.3834E-01 4.4430E-01 1.2874E+0 3 25 3.4704E-03 5.8881E+01 3.0623E-01 4.4430E-01 1.3918E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4835E+0 5 28 3.1228E-03 6.2511E+01 2.5067E-01 4.4430E-01 1.6549E+0 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4430E-01 1.7610E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 8 32 2.7740E-03 6.6355E+01 2.0026E-01 4.4430E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4428E-01 2.0076E+0 9 34 2.5688E-03 6.7341E+01 1.2774E-01 4.4430E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4544E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- 4 26 2 135.80 100.36 44443 .3578 .717 2 24 2 148.44 94.35 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3062 .776 4 26 2 135.80 100.36 .44443 .2828 .809 5 28 2 127.41 103.96 .44443 .2828 .809 5 28 2 127.41 103.96 .4444 .2327 .928 7 30 2 119.91 107.93 .44443 .2017 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2018 .8944 9 34 2 104.81 111.99 .4443 .2018 .9344 9 34 2 104.81 111.99 .4443 .2018 .9444 9 34 2 104.81 111.99 .4443 .2018 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 6.5.9 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	1	23	3.756	50E-03	5.5832E+01	3.5779E-01	4.4429E-01	1.214	IE+05	
3 25 3.4704E-03 5.8881E+01 3.0623E-01 4.4430E-01 1.3918E+0 4 26 3.3284E-03 6.0346E+01 2.8283E-01 4.4430E-01 1.4835E+0 5 28 3.1228E-03 6.2511E+01 2.5067E-01 4.4421E-01 1.6549E+0 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4428E-01 1.7610E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 8 32 2.7740E-03 6.6355E+01 2.0026E-01 4.4428E-01 2.0076E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4430E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.454E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*0000*00- -00*0000*0000*0000*0000*0000*0000*0000*0000*00 5 28 2 153.25 92.85 4443 .3578 .717 2 24 2 148.44 94.35 4443 .3578 .717 2 24 2 148.44 94.35 4443 .3583 .729 3 25 2 141.59 97.92 4443 .3062 .776 4 26 2 135.80 100.36 4443 .2828 .809 5 28 2 127.41 103.96 44442 .2507 .862 6 29 2 123.29 106.81 4444 .2327 .928 7 30 2 119.91 107.93 4443 .2003 .984 8 32 2 113.18 110.35 4443 .2013 .984 8 32 2 113.18 110.35 4443 .2013 .984 8 32 2 113.18 110.35 .4443 .2013 .984 9 34 2 104.81 111.99 4443 .1776 1.076 10 43 2 83.70 117.18 44454 .1217 1.353 11 46 2 63.69 114.88 .44444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	2	24	3.638	83E-03	5.6732E+01	3.3834E-01	4.4430E-01	1.2874	4E+05	
4 20 3.2349E-03 6.0340E+01 2.8328E-01 4.443UE-01 1.4332E+01 6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.442E-01 1.6549E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4428E-01 2.0076E+0 9 34 2.5688E-03 6.7341E+01 1.2774E-01 4.4436E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4436E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 2.6449E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 MW-TH -00*00	3	25	3.470	04E-03	5.8881E+01	3.0623E-01	4.4430E-01	1.3918	3E+05	
6 29 3.0217E-03 6.4225E+01 2.3269E-01 4.4436E-01 1.7610E+0 7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 8 32 2.7740E-03 6.6355E+01 2.0026E-01 4.4428E-01 2.0076E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4430E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4430E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 MW-TH -00*000	45	20 28	3 120	54E-05 28E-03	6 2511E+01	2.8285E-01 2.5067E-01	4.4450E-01 4.4421E-01	1.485)E+05	
7 30 2.9390E-03 6.4900E+01 2.2178E-01 4.4428E-01 1.8409E+0 8 32 2.7740E-03 6.6355E+01 2.0026E-01 4.4428E-01 2.0076E+0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4430E-01 2.1648E+0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4430E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*00- -00*0000*0000*0000*0000*0000*0000*0000*0000*00- 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4444 .2327 .928 7 30 2 119.91 107.93 .44443 .2218 .944 8 322 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 .65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	6	29	3.02	17E-03	6.4225E+01	2.3269E-01	4.4436E-01	1.7610)E+05	
8 32 2.7740E-03 6.6355EH01 2.0026E-01 4.4428E-01 2.0076EH0 9 34 2.5688E-03 6.7341E+01 1.7762E-01 4.4430E-01 2.1648EH0 10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4430E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*00- -00*0000*0000*0000*0000*0000*0000*0000*0000*00- 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4444 .2327 .928 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2003 .984 8 32 2 113.18 110.35 .4443 .2003 .984 8 32 2 113.18 110.35 .4443 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 .65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	7	30	2.939	90E-03	6.4900E+01	2.2178E-01	4.4428E-01	1.8409)E+05	
10 43 2.0514E-03 7.0465E+01 1.2174E-01 4.4544E-01 2.8649E+0 11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000*00000**** 11 45 45	8	32	2.774	10E-03 R8F-03	6.6355E+01 6.7341E+01	2.0026E-01 1 7762F-01	4.4428E-01 4.4430F-01	2.0076	35403 35405	
11 46 1.5611E-03 6.9082E+01 8.1450E-02 4.4436E-01 3.0046E+0 12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*00- -00*0000*0000*0000*0000*0000*0000*0000*0000*00- 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	10	43	2.051	14E-03	7.0465E+01	1.2174E-01	4.4544E-01	2.8649)E+05	
12 68 7.8867E-04 3.9213E+01 6.6079E-02 4.4590E-01 2.5212E+0 POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000**** 12 68 7.8867E-04 3.9213E+01 6.61 2.020 *** FLOW *** FLOW *** FLOW *** ***	11	46	1.56	1E-03	6.9082E+01	8.1450E-02	4.4436E-01	3.0046	5E+05	
POWCOR= 8.9296E+02 , ACTUAL POWER= 8.9296E+02 MW-TH -00*0000*0000*0000*0000*0000*0000*0000*0000*00- # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 .65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -0000000000-00000-00000-00000-00000-0000	12	68	7.886	57E-04	3.9213E+01	6.6079E-02	4.4590E-01	2.5212	2E+05	
-00*0000**** FLOW ***	POWC	DR= 8.	.9296E+()2 , ACT	UAL POWER=	8.9296E+02 MW-T	Н			
-00*0000*0000*0000*0000*0000*0000*0000*0000*00- Ch NCH Fuel Power Flow delta-P Exit Zb # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -0000000000-00000-00000-00000-00000-0000				,						
Ch NCH Fuel Power Flow delta-P Exit Zb # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 144.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2218 .928 6 29 2 123.29 106.81 .4443 .2218 .944 8 32 2 119.91 107.93 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4444 .0815 1.728 12 68 2 32.18 65.21 .4443 .2003 .984 9 34 2 104.81 111.99	00*(00 00*	<u>دەر مە</u>	KOO 00*0	0 00*00 00	*00 00*00 00*	00 00*00 0	0*00 00*0	0	
Ch NCH Fuel Power Flow delta-P Exit Zb # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2217 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21	-00-0	0000	0000	0000-0	000-0000	1.0000-0000-	0000-000	0.0000.0	<i>N</i> -	
Ch NCH Fuel Power Flow delta-P Exit Zb # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2217 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 .32.18 65.21										
Ch NCH Fuel Power Flow delta-P Exit Zb # Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2827 .928 7 30 2 119.91 107.93 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21										
# Type (%) (%) (bar) Quality (m) 1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4443 .2327 .928 7 30 2 119.91 107.93 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1076 1.076 10 43 2 83.70 117.18 .4444 .0815 1.728 12 68 2 32.18 65.21 .4443 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft 00000000000 -	Ch 1	NCH FI	ıel	Power	Flow	delta-P	Exit	Zb		
1 23 2 153.25 92.85 .4443 .3578 .717 2 24 2 148.44 94.35 .4443 .3383 .729 3 25 2 141.59 97.92 .4443 .3062 .776 4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	#	Ty	pe	(%)	(%)	(bar)	Quality	(m)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	23	2	153.25	92.85	.4443	.3578	.717		
4 26 2 135.80 100.36 .4443 .2828 .809 5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4443 .2217 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft 1 .00	3	24	$\frac{2}{2}$	140.44	97.92	.4443	.3062	.776		
5 28 2 127.41 103.96 .4442 .2507 .862 6 29 2 123.29 106.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .44454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft 1 .00	4	26	2	135.80	100.36	.4443	.2828	.809		
0 29 2 123.29 100.81 .4444 .2327 .928 7 30 2 119.91 107.93 .4443 .2218 .944 8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft 1 -00000000000000000000000000000	5	28	2	127.41	103.96	. 4442	.2507	.862		
8 32 2 113.18 110.35 .4443 .2003 .984 9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4443 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00	07	29 30	2	125.29	100.81	.4444 4443	. 2327	.928		
9 34 2 104.81 111.99 .4443 .1776 1.076 10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	8	32	$\tilde{2}$	113.18	110.35	.4443	.2003	.984		
10 43 2 83.70 117.18 .4454 .1217 1.353 11 46 2 63.69 114.88 .4444 .0815 1.728 12 68 2 32.18 65.21 .4459 .0661 2.020 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	9	34	2	104.81	111.99	. 4443	.1776	1.076		
12 68 2 32.18 65.21 .4444 .0815 1.728 Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	10	43	2	83.70 63.60	117.18	.4454	.1217	1.353		
Average Saturated Boiling Boundary = 1.036 m = 3.40 ft -00000000000000000000000000000	12	68	2	32.18	65.21	.4444	.0661	2.020		
-00000000000000000000000000000	Avera	Average Saturated Boiling Boundary = 1.036 m = 3.40 ft								
1101	-0000 ***	00000 FLOW *)0000(***	0000000	000000000	00000000000	00000000	00000000	0-0	

圖 2.18 LAPURX 輸出結果-通道流量與系統總壓降

AVG DENSITY REACT COEFF =	15.126	(%K/K)/(g/cm3)	19606	(\$/%_VOID)
CORE AVG (DENS*DRC*P**2)=	8.7447	(%K/K)	15.917	(\$)
CORF AVG (DENSITY*P**2) -	57813	(R/Rsat)	44 232	(% VOID)
COKE AVG (DENSITY*P**2) =	. 57813	(K/KSat)	44.232	(%_VOID)

圖 2.19 LAPURW 輸出結果-密度反應度係數

CORE 1Case	: DR = .4 800-200NC	6@.46Hz H-200NPS-1	PM = 22 ONTD-10NT	3.72@.42 FU	2 Hz GM =1.	98@.56	Hz
OUT- (DR	OF-PHASE S > 1 .OR. REACT(\$) -1.23 63	UBCRITICAL PHASE_MARG DECAY_RAT .25 .43	MODE SUM IN < 0 .(FREQ(Hz) .48 .50	MARY DR. GAIN PH_MARG 68.04 36.64	_MARGIN < 1 G_MARGIN 3.47 2.35	==> UNST AMPL(%) 100.00 100.00	ABLE) AVG(%) .00 .00
1Case	-1.22 -1.33 -1.64 -2.08 800-200NC	.25 .23 .17 .12 H-200NPS-1	.48 .47 .46 .45 0NTD-10NTI	67.56 72.19 81.91 89.78 FU	3.45 3.66 4.27 5.14	100.00 100.00 100.00 100.00	.00 .00 .00 .00
RESU	LTS OF FUL REAL DA	L COMPLEX	PLANE POLI	E SEARCH	DECAY RATIO		
# 0 1 2	(Hz) 05765 05431 05426	(H 05 .00	z) 765 334 005	(Ħz) .46194 .46293 .46294	. 45649 . 47850 . 47883	,	
3 4	05431 05432 	00 00	005 002 	.46302 .46298	. 47858 . 47844		
DAMP PHAS GAIN	ED FREQUEN E MARGIN MARGIN	CY = .4 = 23.7 = 1.9	6 Hz 2 Hz @ 8 @	.42 Hz .56 Hz			

圖 2.20 LAPURW 輸出結果-同相與異相衰減率

Height	Frict	Height	Exp/Con	Acele	Locals				
.000	.00492	.01186	.00000	.00000	.00000				
15.240	.00984	.02370	.00000	.00001	.00000				
Height	Frict	Height	Exp/Con	Acele	Locals	Phi2	lo PhiCh	i Beta	Qualit
У									
30.480	.00000	.00000	.00000	.00000	.00000	1.0000	1.0000	.0000	.0000
38.947	.00159	.00648	.00000	.00013	.00000	1.0847	. 5955	.0256	.0004
47.413	.00208	.01274	.00000	.00028	.00000	1.3087	.2193	.0569	.0019
55.880	.00264	.01878	.00000	.00045	.00203	1.6153	.2837	.0872	.0044
64.347	.00330	.02457	.00000	.00069	.00203	1.9821	.3649	.1275	.0083
72.813	.00412	.03002	.00000	.00110	.00203	2.4120	.4652	.1898	.0142
81.280	.00513	.03503	.00000	.00165	.00203	2.9048	. 5844	.2609	.0219
89.747	.00638	.03962	.00000	.00226	.00203	3.4582	.7194	.3269	.0309
98.213	.00789	.04381	.00000	.00292	.00203	4.0637	.8671	.3859	.0409
106.680	.00967	.04766	.00000	.00361	.00595	4.7073	1.0238	.4375	.0518
115.147	.01174	.05122	.00000	.00430	.00393	5.3698	1.1847	.4811	.0630
123.013	.01408	.03434	.00000	.00499	.00393	6.0349	1.3430	. 5183	.0/44
132.080	.016/0	.05/64	.00000	.00067	.00393	0.0949	1.3046	. 2202	.0838
140.047	.01939	.06036	.00000	.00033	.00393	7.3404	1.0009	. 2779	.0973
149.013	.02275	.00333	.00000	.00701	.00393	1.9840	1.8132	.0019	.108/
157.480	.02017	.00090	.00000	.00/0/	.01234	8.0008	1.9010	.0229	.1198
103.947	.02984	.00847	.00000	.00832	.01234	9.2121	2.1042	.0410	.1308
1/4.413	.03314	.07087	.00000	.00890	.01254	9.7971	2.2410	.0380	.1415
102.000	.03766	.07541	.00000	.00957	.01234	10.0000	2.3733	.0123	.1518
191.347	.04223	.07341	.00000	.01019	.01234	10.9009	2.4999	.0037	.1020
208 280	.04060	07064	.00000	.01080	.01254	11.4295	2.0227	7088	1919
208.200	05656	.07904	.00000	.01140	02102	12 1168	2.7419	7100	1014
210.747	06173	08362	.00000	01250	02193	12.4408	2.8570	7284	2008
223.213	06710	08552	00000	01318	02193	13 /13/	3 0700	7371	2101
242 147	07265	08737	00000	01377	02193	13 8785	3 1840	7452	2101
250 613	07838	08918	00000	01435	02193	14 3321	3 2878	7528	22122
259 080	08428	09094	00000	01493	02193	14 7736	3 3875	7598	2369
267 547	08967	09266	00006	01549	03455	15 1974	3 4830	7663	2452
276 013	09505	09435	00006	01471	03455	15 6006	3 5734	7721	2532
284 480	09971	09599	00006	01518	03455	15,9909	3.6607	7778	2611
292.947	10449	.09761	.00006	.01565	03455	16.3727	3.7458	7831	2689
301,413	10937	.09920	.00006	.01611	.03455	16.7410	3.8276	7881	.2763
309,880	.11435	10075	.00006	.01655	.03455	17.0928	3,9055	.7927	.2834
318,347	.11942	10228	.00006	.01696	.04312	17,4299	3,9799	.7968	2903
326.814	.12459	.10379	.00006	.01738	.04312	17.7518	4.0508	.8008	2968
335,280	.12984	.10527	.00006	.01778	.04312	18.0568	4.1178	.8045	.3030
343.747	.13517	.10673	.00006	.01817	.04312	18.3482	4.1815	.8080	.3091
352.214	.14058	.10817	.00006	.01854	.04312	18.6264	4.2423	.8113	.3148
360,680	.14606	.10959	.00006	.01889	.04312	18.8846	4.2985	.8142	.3200
369.147	.15160	.11099	.00006	.01915	.05256	19.0994	4.3452	.8163	.3239
377.614	.15718	.11239	.00006	.01926	.05256	19.2301	4.3735	.8172	.3256
386.080	.16277	.11378	.00006	.01932	.05256	19.2900	4.3865	.8177	.3265
394.547	.16838	.11517	.00006	.01940	.05256	19.3418	4.3977	.8184	.3278
403.014	.17399	.11656	.00006	.01942	.05256	19.3781	4.4056	.8185	.3280
411.480	.17961	.11795	.00000	.01942	.00000	19.3836	4.4068	.8185	.3280

圖 2.21 輸出檔 CAIDAS. OUT

圖 2.22 LAPUR6.0 方法論

BWR.ZON - Assembly Axial Zones						
Interface (cm)		396.24				
Flow Area	(cm**2)	100.900				
Heated Perimeter	(cm)	262.056				
Equiv Hyd Diam	(CM)	1.232				
Interface (cm)		259.54				
Flow Area	(cm**2)	94.548				
Heated Perimeter	(cm)	262.056				
Equiv Hyd Diam	(CM)	1.155				
Interface (cm)		243.84				
Flow Area	(cm**2)	94.548				
Heated Perimeter	(cm)	287.314				
Equiv Hyd Diam	(cm)	1.072				
Interface (cm)		15.24				
Flow Area	(cm**2)	94.548				
Heated Perimeter	(cm)	262.056				
Equiv Hyd Diam	(cm)	1.072				
Interface (cm)		-15.24				

圖 2.23 SIMULATE-3 的燃料軸向區間資料

58 12	1	1	1	1	1	1	1
12,	1.	1.	1.	1.	1	۰,	'
59							
~~	1,	4					
60	30	4800	259 0800	274 780	9 411	4800	
61		1000	200.0000	211.100		. 1000	
	94.5 ⁴	480 9	4.5480	94.5480	100.90	90	
62							
	1.07	20 1	.0720	1.1550	1.2320		

圖 2.24 設定完成之 LAPURX 卡號 58~62

Fuel Spacers	Axia K-Fa	Axial Locations (cm) K-Factors (Assembly Area)						
Mechanical Design								
6	47.990	99.170	150.380	201.580	252.790	303.970	355.180	
	0.768	0.768	0.768	0.768	0.843	0.566	0.566	

圖 2.25 SIMULATE-3 的燃料格架資料

63										
12,	1,	1,	1,	1,	1,	1,	1,			
	1,	1,	1,	1,	1,					
64										
	1.	7.								
65										
	63.2	2300.1	14.4100.	165.62	00. 216	. 8200.	268.030	0. 319.2	100. 370	. 4200
66		, ,	, , ,		,	,,		-,	,	
	0.7	7680,	0.7680,	0.7680	, 0.76	80, 0	.8430,	0.5660,	0.5660	

圖 2.26 設定完成之 LAPURX 卡號 63~66

圖 2.27 EXAVERA 運算的流程圖

圖 2.28 EXAVERA 驗證

圖 2.29 尋找區間與間隔之示意圖

圖 2.30 找出最大衰減率之流程圖

圖 2.31 DRASM 程式的操作介面

圖 2.32 DRASM 結果產生畫面

📕 output.txt - 記事本 檔案(E) 編輯(E) 格式(Q) 檢視(V) 說明(H) step=0.1 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 step=0.05 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 step=0.01 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 x1 x2 x3 w pressure ch1 ch2 ch3 ch4 ch5 ch6 0.60 0.30 0.20 1.172 +01.9390 -04.3922 -04.2292 -03.1901 -02.5212 -01.1626 -00.4540 ch7 ch8 ch9 ch10 ch11 ch12 DRC DR(g1) DR(re) -00.1432 +00.5813 +01.4014 +01.7479 +00.9641 +03.9795 +0.97 +0.26 +0.12 >

圖 2.33 DRASM 產生的輸出檔

圖 2.34 DRASM 程式在 LAPUR6.0 方法論中所包含的範圍

😤 DRASM				
Lapur運算 運算結果	■「範圍求最大值運算結果簡表」表格管理			
	● Lapur6.0 ● Lapur5.2	Friction Model1	O Friction Model2	
ch1~ch12, lapur5	x <mark>:</mark>			潮轄
.s, .u, Papusal				测鹱
Gap表:	CS1C23_gap <mark>v GainTime</mark> 表CS1	.C25_gaintim 🗸		
○ 範圍求最大DR	LAPURX單徑自.38 ~ 1.38 1.24 ~ 1.24 1.35 ~ 1.35		每個階層取點算4 階層數: 2	· · · · · · · · · · · · · · · · · · ·
	LAPURIV空度反應度体動(132 ~ Oupte Path:	1.33		이쁜
○ 直接給倍率値	LAPURX覃探信3 LAPURN空房反應夏余數13			11

圖 2.35 新版 DRASM 程式的視窗介面

T DRASM			
Lapur運算 [運算結果] 範圍求最大值運算結	果簡表 表格管理		
「衰減率(Decay Ratio) — 倍率 —	dollar值(\$)	Gap Conductance	Gain/Time
同相(global): LapurX:		功率: 流量:	燃耗(MI\/D/MT
異相(regional): Lapur∿		Gap Conductance :	Gain : Time :
最大誤差: % 規定誤差的	3團±10%		
爐心壓降誤差	~~密度反應度係數 <u>誤差</u>		
誤差: % 規定誤差範圍±20	※ 最大誤差: 6	% 規定誤差範圍±1%	
	参考案例 Ke	参考案例爐心平均密	
			,

圖 2.36 新版 DRASM 程式的輸出結果視窗介面

叁、主要發現與結論

龍門電廠屬於進步型沸水式反應器,為最新設計並已開始商轉 的沸水式反應器;與傳統之沸水式反應器相同的是:在某些特殊的 情況下,會因為功率與流量的震盪而有不穩定性問題的發生。此一 類型的反應器所做的改良方針主要是針對提升經濟效益、提升運轉 發電與維護性能與強化可靠性與安全性等三個主要方向作改革,同 時再加上針對改善爐心穩定性的改進措施,經由LAPUR6.0方法論 的驗證,與比較國內國聖電廠(BWR6)與金山電廠(BWR4),可以深 入了解龍門電廠的穩定性特質,主要的發現與結論羅列如下:

一、LAPUR 分析結果與ODYSY比較

此處以LAPUR6.0為分析工具,分析廠商所提供的高功率低 流量禁制區最外圍邊界的功率/流量點做比較[51],結果如表3.1 所示。在表3.1中主要的較大差異是在NCL處,但差異值都低於 0.2。

二、龍門電廠與金山、國聖電廠之穩定性分析的比較

因為龍門電廠的改措施,使其具有良好的穩定性特質,使得 衰減率遠較於其他傳統的沸水式電廠低;經由LAPUR6.0方法論 的驗證,可以證實龍門電廠的低衰減率與優異的穩定性特質;使 其具有較大的穩定運轉區域以及較低的衰減率;此處針對龍門電 廠、國聖電廠(BWR6)與金山電廠(BWR4)選擇相同的功率/流量 點做比較,表3.2為三座電廠爐心的相關參數。因為高功率/流量 點極易引起不穩定性事件發生,所以選擇固定流量(50%)然後逐 漸增加功率的方式 (50%,60%,70%),檢視三座不同型式電廠的 衰減率變化情形,另外再加入一個不穩定區域的功率/流量 點:65%/40%。圖 3.1為三座不同型式電廠重疊擺置既可看出龍門 電廠具有較大的運轉區域,同時也陳列上述所選的四個功率/流 量點比較其衰減率,如表 3.2 所示。

三、龍門電廠改進措施對相關重要參數的影響

如前所述根據龍門電廠最終安全FSAR第四章[43]所列舉的 改進措施,主要是下列四點:較小的注水口、較大的控制棒節距、 較多的汽水分離機與自動的選擇性控制插棒。前三項改進措施都 直接影響爐心的穩定性,自動的選擇性控制插棒主要在於防止因 為功率震盪或人為而誤進入禁制區域。所以此處主要針對前三項 作討論,檢視改進措施對於爐心相關重要參數的影響,同時藉由 三座電廠在相同功率/流量點的比較,可以更清楚龍門電廠的穩 定性特質。

(一)入口收縮係數改變對於壓降的影響

壓降對於爐心密度波震盪具有重要的影響,雙相壓降愈大或變 動劇烈極易引起爐心不穩定事件的發生。一般而言爐心的壓降 可以下列的數學式表示:

 $\Delta P_{\text{total}} = \Delta P_{\text{inlet}} + \Delta P_{\text{non-boiling}} + \Delta P_{\text{subcooled}} + \Delta P_{\text{bulk boiling}} + \Delta P_{\text{outlet}}$ (3.1)

(3.1)式中代表爐心中不同的壓降:

ΔPtotal:總壓降

ΔP_{inlet}:入口壓降

ΔP_{non-boiling}:非沸騰區壓降

ΔP_{subcooled}:次冷沸騰區壓降

ΔP_{bulk boiling}:全面沸騰區壓降

ΔP_{outlet}:出口壓降

龍門電廠採取較小的入水口措施,此一措施會影響到產生大的 入口收縮係數(inlet loss coefficien),再進而影響到產生較大的 單相壓降;可由以下的數學關係式,表示入口收縮係數與單相 壓降的關係。

$$\Delta P = K_{inlet \ loss \ coeff.} \frac{u^2}{2g_c} \tag{3.2}$$

(3.2)式中相關參數符號定義如下:

 ΔP :單相壓降

K_{inlet loss coeff}.:入口收縮係數

u:流體速度

g:重力加速度

因此當龍門電廠採取較小的入水口,產生較大的入口收縮係 數,也使得爐心具有較大的單相壓降,有益於爐心具有較佳的 穩定性。此一關係的探究可藉由針對入口收縮係數作參數靈敏 度分析,可以一窺入口收縮係數如何造成壓降變化,再進而影 響爐心的穩定性。表 3.4 針對龍門電廠、國聖電廠與金山電廠, 在功率/流量點:70(%)/50(%),調整入口收縮係數作參數靈敏度 分析。表 3.4 中將入口收縮係數減少 10%,會造成單相壓降減 少而雙相壓降增加。此一變化可由壓降比(雙相壓降/單相壓降) 的增減情形得知,在表 3.4 中入口收縮係數減少會使壓降比增 加(代表著雙相壓降增加),進而使的衰減率增加;國聖電廠與 金山電廠皆有此一趨勢,但龍門電廠因該功率/流量點的衰減 率僅有 0.09,所以變化並不明顯。 (二)不同型式沸水式電廠入口收縮係數與壓降的比較

經由表 3.4 入口收縮係數的參數靈敏度分析,可以得知較大的 入口收縮係數,會使爐心具有較小的壓降比(雙相壓降/單相壓 降),所代表的是較大的單相壓降與較小的雙相壓降,並使爐 心具有較小的衰減率。在圖 3.2 中針對國內不同型式的三座沸 水式電廠,功率/流量點: 50(%)/50(%)、60(%)/50(%)、 70(%)/50(%)與 65(%)/40(%),比較入口收縮係數與單相壓降, 龍門電廠具有較大入口收縮係數使得電廠具有較大的單相壓 降。在圖 3.3 中陳列三座不同型式沸水式電廠在不同功率/流 量點的壓降比和衰減率的變化情形;因龍門電廠具有較小的壓 降比使的在相同的功率/流量點其衰減率是最低的。

(三)流動面積改變對於密度反應度係數的影響

龍門電廠的爐心採取較大控制棒節距設計(如圖 2.15),使得爐 心具有較大的流動面積,有益於爐心系統的穩定。上述的關係 不易由數學式推導流動面積的大小如何影響中子與熱流耦合 關係以及對穩定性的影響。但是可由全長棒爐心與配置棒長棒 爐心作流動面積大小的影響比較,得知流動面積的大小對空泡

97

分率(void fraction)、密度反應度係數(density reactivity coefficient)與衰減率的影響。針對國聖電廠採取固定流量 (50%),然後逐漸增加功率的方式(50(%)/50(%)、60(%)/50(%)、 70(%)/50(%))。圖 3.4 中以全長棒爐心與配置半長棒爐心作比 較,配置半長棒的爐心相較於爐心僅配置全長棒,前者會較後 者具有較大的流動面積,而使得配置半長棒的爐心有較小的空 泡分率,在較高功率/流量點差異愈大。圖 3.5 則是全長棒爐心 與配置半長棒爐心對密度反應度係數的比較,因為配置半長棒 爐心圖具有較大的流動面積,而有較小的空泡分率,也使得配 置半長棒爐心有較小的密度反應度係數。圖 3.6 則是兩種燃料 棒對衰減率的比較,因為前述流動面積、空泡分率與密度反應 度係數的影響,使得半長棒爐心具有小小的衰減率。

(四) 不同型式沸水式電廠流動面積與密度反應度係數的比較

因為爐心流動面積大小會影響爐心穩定性,而不同型式的沸水 式反應器其爐心大小與燃料束的數目皆不相同,因此將爐心有 效流動面積與燃料束的截面積設定為一個面積比值(A active flow /A fuel),既可檢視流動面積所佔爐心大小比例,對於穩 定性的影響性。在圖 3.8 則是將三座電廠在相同的功率/流量點

98

比較密度反應度係數,因為龍門電廠具有較小的密度反應度係 數,而使其衰減率最小;同樣的情形也可見諸於國聖電廠與金 山電廠的比較,因為國聖電廠具有較小的密度反應度係數,而 使其衰減率小於金山電廠。

(五) 較多的汽水分離機對於爐心壓降的影響

龍門電廠在爐心出口上方安排較多的汽水分離機,希望能藉由 加快出口流體的汽水分離的速度,使爐心的雙相壓降降低。因 為汽水分離機是位於爐心上方,接近爐心的全面沸騰區,因此 會直接影響爐心全面沸騰區的壓降。藉由圖 3.9 不同型式電廠 全面沸騰壓降與雙相壓降的比較,可發現龍門電廠全面沸騰壓 降與雙相壓降的比值最小,這可歸納於較多的汽水分離機的效 應所致。

四、龍門電廠穩定性改進措施對穩定性的影響

經由上述參數龍門電廠與金山電廠以及國聖電廠的參數比 較分析中,可歸納出龍門電廠採取加大控制棒節距的方式使流動 面積增加,讓空泡分率與密度反應度係數減少。另外藉由縮小入 水口孔徑方式使入口收縮係數增加,造成單相壓降增加,雙相壓 降減少。另外再加上增加汽水分離機,縮短爐心上方汽水分離的 時間,減少全沸騰區的雙相壓降。這些改進措施都會促使爐心密 度波的震盪減少,而使衰減率降低,增加系統的穩定性;這也是 造成三座不同型式的沸水式電廠,如表3.3所示;在相同功率/流 量運轉點的條件下,龍門電廠的衰減率是最低的主要原因。
Case	Power (%)	Exposure	Core Decay	ODYSY Result
	/Flow (%)		Ratio	
HFCL	66.4%/40.0%	7824	0.24	0.11
	62.0%/34.1%	7824	0.26	0.19
NCL	37.7%/20.7%	7824	0.39	0.59
	32.0%/20.4%	8154	0.29	0.46

表 3.1 LAPUR6.0 與 ODYSY⁽⁵¹⁾比較

	Lungmen unit 1	Kuosheng unit 2 cycle 21	Chinshan unit 1 cycle 25
Number of fuel assemblies	872 (GE-14)	624 (ATRIUM-10)	408 (ATRIUM-10)
Rated thermal power, MWt	3926	2,943	1,804
Rated core flow, Mlbm/hr	115.1	84.5	53.0
Rated core inlet subcooling, Btu/lbm	23.49	20.69	20.0
Moderator temperature, °F	551	550	531

表 3.2 三座不同型式電廠爐心相關重要參數

		Decay Ratio	
Power (%) /Flow(%)	Lungmen unit 1	Kuosheng unit 2 cycle 21	Chinshan unit 1 cycle 25
50(%)/50(%)	0.05	0.21	0.32
60(%)/50(%)	0.06	0.25	0.43
70(%)/50(%)	0.09	0.29	0.53
65(%)/40(%)	0.21	0.84	1.03

表 3.3 不同型式的三座沸水式電廠衰減率的比較

	Lungmen		Kuosheng		Chinshan	
	unit 1		unit 2 cycle 21		unit 1 cycle 25	
		Decrease	Original	Decrease	Original	Decrease
	Original	inlet loss		inlet loss		inlet loss
		coefficient		coefficient		coefficient
		10%		10%		10%
ΔP_{inlet}	0.2440	0.2189	0.1524	0.1380	0.1409	0.1271
$\Delta P_{\text{non-boiling}}$	0.0509	0.0510	0.0348	0.0351	0.0419	0.0422
$\Delta P_{\text{single-phase}}$	0.2949	0.270	0.1872	0.1731	0.1828	0.1693
$\Delta P_{subcooled}$	0.2520	0.2394	0.1993	0.2002	0.2300	0.2277
$\Delta P_{ ext{bulk boiling}}$	0.1031	0.1148	0.1953	0.1939	0.1888	0.1898
$\Delta P_{two-phase}$	0.3551	0.3542	0.3946	0.3942	0.4190	0.4175
ΔP_{total}	0.6392	0.6134	0.5766	0.5620	0.5970	0.5821
$\Delta P_{two-phase}$	1.204	1.3118	2.1081	2.2762	2.2925	2.4660
$/\Delta P_{single-phase}$						
Decay ratio	0.09	0.09	0.290	0.37	0.53	0.66

表 3.4 入口收縮係數對於不同型式的三座沸水式電廠影響比較

Note: $\Delta P_{\text{single-phase}} = \Delta P_{\text{inlet}} + \Delta P_{\text{non-boiling}}$

 $\Delta P_{two-phase} \!\!=\!\! \Delta P_{subcooled} + \!\! \Delta P_{bulk \ boiling}$

圖 3.1 龍門電廠與其他不同型式電廠穩定運轉邊界的比較

圖 3.2 三座不同型式電廠入口收縮係數與單相壓降的比較

圖 3.3 三座不同型式電廠壓降比與衰減率的比較

圖 3.4 國聖電廠全長棒與半長棒對空泡分率的影響比較

圖 3.5 國聖電廠全長棒與半長棒對密度反應度係數的比較

圖 3.6 不同型式電廠全長棒與半長棒對衰減率的影響比較

圖 3.7 不同型式電廠面積比與密度反應度係數的比較

圖 3.8 不同型式電廠密度反應度係數與衰減率的比較

圖 3.9 不同型式電廠全面沸騰壓降與雙相壓降的比較

肆、参考文獻

- March-Leuba, J., and Otaduy, P. J., "A Comparison of BWR Stability measurements with calculations using the code LAPUR-IV", ORNL/TM-8546, Oak Ridge National Laboratory, January 1983.
- March-Leuba Jose and Blakeman E. D., "A Mechanism for Out-Of-Phase Power Instabilities in Boiling Water Reactors," Nuclear Science and Engineer, 107, pp.173-179, 1991.
- Masahiro Furuya et al., "Development of BWR Regional Stability Experimental Facility SIRIUS-F, Which Simulates Thermohydraulic-Neutronics Coupling in Reactor Core, and Stability Evaluation of ABWR", NURETH-11 paper-233, Avignon, France, October 2-6, 2005.
- 4. Masahiro Furuya et al., "Stability Estimation of ABWR on the Basis of Noise Analysis" ICONE-15 paper-10382, Nagoya, Japan, April 22-26, 2007.
- 5. Boure, J.A., Bergles, A.E. and Tong, L.S., 1973, Review of two phase flow instability, Nucl. Eng. Des., Vol.25, pp. 165-192.
- Park, G. C., Podowski, M. Z. Becker, M. and R. T. Lahey, Jr., 1986, The Development of a Closed-Form Analytical Model for the Stability Analysis of Nuclear-Coupled Density Wave Oscillations in BWR, Nucl. Eng. Des., Vol. 92, pp. 253-281.
- 7. Fukuda, M., and Kobori T. (1979) J. Nucl. Sci. Technol., 16, 95.
- Jin Der Lee & Chin Pan "Nonlinear Analysis for a Nuclear-Coupled Two-Phase Natural Circulation Loop", Nuclear Engineering and Design, 235, pp.613-626, 2005.
- 9. 李進德,"雙相流非線性模式的發展及其應用", 博士論文,清華

大學,2000。

- 10. Van Der Hagen, T.H.J.J., D.D.B. Van Bragt, F.J. Van Der Kaa, 1997, Exploring the Dodewaard Type-I and Type-II Stability; From Start-Up to Shut-down, From Stable to Unstable, Ann. Nucl. Energy, Vol. 24 No. pp.659-669.
- 11.Nayak, A.K., Vijayan, P.K., Saha, D., Venkat Raj, V., Aritomi, M., 2002, Study on the Stability Behavior of a Natural Circulation Pressure Tube Type Boiling Water Reactor, Nuclear Engineering and Design 215 pp.127-137.
- 12.Hänggi Philipp, "Investigating BWR Stability with a New Linear Frequency-Domain Method and Detailed 3D Neutronics" PhD Dissertation of Swiss Federal Institute of Technology Zurich, (2001).
- 13.Cheristofer M. Mowry, 1994. Operational control of boiling water reactor stability. Nuclear Technology Vol. 109, pp. 412-428.
- 14.Anderson, T.T., 1970, Hydraulic impedance: A tool for predicting boiling loop stability, Nucl. Appl. & Tech., vol.9, pp.422-433.
- 15.Carmichael, L. A., Neimi, R. O., 1978, Transient and Stability test at Peach Bottom Atomic Power Station Unit 2 at end of cycle 2, EPRI NP-564.
- 16.Woffinden, F. B. and Niemi, R. O., 1981, Low-flow stability tests at Peach Bottom Atomic Power Station Unit 2 at end of cycle 3, EPRI NP- 972.
- 17.Enomoto, T., Muto, S., Ishizuka, T., Tanabe, A., Mitsutake, T. and Sakurai, M., 1985, Thermal Hydraulic Stability Experiments in Rod Bundle, Proceedings of the Third Int. Topical Meeting on Reactor Thermal Hydraulics, Newport, R. I., USA, Vol. 1, Paper 9.B.
- 18.Kruijf, W.J.M., Sengstag, T., Haas, D.W., Van der Hagen, T.H.J.J., 2004, Experimental Theermohydraulic Stability Map of a Frenon-12

Boilig Water Reactor Facility with High Exit Friction, Nuclear Engineer and Design 229 75-80.

- 19.Meyer, J. E. and Rose, R. P., 1963, Application of a Momentum Integral Model to the Study of Parallel Channel Boiling Flow Oscillation, J, Heat Trans. ASME.
- 20. Yokomizo, O., 1983, Time-Domain Analysis of BWR Core Stability J. Nucl. Sci, and Tech., Vol. 20, pp. 63-76.
- 21.March-Leuba, J., Pere, R. B. and Cacuci, D. G., 1984, Calculation of Limit Cycle Amplitudes in Commercial Boiling Water Reactors, Trans. Am. Nucl. Soc., Vol. 46.
- 22.Takigawa, Y., Takeuchi, Y., Tsunoyama, S., Ebata, S., Chan. K.C., Tricoli, C., 1987. Coarso limit cycle analysis with three-dimensional transient code TOSDYN-2 Nucl. Tech., vol. 79, 210-218.
- 23.March-Leuba, J., Cacuci, D.G., Perez, R.B., 1986, Nonlinear dynamics and stability of boiling water reactors: Part 1- qualitative analysis. Nuclear Science and Engineering 93, 111-123.
- 24.Gialdi, E., Grifoni, S., Parmeggiani, C., Tricoli, C., 1985. Core stability in operating BWR: operational experience. Prog. Nucl. Energy 15, 447-459.
- 25.曾文煌,"LASALLE-2 沸水式反應爐熱流不穩定性事件",台電核 能月刊,6/1990, pp. 50-57。
- 26.March-Leuba, José and Rey, José M., "Coupled Thermohydraulic-Neutronic Instabilities in Boiling Water Nuclear Reactors : a Review of the State of the Art," Nuclear Engineering and Design, Vol. 145, pp. 97-111, 1993.
- 27.D'Auria, F. *et al*, "State of the Art Report (SOAR) on BWR Stability," OECD-NEA, 5/1996.
- 28.March-Leuba, J., LAPUR benchmark against in-phase and out-phase

stability tests, NUREG/CR-5605, ORNL/TM-1162, 1990.

- 29.Muto, S., Yokomizo, Y., Fukahori, T., Ebata, S., 1990. Space dependent analysis of BWR core nuclear thermal hydraulic instability and thermal margin. Nuclear Engineer Design 120, 227-239.
- 30.Araya, F., Yoshida, K., Hirano, M., Yabushita, Y., 1991. Analysis of neutron flux oscillation event at LaSalle 2. Nucl. Technol. 93, 82-90.
- 31.王仲容,"雙相流穩定性時域分析模式之建立與應用"博士論文, 清華大學,1993。
- 32.J.R. Wang, Chunkuan Shih, B.S. Pei, C. Pan, H.P. Chou, & M.L. Hou, 1991, "Kuosheng BWR/6 Channel Flow Stability Analysis," AIChE Symp. Series, No. 283, 87, 352.
- 33.J.R. Wang & Chunkuan Shih, 1992, "Kuosheng BWR/6 Recirculation Pump Trip Transient Analysis with RETRAN02/MOD5 Code," Eighth Proc. of Nuclear Thermal/Hydraulics, 95-101, Chicago, USA.
- 34.Rao Y.F., Fukuda K. and Kaneshima R. 1995. Analytical study of coupled neutronic and thermohydraulic instabilities in a boiling channel. Nuclear Engineer Design, 154, 133-144.
- 35.Akitoshi Hotta, Hisahi Ninokata, Hiroyuki Takeuchi, 1997, Development of BWR Regional Instability Model and Verification Based on RIGHALS 1 Test. Ann. Nucl. Energy, Vol. 24 No. 17 pp. 1403-1427.
- 36.Akitoshi Hotta, Hisahi Ninokata, Hiroyuki Takeuchi, 2000 "Regional instability evaluation of Ringhals unit 1 based on extended frequency domain model" Nuclear Engineer and Design 200 pp.201-220.
- 37. Yunlin Xu, Thomas Downar, R et. "Application of TRACE/PRACS to BWR stability analysis", Annals of Nuclear Energy, vol.36, 2009, pp.317-323.
- 38. Hotta Akitoshi, et al., "Regional Instability Evaluation of Ringhals

Unit 1 Based on Extended Frequency Domain Model", Nucl. Eng. Design, vol.200, 2000, pp. 201-220.

- 39.「台灣電力公司第一核能發電廠營運程序書」,程序書編號 1002.8,版次21,民國97年6月。
- 40.Chang-Lung Hsieh, et al., "Effect of Parametric Sensitivity on Stability Boundary of Chinshan NPP" Annals of Nuclear Energy, 36, 802-809, 2009.
- 41.Jong-Rong Wang, et al., "In-phase and out-of-phase modes stability analysis with LAPUR5 code for Kuosheng" Annals of Nuclear Energy, 35, 277- 84, 2008.
- 42. 龍門電廠訓練教材。
- 43.龍門電廠最終安全分析報告(Final Safety Analysis Report FSAR), 4.4.3.7。
- 44.Alberto Escrivá, and José March-Leuba, "LAPUR5.2 Verification and User's Manual," NUREG/CR-6696 ORNL/TM-2000/340, November 2000.
- 45.林浩慈、王仲容、施純寬、謝昌倫,"沸水式反應器穩定性分析方法 之介紹與LAPUR穩定性分析模式之建立", INER-A0712R, 中華民 國九十四年九月。
- 46.沸水式反應器穩定性分析方法論更新研究,計畫編號:1002001INER017。
- 47.A. Escrivá, J. L. Muńoz Cobo, J. M. San Roman, M Albendea Darriba, and J. March-Leuba, "LAPUR6 Verification and User's Manual," NUREG/CR-6958 ORNL/TM-2007/233 (October 2008).
- 48.Umbager J. A., Digiovine A. S., "SIMULATE-3, Advanced Three Dimensional Two-Group Reactor Analysis Code. User's Manual", Studsvik/SOA-92/01, 1992.

- 49.Escriva, A. and Munoz-Cobo, J. L., "PAPU Models, Correlations, and User's Mannul", ThermalHydraulic and Nuclear Engineering Group, GTIN-02/001, March 2002.
- 50.林浩慈、王仲容、施純寬、謝昌倫、邱茗秀, "EXAVERA 程式建 立與驗證",, INER-OM-0762R, 中華民國九十四年九月。
- 51.Wu, Ping., "Lungmen ODYSY Stability Analysis," Rev. 1, 0000-0026-4971, 2004.

伍、附錄

此外,本計畫亦完成3篇 SCI 國際期刊論文、3篇 EI 國際 期刊論文與投稿7篇國際研討會論文,成果豐碩,其項目詳列於 附錄中。如下列所示:

一. SCI 期刊

- Density Reactivity Coefficient and Inlet Loss Coefficient Effects on Stability Characteristics of Lungmen Nuclear Power Plant, Chang-Lung Hsieh, Jong-Rong Wang, Hao-Tzu Lin, I-Ting Wang, Chunkuan Shih, Kerntechnik, 2012.
- Development of interactive software for evaluations of effective thermal properties in fuel bundles and fuel tubes in spent fuel dry storage systems, 林唯耕, 王仲容, 曾永 信, 施純寬, 張睿恩, Journal of the Chinese Institute of Engineers, 2012.
- Analyses of overpressurization transients for Lungmen ABWR, Chiung-Wen Tsai, Chunkuan Shih, Jong-Rong Wang, Hao-Tzu Lin, Su-Chin Cheng, Fong-Lun Lin, Nuclear Engineering and Design, 2012.
- 二. EI 期刊
- Parametric analysis of pressure control system for Lungmen nuclear power plant, Chiung-Wen Tsai, Chunkuan Shih, Jong-Rong Wang, Hao-Tzu Lin, Su-Chin Cheng, Fong-Lun Lin, Energy Procedia, Volume 14, 2012, Pages 1082-1086.

- Construction of an Elementary Model for the Dynamic Analysis of a Pressurized Water Reactor, Chiung-Wen Tsai, Chunkuan Shih,, Jong-Rong Wang, Advanced Materials Research, 2012.
- Application of LAPUR6 to Lungmen ABWR Stability Analysis, Hao-Tzu Lin, Jong-Rong Wang, and Chunkuan Shih, Applied Mechanics and Materials, 2012.
- 三. 國內外會議論文
- TRACE/PARCS/LAPUR stability analysis for Lungmen ABWR nuclear power plant, Jong-Rong Wang, Hao-Tzu Lin, Chang-Lung Hsieh, Chunkuan Shih, NUTHOS-9, 2012.
- The thermal hydraulic behavior in core inlet region of BWR with the inadvertent startup of HPCI event, Yu-Ting Ku, Yung-Shin Tseng, Chih-Wei Su, Jong-Rong Wang, Chunkuan Shih, NUTHOS-9, 2012.
- Application of Genetic Algorithm on Optimization of Pressure Control System for Lungmen NPP, Chiung-Wen Tsai, Chunkuan Shih, Jong-Rong Wang, Hao-Tzu Lin, Su-Chin Cheng, Fong-Lun Lin, NUTHOS-9, 2012.
- Comparative studies in pressure drop correlation effects on instability analysis for Chinshan NPP by LAPUR methodology, Chang-Lung Hsieh, Jong-Rong Wang, Hao-Tzu Lin, Guan-Yu Chen, Chunkuan Shih, NUTHOS-9, 2012.

- Comparative Study in The Stability Analysis Code of LAPUR5.2 and LAPUR6.0 for The Kuosheng NPP, Chang-Lung Hsieh, Guan-Yu Chen, Chunkuan Shih, Jong-Rong Wang, Hao-Tzu Lin, ICONE20, 2012.
- Effect of Fuel Assembly Grouping on Instability of Chinshan NPP, Guan-Yu Chen, Hao-Tzu Lin, Jong-Rong Wang, Chang-Lung Hsieh, Chunkuan Shih, 2012 ANS Annual Meeting, 2012.
- Faster-than-real time dynamic evaluations on offsite dose distributions for nuclear emergency planning and response, 陳韶萱, 鄭憶湘, 王仲容, 施純寬, TopSafe, 2012.