# 行政院原子能委員會核能研究所

## 委託研究計畫研究報告

沸水式反應器穩定性分析方法論更新研究

A study of Renew Methodology for Stability Analysis of Boiling Water Reactor

計畫編號:1002001INER017

受委託機關 (構): 財團法人核能資訊中心

計畫主持人:謝昌倫 博士

聯絡電話: 03-5727991

E-mail address:clhsieh@ess.nthu.edu.tw

核研所聯絡人員: 王仲容 博士

報告日期: 2011 年 11 月 30 日

| 目 錄 |  |
|-----|--|
|-----|--|

| 目 錄                             | i   |  |  |  |
|---------------------------------|-----|--|--|--|
| 表目錄                             | iii |  |  |  |
| 圖目錄                             | iv  |  |  |  |
| 中文摘要                            | vi  |  |  |  |
| Abstractvii                     |     |  |  |  |
| 壹、計畫源起與目的                       | 1   |  |  |  |
| 貳、研究方法與過程                       | 4   |  |  |  |
| 一、LAPUR6 程式簡介                   | 4   |  |  |  |
| 二、LAPUR6.0 針對 LAPUR5.2 的改進措施    | 6   |  |  |  |
| (一)現有的 LAPUR 5.2 版本的缺點          | 6   |  |  |  |
| (二) LAPUR6.0 對熱流的主要改變           | 7   |  |  |  |
| (三) LAPURX 在可變動的流動面積的修正         | 8   |  |  |  |
| (四). LAPURX 在因面積變化造成的壓降方面的修正    |     |  |  |  |
| (五) LAPURX 在摩擦模型 I 方面的修正        |     |  |  |  |
| (六) LAPURX 在摩擦模型 II 的理論模式       |     |  |  |  |
| 三、LAPUR6 新增功能使用說明               |     |  |  |  |
| (一)可變流動面積的輸入卡號與應用方式             |     |  |  |  |
| (二)加入計算局部壓降功能的輸入卡號與應用方式         |     |  |  |  |
| (三)摩擦模型Ⅰ與摩擦模型Ⅱ的輸入卡號與應用方式        |     |  |  |  |
| (四)再循環回路相關參數                    |     |  |  |  |
| 四、LAPUR6 方法論                    |     |  |  |  |
| 五、SIMULATE-3 使用說明               |     |  |  |  |
| 六、PAPU 使用說明                     |     |  |  |  |
| 七、EXAVERA 使用説明                  |     |  |  |  |
| 八、DRASM 程式使用說明                  |     |  |  |  |
| 叁、主要發現與結論                       | 70  |  |  |  |
| 一、LAPUR6 穩定性分析研究之相關文獻           |     |  |  |  |
| 二、LAPUR6 與 LAPUR5.2 的差異與新增卡號的使用 | 72  |  |  |  |
| 三、使用半長棒對穩定性的影響                  | 73  |  |  |  |
| 四、 加入燃料格架的壓降計算後對穩定性的影響          | 77  |  |  |  |
| 五、使用不同摩擦模型對穩定性的影響               |     |  |  |  |

| 六、龍門電廠穩定性分析模式之建立                         |    |
|------------------------------------------|----|
| (一)龍門電廠的改進措施與穩定性特質                       | 80 |
| (二)龍門電廠的穩定性分析                            |    |
| 七、自動化執行程式的建立與驗證                          |    |
| 八、結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |    |
| 肆、參考文獻                                   |    |

## 表目錄

| 表 2.1 LAPURX 卡號 58~62                 | 40 |
|---------------------------------------|----|
| 表 2.2 LAPURX 卡號 63~66                 | 41 |
| 表 2.3 LAPURX 卡號 67~72                 | 42 |
| 表 2.4 LAPURX 卡號 73~76                 | 43 |
| 表 2.5 LAPURW 卡號 32                    | 44 |
| 表 2.6 電廠再循環參數靈敏度分析                    | 45 |
| 表 2.7 LAPURX 每次分析需要更動的卡號              | 46 |
| 表 2.8 LAPURW 每次分析需要更動的卡號              | 47 |
| 表 2.9 SIMULATE-3 擾動設定                 | 48 |
| 表 3.1 同輸入檔不同執行檔的壓降與衰減率                | 84 |
| 表 3.2 LAPUR5.2 與 LAPUR6.0 的各種壓降比較     | 85 |
| 表 3.3 使用半長棒與全長棒之壓降與衰減率比較              | 86 |
| 表 3.4 利用不同方式計算局部壓降的結果比較-70(%)/50(%)   |    |
| 表 3.5 使用不同摩擦模型的壓降與衰減率                 |    |
| 表 3.6 不同摩擦模型在軸向壓降結果比較-65.4(%)/44.0(%) | 89 |
| 表 3.7 單相摩擦係數的係數比較                     | 90 |
| 表 3.8 不同摩擦模型的結果與廠商數據比較                | 91 |
| 表 3.9 LAPUR6.0 分析結果與 ODYSY 比較         | 92 |
| 表 3.10 核一廠一號機 Cycle24 手動與程式計算之衰減率比較   | 92 |

## 圖目錄

| 啚 | 2.1 變動面積與相應節點                      | .49  |
|---|------------------------------------|------|
| 圖 | 2.2 SIMULATE-3 的燃料軸向區間資料           | .50  |
| 圖 | 2.3 設定完成之 LAPURX 卡號 58~62          | .51  |
| 圖 | 2.4 ATRIUM-10 燃料軸向組成圖              | .52  |
| 圖 | 2.5 SIMULATE-3 的燃料格架資料             | .53  |
| 圖 | 2.6 設定完成之 LAPURX 卡號 63~66          | .54  |
| 圖 | 2.7 設定完成之 LAPURX 卡號 67~76          | .55  |
| 圖 | 2.8 SIMULATE-3 的輸入檔編輯示意圖           | .56  |
| 圖 | 2.9 LAPURX 輸出結果-壓降分布               | .57  |
| 圖 | 2.10 LAPURX 輸出結果-通道流量與系統總壓降        | .58  |
| 圖 | 2.11 LAPURW 輸出結果-密度反應度係數           | . 59 |
| 圖 | 2.12 LAPURW 輸出結果-同相與異相衰減率          | . 59 |
| 圖 | 2.13 輸出檔 CAIDAS.OUT                | .60  |
| 圖 | 2.14 LAPUR6.0 分析模式流程圖              | .61  |
| 圖 | 2.15 EXAVERA 運算的流程圖                | .62  |
| 圖 | 2.16 EXAVERA 驗證                    | .63  |
| 圖 | 2.17 尋找區間與間隔之示意圖                   | .64  |
| 圖 | 2.18 找出最大衰減率之流程圖                   | .65  |
| 圖 | 2.19 DRASM 程式的操作介面                 | .66  |
| 圖 | 2.20 DRASM 結果產生畫面                  | .67  |
| 圖 | 2.21 DRASM 產生的輸出檔                  | .68  |
| 圖 | 2.22 DRASM 程式在 LAPUR5.2 方法論中所包含的範圍 | .69  |
| 圖 | 3.1 同輸入檔不同執行檔的衰減率比較                | .93  |

| 圖 | 3.2  | LAPUR5.2 與 6.0 摩擦模型 I 的衰減率比較  | 94  |
|---|------|-------------------------------|-----|
| 圖 | 3.3  | LAPUR5.2 與 6.0 摩擦模型 II 的衰減率比較 | 95  |
| 圖 | 3.4  | 使用全長棒與半長棒對衰減率的影響              | 96  |
| 圖 | 3.5  | 使用全長棒的壓降分布比較                  | 97  |
| 圖 | 3.6  | 使用半長棒的壓降分布比較                  | 98  |
| 圖 | 3.7  | 同相衰減率對雙相除以單相壓降比率之比較圖          | 99  |
| 圖 | 3.8  | 異相衰減率對雙相除以單相壓降比率之比較圖          | 100 |
| 圖 | 3.9  | 使用不同方式計算局部壓降對衰減率的影響           | 101 |
| 圖 | 3.10 | 使用不同方式計算局部壓降對衰減率的影響           | 102 |
| 圖 | 3.11 | 不同雙相流摩擦加乘因子對衰減率的影響            | 103 |
| 圖 | 3.12 | 龍門電廠功率/流量圖譜之局部放大圖             | 104 |

#### 中文摘要

隨著核電廠的安全新技術、核電廠相關之各類組件與核燃料皆不斷 日新月異,尤其近年來燃料廠商為增加爐心營運的穩定性皆已改用半 長棒的設計。在過去針對爐心再裝填所作的穩定性分析與平行驗證, 最主要是使用 LAPUR5.2 程式作為分析工具。然而因為半長棒的使 用,使得原本分析程式無法滿足需求,必須做提升。

LAPUR6.0 頻域分析程式沿襲原來 LAPUR5.2 程式的優點,並增加 流動面積改變的計算功能,更能準確估算雙相壓降、空泡分率與衰減 率的估算。在燃料廠商提出核能電廠燃料再裝填安全分析中,包括有 沸水式反應器穩定性的安全分析,於功率流量運轉圖中,建立以衰減 比值為基礎的穩定性邊界。藉由新版程式的導入與研究,能提升相關 的管制技術,並可用於分析新型的核燃料設計。

經由此一計畫的執行,建立了LAPUR6.0穩定性分析方法論,並針 對LAPUR6.0程式之運作流程,以自動化程式之撰寫,藉以改進並確 保爐心穩定性評估的正確性。目前已針對LAPUR6.0的新增功能,完 成驗證分析並運用於實際的電廠穩定性分析。經由新版程式在變動面 積與摩擦模式對壓降估算準確性提升,增加相關重要參數的準確性, 並藉以提升衰減率的估算,促進爐心穩定性分析的正確性。

關鍵字:LAPUR6.0、衰減率、雙相壓降

#### Abstract

For the purpose of expanding nuclear energy, the new nuclear technologies always do emphasis on safety to prevent accident from happening. With upgrading nuclear safety technology, most of boiling water reactors has been adopting partial length fuel assemblies to reduce two-phase pressure drop and void fraction, to improve reactor stability. A LAPUR5.2 methodology had been adapted to build up the remarkable analysis mode of the BWR-4, BWR-6 and ABWRs. A partial length fuel assembly has the feature of changing flow area. The question is that LAPUR5.2 methodology cannot precisely analysis stability characteristics from flow area variation. Moreover, an advanced program-LAPUR6.0 has the ability that could solve such problems and precisely calculate two phase pressure drop and void This research was based on LAPUR5.2 methodology; we fraction had expanded those of experiences to build a new methodology for the new type fuel assemblies by LAPUR6.0. We have also developed a new interface code, DRASM, to automatically execute LAPUR6.0 methodology and to calculate decay ratio. According to the gradually set up control theorem, this new developed LAPUR6.0 methodology can turn into the foundation tools and build up ourselves stable control Furthermore, these established experiences, analysis technology. techniques and theorems will have the most assistance for concerning researchers.

Keywords: LAPUR6.0, decay ratio, two-phase pressure drop

#### 壹、計畫源起與目的

隨著核電廠的安全新技術、核電廠相關之各類組件與核燃料皆不 斷日新月異,尤其近年來燃料廠商為增加爐心營運的穩定性皆已改用 半長棒的設計。對於目前所擁有四部運轉中的沸水式反應器機組與兩 部正在興建中的進步型沸水式反應器皆具有在某些特殊的情況下,會 因為功率與流量的震盪而有不穩定性問題的發生之共通特性。在過去 針對爐心再裝填所作的穩定性分析與平行驗證,最主要是使用 LAPUR5.2 程式作為分析工具。然而因為半長棒的使用,使得原本分 析程事件無法滿足需求,必須做提升。LAPUR6.0 頻域分析程式沿襲 原來 LAPUR5.2 程式的優點,並增加流動面積改變的計算功能,更能 準確估算雙相壓降、空泡分率與衰減率的估算。

由於沸水式反應器所獨具之動態模式,在某些特殊情形下易導致 不穩定性發生,此一類型的不穩定效應是結合了中子與熱流效應。新 的核能發電技術會更強調安全,並使得各項核能管制技術日新月異; 為使沸水式核反應器更穩定、更安全與更有效率,現在新型的核燃料 都已逐漸採用全長棒(full length)與半長棒 (partial length)混合搭配, 並設法加大功率密度,這些措施也使得相對應的穩定性分析技術之提 升益發重要。 近來由於半長棒的使用,已逐漸成為燃料廠商的趨勢,過去所發 展的LAPUR5.2 方法論,最主要是針對過去全爐心皆為全長燃料棒; 但近年來核一、核二廠與正在興建中的龍門電廠皆已使用半長棒。目 前國內並未特別針對半長棒所作的穩定性影響評估之學術論文發 表,所以現今國內對於半長棒的研究尚付之闢如。國外對於此一議題 的研究多屬於廠商的專業技術報告,推敲其原因可能是上述的研究皆 屬於該廠商的技術資產,根據目前的網路搜尋結果,僅有半長棒的美 國專利;專利文中主要提及,半長棒能提供較低的雙相流壓力與雙相 區域會具有較大的變動面積等優點。尤其重要的是,進步型沸水式反 應器是國內近二十年來首度新建並即將試運轉的核電廠,目前關於爐 心穩定性分析研究尚處於起步階段,且國內相關研究亦甚為稀少。

本計劃之主要目的,在於因應日新月異的核能安全需求,引進 LAPUR6.0程式,並希望藉此發展一套處理能處理並能分析新型核燃 料穩定性分析核能安全管制技術。希望藉此一計畫的執行,且能處理 並分析半長棒核燃料藉以應用於龍門電廠-進步型沸水式反應器的同 相與異相不穩定性的產生機制、理論與控制方法。我們計劃先以「簡 化階層的模型理論」為基礎,再結合相關的雙相流不穩定性理論、參 數靈敏度分析並結合動態系統回授之控制學理,來逐步建立異相不穩 定性的學理基礎與相關頻域控制的方法。此一計畫執行期間,也冀望 能發展 LAPUR6.0 的自動執行程式,能自動建立輸入檔與計算衰減 率,減少人為輸入的失誤並提升穩定性分析的準確性。

#### 貳、研究方法與過程

此一章節主要是就 LAPUR6.0 的新增功能與理論基礎做介紹, 著重在程式的演進與由來;接著再藉由比較新舊版本(LAPUR5.2 與 LAPUR6.0)的差異,介紹 LAPUR6.0 新增的功能與相關的程式功能 改進以及理論基礎。由於 LAPUR6.0 主要是提升熱流方面的諸多分 析功能,此處列舉相關的改進措施,如可變流動面積、局部壓降的 計算、摩擦模型 I 與摩擦模型 II,並介紹其理論基礎與程式的改變。 此外也在此章節介紹 LAPUR6.0 方法論的運作模式,同時也介紹將 在方法論中所需應用到的相關程式。

一、LAPUR6 程式簡介

從 BWR 技術發展以來, 沸水式電廠的穩定性一直是首要的關 注目標。1988 年的 La Salle 事件突顯了沸水式電廠的穩定性是全 球性的安全問題, 各國的管理機構開始要求各個沸水式電廠修正 他們的穩定性。為了能有效避免 BWR 不穩定事件的發生, 限制 運轉進入那些對不穩定特別敏感的區域, 並藉以建立了一個如何 避免不穩定發生的標準。在此一需求背景下, 由西班牙的 lberdrola 和 lberdrola Ingenieria Consultori 與 Universidad Polit6cnica de Valencia (UPV)合作, 開發出一套方法利用 LAPUR5

4

和 PAPU 應用在 E1A 方法論上。

LAPUR 是一套針對沸水式電廠,計算其運轉穩定性參數的程 式。它是由兩個獨立的模組所組成,LAPURX 是計算穩態熱水流 方程式(假設在固定的通道流動面積);LAPURW 則是在頻域 上計算衰減率,並藉以界定穩定運轉區域。LAPUR5 是由美國橡 木山國家實驗室(ORNL)發展。此套方法論以及程式的應用已經由 CSN 審核通過,lberdrola 利用它們對 Cofrentes 電廠過去三次燃 料再裝填進行穩定性分析。2000 年,ORNL 和 UPV 合作推出新 的版本 LAPUR5.2,能夠模擬更高層次的細節,並提供更好的穩 定性餘裕估計。

由於普遍對沸水式電廠不穩定問題的擔憂,歐洲核能學會准許 了 NACUSP 計畫(2001-2004),其中 lberdrola 和 UPV 合作。他們 認為有必要改進 LAPUR 的原因主要有二個:

 新燃料的設計納入了更高的功率密度和更適合爐心底部區域的 功率分布,還有半長燃料棒和釓棒等。雖然從中子的觀點來看 效率提升了,但在穩定性方面,則造成了燃料的表現有所不同。
 不同形式的不穩定,特別是異相的不穩定,最近被觀察到在沸水 式電廠的運轉和啟動時發生。利用工具和其方法論可以更精確

5

的預測穩定性的餘裕,確保不會有任何不穩定事件發生而造成 不必要的停機。

因此為了提升 LAPUR 計算與分析頻域穩定性的執行能力,新版的 LAPUR6 主要是針對 LAPUR5.2 版本的熱水流分析模式予以改善,藉由諸如:局部壓降的摩擦力修正、設定可變的流道面積,以便能更適當的模擬新式燃料半長燃料棒的設計、局部壓降(由燃料棒格架造成)...,諸多熱水流分析模式的修改,將對其預測的能力作改善。

二、LAPUR6.0 針對 LAPUR5.2 的改進措施

(一)現有的 LAPUR5.2 版本的缺點

現有的 LAPUR5.2[1]版本有在分析上尚有許多缺點尚待改進,主要可以分成以下三點:

- 在模擬燃料的通道中,沒有任何模式可以計算局部壓降和二 次壓降(secondary losses),只能夠計算摩擦壓降的部分。因此, 在 LAPUR5.2 方法論中,是將程式算出來的摩擦壓降乘上使用 者指定的摩擦倍率,最後得到一個等效壓降來把局部壓降包括 進去。
- 2. 在燃料通道中,程式不允許可變動的流動截面積的存在。因

此,對於由通道壓縮或擴張所造成之可逆的壓力升降與不可逆 的壓力降也是一樣要使用摩擦倍率來模擬。

3. 在 LAPUR5.2 中,雙相流摩擦壓降加成因子的估計是使用 Martinelli-Nelson 經驗式再配上 Jones 修正因子。由於 Martinelli-Nelson 經驗式沒有考慮質量流率對雙相流摩擦壓 降加成因子的影響,在蒸氣乾度高於 0.6 時,這個加成因子 會高估摩擦壓降,因此必須參考可靠的實驗數據來加以修改。

(二) LAPUR6.0 對熱流的主要改變

鑑於以上幾點,為了讓 LAPUR 的分析更為貼近實際情況,新 版的程式以 LAPUR5.2 版本為基礎對熱流的計算方法進行了大幅 度的修改。依據 LAPUR6.0 使用者手冊[2],6.0 版本相對於 5.2 版 本主要有以下幾點的改變:

1. LAPUR6.0 修正了計算摩擦壓降以及局部壓降的雙相摩擦加

乘因子,因此使用不同的經驗式,以符合新型的燃料設計。

- LAPUR5.2 只能模擬固定的通道面積,6.0 版本有能力模擬具 有變動流動面積的通道,以便能更貼切的模擬新型燃料例如半 長燃料棒的設計。
- 3. 以往在 LAPUR5.2 單相區域是當成一個節點來計算,

LAPUR6.0 將單相區域分成好幾個節點,能夠較準確的計算在

未沸騰區域的各項參數,例如密度、液體流速、溫度等。

- 4. 加入局部壓降的計算,也就是由燃料格架(spacer)造成的壓降 計算。
- 5. 加入由通道壓縮或擴張所造成之不可逆壓降的計算。
- 6. 在詳細的檢查程式碼之後,發現並修正了三個微小的程式錯誤。

最後,LAPUR6.0程式預測穩定性的能力已經由Cofrentes、 Ringhals、Forsmark電廠的數據驗證。

(三) LAPURX 在可變動的流動面積的修正

針對前述LAPUR5.2的缺失,LAPUR6.0利用新的關係式來計算摩 擦和局部的壓力損失以及對燃料束在不同截面積時的模擬;摩擦和 局部的模式選擇是共通的,而且不包含燃料廠商的資訊。燃料廠商 利用獲得的實驗數據來修正他們的摩擦模式並應用於程式上,這是 一個得到精確的摩擦模式的好方法。因為它們和幾何形狀還有表面 粗糙度有很強的關係,但是這比較適合用來更新通用的模式以跟燃 料廠商提供的數據吻合。根據這些目標,一個結合自由參數的通用 摩擦模式能夠和廠商的結果報告呈現很好的相似程度。內容詳述如 LAPURX 在可變動的流動面積的修正,改進的要點分列如下:

1. 理論的應用

對於動量守恆,目前的LAPUR5.2版本是將未沸騰區域當成一個單元來計算(主要是針對壓降的分析);新版的LAPUR6.0計算動量守衡方程式是對每一個單元都去計算。

舊的 LAPUR5.2 不允許在燃料元件中改變流動的面積,其通道為一個固定的面積 A0 (LAPURX 輸入檔卡號 19);新版 LAPUR6.0 則有能力模擬燃料束具有不同的截面積。

- 2. 讀取、存取和準備新的變數;新的變數為每種通道的軸向流動 面積和軸向水力直徑。
- 在可變的流動面積和水利直徑方面共修改了四個子程式:
  - (1) 子程式 INPUT: 讀取新的參數。.
  - (2) 子程式 OUTIN: 回傳(print)新的參數。
  - (3) 子程式 SETUP: 從陣列挑選通道類型 IX 的具體參數。
  - (4) 子程式 NODE: 變換節點參數為新的座標系統。
  - 3. 單元變數的計算

下列的單元變數是在子程式 FRICT 中計算:

- (1) 正規化的熱焓[cal/g]
- (2) 溫度[°C]
- (3) 液體的動力黏度[g/cm<sup>2</sup>s]
- (4) 密度[g/cm<sup>3</sup>]
- (5) 液體速度[cm/s]
- (6) 雷諾數
- (7) 摩擦係數
- (8) 係數 a<sub>2</sub> 用在 Moody 摩擦係數

(四). LAPURX 在因面積變化造成的壓降方面的修正

在此章節將呈現以下幾個壓降方面的修正:

重力壓降、加速度壓降、摩擦壓降、不可逆的膨脹造成的壓降、 不可逆的壓縮造成的壓降與局部壓降;前述各類壓降以及變動面 積與相應節點的位置,如圖 2.1 所式。

1. 重力壓降

(1)未沸騰區域

在LAPUR5裡面,未沸騰區域只當成一個節點。在 LAPUR6.0中,則是依據LAPURX輸入檔將未沸騰區域分成好 幾個單元。在這個區域,LAPUR6.0對於因面積改變造成的重

$$\left(\frac{\partial P}{\partial z}\right)_{G} = \rho_{l}(z) \cdot g \cdot \cos\theta \tag{1}$$

$$\Delta \mathbf{P}]_{n}^{n+1} = \rho_{l}(m) \cdot \mathbf{g} \cdot \cos \theta \cdot [\mathbf{z}(n+1) - \mathbf{z}(n)]$$
<sup>(2)</sup>

子程式 DELP(x frict.for)負責計算這些壓降。

### (2)沸騰區域

在這個區域計算沿著通道的每個節點的重力壓降,是依照以下 的方程式:

$$\left(\frac{\partial P}{\partial z}\right)_{G} = \left[\alpha(z) \cdot (1 - \eta) \cdot \rho_{F} + (1 - \alpha(z)) \cdot \rho_{I}(z)\right] \cdot g \cdot \cos\theta \qquad (3)$$

$$\Delta P]_{n}^{n+1} = \left[ \left( \frac{\alpha(n) + \alpha(n+1)}{2} \right) \cdot \left( 1 - \eta \right) \cdot \rho_{F} \cdot \left( 1 - \frac{\alpha(n) + \alpha(n+1)}{2} \right) \cdot \rho_{I}(m) \right] \cdot g \cdot \cos \theta \cdot dz$$
(4)

### (1)未沸騰區域

在LAPUR5裡面,未沸騰區域只當成一個節點。在 LAPUR6.0中,則是依據 LAPURX 輸入檔將未沸騰區域分成好 幾個單元。

在這個區域,LAPUR6.0對於因面積改變造成的加速度壓降的

$$\left(\frac{\partial P}{\partial z}\right)_{\rm ac} = \frac{w_1^2}{A(z)} \frac{\partial}{\partial z} \left(\frac{1}{\rho_1(z) \cdot A(z)}\right) \tag{5}$$

$$\Delta \mathbf{P}]_{n}^{n+1} = \frac{w_{1}^{2}}{A(z)} \left( \frac{1}{\rho_{1}(n+1) \cdot A(n+1)} - \frac{1}{\rho_{1}(n) \cdot A(n)} \right)$$
(6)

LAPUR6.0 利用子程式 NODE 來計算流動面積

[AVNBL(m);m=1,NNB]和邊緣流動面積

[AVNBCL(m);m=1,NNB+1],AVNBL 的值是經過長度平均的, 子程式 DELP(x\_frict.for)負責計算這些壓降。

DELP 中的液體的單元邊緣(cell edge)密度 ρ<sub>1</sub>(n) 是利用單元值 ρ<sub>1</sub>(m) 計算

在第一個單元邊緣:

$$\rho_1(1) = \rho_{1\text{inlet}} \tag{7}$$

在中間的單元邊緣:

$$\rho_{l}(n) = \frac{\rho_{l}(m-1) \cdot \left(\frac{z(n) - z(n-1)}{2}\right) + \rho_{l}(m) \cdot \left(\frac{z(n+1) - z(n)}{2}\right)}{\left(\frac{z(n) - z(n-1)}{2}\right) + \left(\frac{z(n+1) - z(n)}{2}\right)}$$
$$= \frac{\rho_{l}(m-1) \cdot z(n) - z(n-1) + \rho_{l}(m) \cdot z(n+1) - z(n)}{z(n-1) - z(n+1)}$$
(8)

在最後一個單元邊緣:

$$\rho_{1}(\text{NNB}+1) = \frac{\rho_{1}(\text{m}=\text{NNB}) \cdot (z(\text{NNB}+1) - z(\text{NNB})) + \rho_{1}(1_{\text{BR}}) \cdot DZ}{[z(\text{NNB}+1) - z(\text{NNB})] + DZ}$$
(9)

(2)沸騰區域

在這個區域:

$$\left(\frac{\partial P}{\partial z}\right)_{ac} = \frac{1}{A(z)} \cdot u_0^2 \cdot \rho_F \cdot A_0^2 \frac{\partial}{\partial z} \left(B(Z) \frac{1}{A(z)}\right)$$
(10)

$$\rho_{\mathbf{l}}(\mathbf{z}) \frac{1}{\mathbf{A}(\mathbf{m})} \cdot \mathbf{u}_{0}^{2} \cdot \rho_{\mathbf{F}} \cdot \mathbf{A}_{0}^{2} \left( \frac{\mathbf{B}(\mathbf{n}+1)}{\mathbf{A}(\mathbf{n}+1)} - \frac{\mathbf{B}(\mathbf{n})}{\mathbf{A}(\mathbf{n})} \right)$$
(11)

其中 B 為:

$$\mathbf{B} = \frac{\left[1 - \alpha \left(1 - \gamma^2 (1 - \eta)\right)\right]}{\left[1 - \alpha \left(1 - \gamma (1 - \eta)\right)\right]^2}$$
(12)

┌為滑動比:

$$\gamma = \frac{u_{g}}{u_{l}} \tag{13}$$

LAPUR6.0 利用子程式 NODE 來計算流動面積和邊緣流動面 積,並經過長度來做平均。子程式 DELP(x\_frict.for)負責計算這 些壓降,並乘以(0.001/g),此處的子程式 DELP 是負責計算沿 著通道的每個節點的加速度壓降。

3. 摩擦壓降

(1)未沸騰區域

在 LAPUR5 裡面,未沸騰區域只當成一個節點。在 LAPUR6.0 中,則是依據 LAPURX 輸入檔將未沸騰區域分成好 幾個單元。

在這個區域,LAPUR6.0對於因面積改變造成的摩擦壓降的計算如下:

$$\Delta P(z) = \frac{\rho_1(z).u^2(z)}{2}$$
(14)

$$\Delta P]_{n}^{n+1} = \frac{\rho_{1}(m).u^{2}(z)}{2}.f(m).\frac{\kappa_{F}(m)}{D_{H}(m)}.[z(n+1) - z(n)]$$
(15)

子程式 DELP(x\_frict.for)負責計算這些壓降。

### (2)沸騰區域

在這個區域可以選用摩擦模式 I (使用 Martinelli-Nelson 關係式)

$$\Delta P(z) = \frac{\rho_1(z) \cdot u_{10}^2(z)}{2} \cdot f(z) \cdot \frac{\Delta z}{D_H(z)} \cdot \left\{ \Phi_{MN}^2(z) \cdot \Omega(z) \right\} \cdot K_F(z)$$
(16)

$$\Delta P]_{n}^{n+1} = \frac{\rho_{1}(m) \cdot u_{10}^{2}(m)}{2} \cdot f(m) \cdot \frac{K_{F}(m)}{D_{H}(m)} \cdot DZ \cdot \left[\frac{\{\Phi_{MN}^{2}(n) \cdot \Omega(n)\} + \{\Phi_{MN}^{2}(n+1) \cdot \Omega(n+1)\}}{2}\right]$$
(17)

或是摩擦模式 II (使用 Chisholm-Baroczy 關係式)

$$\Delta P(z) = \frac{\rho_1(z) \cdot u_{10}^2(z)}{2} \cdot f(z) \cdot \frac{\Delta z}{D_H(z)} \cdot \left\{ \Phi_{CB}^2(z) \right\} \cdot K_F(z)$$
(18)

$$\Delta P]_{n}^{n+1} = \frac{\rho_{1}(m) \cdot u_{10}^{2}(m)}{2} \cdot f(M) \cdot \frac{\kappa_{F}(m)}{D_{H}(m)} \cdot DZ \cdot \left[\frac{\{\Phi_{CB}^{2}(n)\} + \{\Phi_{CB}^{2}(n+1)\}}{2}\right]$$
(19)

子程式 DELP(x\_frict.for)負責計算這些壓降。要特別注意的 是,K<sub>F</sub>(z)就是 LAPUR5 的摩擦倍率,是用來讓 LAPUR 算出的 壓降能夠跟更接近其他較準確的程式。在 LAPUR6.0 的計算 中,利用{ $\Phi_{CB}^2(z)$ }將取代舊的K<sub>F</sub>(z),而K<sub>F</sub>(z)將被設為 1.0。

共有二個子程式被修改:

A.子程式 NODE:用來計算未沸騰區域的單元摩擦倍率。

B.子程式 DELP:用來計算沿著通道的每個節點的摩擦壓降。

4.不可逆的膨脹造成的壓降

(1)未沸騰區域

在 LAPUR5 裡面,未沸騰區域只當成一個節點。在 LAPUR6.0 中,則是依據 LAPURX 輸入檔將未沸騰區域分成好幾個單元。

$$\Delta \mathbf{P}(\mathbf{m}) = \left(1 - \sigma(\mathbf{m})\right)^2 \cdot \frac{\mathbf{G}^2(\mathbf{n})}{2 \cdot \rho_1(\mathbf{m})}$$
(20)

$$\sigma(\mathbf{m}) = \frac{\mathbf{A}(\mathbf{n})}{\mathbf{A}(\mathbf{n}+1)} \tag{21}$$

$$G(n) = \rho_1(n) \cdot u_1(n) = \frac{w_0}{A(n)}$$
(22)

在這個區域,LAPUR6.0 使用 Vennard 公式來計算因面積改變 造成的不可逆的擴張壓降。為了考慮截面積突然變大所造成的 壓降,需要計算截面積的變化σ,不可逆的壓降計算如下:

$$\Delta P(\mathbf{m}) = \left(1 - \sigma(\mathbf{m})\right)^2 \cdot \frac{\left(\frac{w_0}{A(\mathbf{n})}\right)^2}{2 \cdot \rho_1(\mathbf{m})}$$
(23)

子程式 DELP(x\_frict.for)負責計算這些壓降。

(2) 沸騰區域

在這個區域,LAPUR6.0 是利用均值的雙相倍率公式:

$$\Delta \mathbf{P}(\mathbf{m}) = \left(1 - \sigma(\mathbf{m})\right)^2 \cdot \frac{\mathbf{G}^2(\mathbf{n})}{2 \cdot \rho_1(\mathbf{m})} \left[1 + \left(\frac{\rho_1(\mathbf{m})}{\rho_g(\mathbf{m})} - 1\right) \cdot \mathbf{x}(\mathbf{m})\right]$$
(24)

$$\sigma(\mathbf{m}) = \frac{\mathbf{A}(\mathbf{n})}{\mathbf{A}(\mathbf{n}+1)} \tag{25}$$

$$G(n) = \rho_{l}(n) \cdot u_{l}(n) = \frac{w_{0}}{A(n)}$$
(26)

其中 x(m)是單元邊緣乾度。

為了考慮截面積突然變大所造成的不可逆壓降,需要計算 截面積 σ 的變化,因此不可逆的壓降計算如下:

$$\Delta \mathbf{P}(\mathbf{m}) = \left(1 - \sigma(\mathbf{m})\right)^2 \cdot \frac{\left(\frac{\mathbf{w}_0}{A(\mathbf{n})}\right)^2}{2 \cdot \rho_1(\mathbf{m})} \left[1 + \left(\frac{\rho_1(\mathbf{m})}{\rho_g(\mathbf{m})} - 1\right) \cdot \mathbf{x}(\mathbf{m})\right] \quad (27)$$

子程式 DELP(x\_frict.for)負責計算這些壓降,這個程式是負責

計算沿著通道的每個節點的擴張壓降。

#### 5. 不可逆的壓縮造成的壓降

(1) 未沸騰區域

在LAPUR5裡面,未沸騰區域只當成一個節點。在 LAPUR6.0中,則是依據 LAPURX 輸入檔將未沸騰區域分成好 幾個單元。在這個區域,LAPUR6.0使用 Vennard 公式來計算 因面積改變造成的不可逆的擴張壓降:

$$\Delta P(\mathbf{m}) = \sigma(\mathbf{m})^2 \cdot 0.385 \cdot \left(1 - \frac{1}{\sigma(\mathbf{m})}\right) \cdot \frac{G^2(\mathbf{n})}{2 \cdot \rho_1(\mathbf{m})}$$
(28)

$$\sigma(\mathbf{m}) = \frac{\mathbf{A}(\mathbf{n})}{\mathbf{A}(\mathbf{n}+1)} \tag{29}$$

$$G(n) = \rho_{l}(n) \cdot u_{l}(n) = \frac{w_{0}}{A(n)}$$
(30)

為了考慮截面積突然縮減所造成的壓降,需要計算截面積的 變化σ,不可逆的壓降計算如下:

$$\Delta P(\mathbf{m}) = \sigma(\mathbf{m})^2 \cdot 0.385 \cdot \left(1 - \frac{1}{\sigma(\mathbf{m})}\right) \cdot \frac{\left(\frac{\mathbf{w}_0}{A(\mathbf{n})}\right)^2}{2 \cdot \rho_1(\mathbf{m})}$$
(31)

子程式 DELP(x frict.for)負責計算這些壓降

(2) 沸騰區域

在這個區域,LAPUR6.0 是利用均值的雙相倍率公式:

$$\Delta P(\mathbf{m}) = \sigma(\mathbf{m})^2 \cdot 0.385 \cdot \left(1 - \frac{1}{\sigma(\mathbf{m})}\right) \cdot \frac{G^2(\mathbf{n})}{2 \cdot \rho_1(\mathbf{m})} \left[1 + \left(\frac{\rho_1(\mathbf{m})}{\rho_g(\mathbf{m})} - 1\right) \cdot \mathbf{x}(\mathbf{m})\right]$$
(32)

$$\sigma(\mathbf{m}) = \frac{\mathbf{A}(\mathbf{n})}{\mathbf{A}(\mathbf{n}+1)} \tag{33}$$

$$G(n) = \rho_{l}(n) \cdot u_{l}(n) = \frac{w_{0}}{A(n)}$$
(34)

其中 x(m)是單元邊緣乾度。

為了考慮截面積突然縮減所造成的不可逆壓降,需要計算 截面積的變化o,不可逆的壓降計算如下:

$$\Delta P(\mathbf{m}) = \sigma(\mathbf{m})^2 \cdot 0.385 \cdot \left(1 - \frac{1}{\sigma(\mathbf{m})}\right) \cdot \frac{\left(\frac{\mathbf{w}_0}{A(\mathbf{n})}\right)^2}{2 \cdot \rho_1(\mathbf{m})} \left[1 + \left(\frac{\rho_1(\mathbf{m})}{\rho_g(\mathbf{m})} - 1\right) \cdot \mathbf{x}(\mathbf{m})\right]$$

(35)

6. 局部壓降

(1) 未沸騰區域

在 LAPUR5 裡面,未沸騰區域只當成一個節點。在 LAPUR6.0 中,則是依據 LAPURX 輸入檔將未沸騰區域分成 好幾個單元。

在這個區域,LAPUR6.0計算局部壓降(燃料格架)的式子如下:

$$\Delta \mathbf{P}(\mathbf{m}) = \mathbf{K}_{\mathrm{L}}(\mathbf{m}) \cdot \frac{\mathbf{G}^{2}(\mathbf{n})}{2 \cdot \rho_{\mathrm{L}}(\mathbf{m})}$$
(36)

$$G(\mathbf{n}) = \rho_{\mathbf{l}}(\mathbf{n}) \cdot \mathbf{u}_{\mathbf{l}}(\mathbf{n}) = \frac{w_0}{A(\mathbf{n})}$$
(37)

子程式 DELP(x\_frict.for)負責計算這些壓降。此外,這邊會得到 一個節點的「等效 Martinelli-Nelson」局部壓降係數;這是在子 程式 COEFR 中,用來計算動量的相關係數,必須透過解熱流 的動態方程式得到:

$$K_{L-MN}(m) = \frac{\Delta P_{local}(m)}{\Delta P_{friction}(m)}$$
(38)

(2)沸騰區域

在這個區域,LAPUR6.0 計算在穩態下的局部壓降(燃料格架)的式子如下:

$$\Delta \mathbf{P}(\mathbf{m}) = \mathbf{K}_{\mathbf{L}}(\mathbf{m}) \cdot \left[ 1 + \left( \frac{\rho_{1}(\mathbf{m})}{\rho_{g}(\mathbf{m})} - 1 \right) \cdot \mathbf{x}(\mathbf{m}) \right] \cdot \frac{\mathbf{G}^{2}(\mathbf{n})}{2 \cdot \rho_{1}(\mathbf{m})}$$
(39)

$$G(\mathbf{n}) = \rho_{\mathbf{l}}(\mathbf{n}) \cdot \mathbf{u}_{\mathbf{l}}(\mathbf{n}) = \frac{w_0}{A(\mathbf{n})}$$
(40)

子程式 DELP(x\_frict.for)負責計算這些壓降。此外,這邊會

得到一個節點的「等效 Martinelli-Nelson」局部壓降係數;這是 在子程式 COEFR 中,用來計算動量的相關係數,必須透過解 熱流的動態方程式得到:

$$K_{L-MN}(m) = \frac{\Delta P_{local}(m)}{\Delta P_{friction}(m)}$$
(41)

(五) LAPURX 在摩擦模型 I 方面的修正

摩擦模型 I 是 LAPUR5.2 使用的模式,包括 Moody 單相摩擦係 數和 Martinelli-Nelson 雙相流摩擦壓降加乘因子;LAPUR6.0 新增 了摩擦模式 II ,包括 Generic 單相摩擦係數和 Chisholm-Baroczy 摩擦壓降加乘因子。因為 Martinelli-Nelson 雙相流摩擦壓降加乘因 子在蒸氣乾度較高的情況下會高估摩擦壓降,因此 LAPUR6.0 新增 了較準確的摩擦模型 II 來修正這個問題。這個部分是 LAPUR6.0 跟 LAPUR5.2 差別最大的地方。

摩擦模型 I 包括 Moody 單相摩擦係數和 Martinelli-Nelson 雙相流摩 擦壓降加乘因子。Moody 的摩擦係數 f<sub>M</sub>在單相流中沿著光滑表面 可表示為:

$$\mathbf{f}_{\mathrm{M}} = \mathbf{a}_1 \mathrm{Re}^{-\mathbf{a}_2} \tag{42}$$

其中, a1和a2是跟雷諾數有關的係數, Re 是雷諾數。

$$\operatorname{Re} = \frac{\mathrm{w}\mathrm{D}_{\mathrm{H}}}{\mathrm{\mu}\mathrm{A}} = \mathrm{G}\frac{\mathrm{D}_{\mathrm{H}}}{\mathrm{\mu}} = \mathrm{G}\frac{\mathrm{4}\mathrm{A}}{\mathrm{\mu}\mathrm{P}_{\mathrm{w}}}$$
(43)

在層流情況下,也就是 Re<2300 時:

$$f_{\rm M} = \frac{64}{\rm Re} \tag{44}$$

這時, a<sub>1</sub> = 64, a<sub>2</sub> = 1。

在紊流情況下,也就是 Re>2300 時,則是用下面的超越方程式, 給定 Re 之後,利用疊代過程來決定參數f<sub>M</sub>。

$$f_{\rm M}^{-\frac{1}{2}} = 2 \log \left( {\rm Re} f_{\rm M}^{-\frac{1}{2}} \right) - 0.8$$
 (45)

一旦 $f_M$ 決定好之後,通用方程式 $f_M = a_1 Re^{-a_2}$ 的係數可以用下列 Jones 的表示式來計算:

$$A_2 = \frac{4(\log e)f_M^{\frac{1}{2}}}{1+2(\log e)f_M^{\frac{1}{2}}}$$
(46)

$$a_1 = \frac{f_M}{Re^{-a_2}} \tag{47}$$

其中自然對數 e = 2.71,  $\log x = \log_{10} x$ ; 一般 BWR 使用的冷卻水 在紊流時的係數為 $a_1 = 0.213 \pi a_2 = 0.214$ 。

Martinelli-Nelson 雙相流摩擦壓降加成因子被廣泛使用在雙相 流壓降的分析上,一開始是為了水平管發展的,但是後來發現在垂 直管也相當的準確。搭配 Jones 的多項式擬合法,適用範圍為 x < 21

$$\phi_{MN}{}^2 = e^{\sum_{i=1}^{n} a_i [\ln (100x+1)]}$$
 (48)  
其中, x = 蒸氣乾度  
 $a_i = 跟壓力有關的擬合參數,由下列式子決定:$   
 $a_i = \sum_{j=1}^{8} b_{ij} P_j$  (49)  
其中,  $b_{ij} = a$  Jones 算出的擬合係數  
 $P_1 = 1$   
 $P_2 = 1.42234 \times 10^{-2} P$   
 $P_j = P_2 P_{j-1}; j = 3,6$   
 $P = 糸純壓力 [kg/cm^2]$ 

(六) LAPURX 在摩擦模型 II 的理論模式

摩擦模型 II 包含 Generic 單相摩擦係數和 Chisholm-Baroczy 雙相 流摩擦壓降加成因子,除了壓降計算的部分比摩擦模型 I 準確,模 型 II 還有提供使用者對不同的燃料種類指定不同的模式與自由選 擇特定的摩擦係數的功能。當爐心中的燃料不只一種的時候,使用 者可以對第一種燃料選用摩擦模型 II,但是第二種燃料選用摩擦模型 I;或是都使用摩擦模型 II 但是可以輸入不同的經驗式係數。

Generic 單相摩擦係數之方程式如下:

$$FF_{LAM} = \frac{64.0}{Re_1}$$
(50)

$$FF = AN \cdot \left[1 + (BN \cdot R_{r}) + \frac{CN}{Re_{l}}\right]^{DN}$$
(51)

$$FF = MAX(FF, FF_{LAM})$$
(52)

其中,係數 AN,BN,CN,DN 是跟燃料有關的參數,由每個燃料廠商 自行驗證。R<sub>r</sub>是相對粗糙度,Rel是液體的雷諾數。

雙相的摩擦倍率模式 II 使用 Chisholm 擬合 Baroczy 的經驗式。 方程式如下:

$$GMSQ = \left[ \left( \frac{\mu_g^{0.2}}{\mu_F} \right) \left( \frac{\rho_F}{\rho_g} \right) \right]$$
(53)

$$BGM = \sqrt{GMSQ}$$
(54)

$$B = \frac{55.0}{[A]USTAB1 \cdot G]^{0.5}} \qquad BGM \le 9.5$$
(55)

$$B = \frac{520.0}{BGN \cdot [AJUSTAB1 \cdot G]^{0.5}} \qquad 9.5 < BGM < 28 \tag{56}$$

$$B = \frac{15000.0}{GMSQ \cdot [A]USTAB1 \cdot G]^{0.5}} \qquad 28 \le BGM \tag{57}$$

$$\begin{split} \varphi_{CB}{}^2 &= AJUSTAC_1 \cdot \{1.0 + (GMSQ - 1.0) \cdot [B \cdot AJUSTAA_1 \cdot XF^{0.9} \cdot (1.0 - AJUSTAA_1 \cdot XF)^{0.9} + AJUSTAA_1 \cdot XF^{1.9}] \} \end{split}$$

要得到用在動量方程式的 Chisholm-Baroczy 係數,必須要找到 Chisholm-Baroczy 雙相摩擦加乘因子  $\Phi_{CB}^2$ 和 Martinelli-Nelson 雙相 摩擦加乘因子  $\Phi_{MN}^2$ 乘上 Jones 雙相摩擦加乘因子修正因子  $\Omega$ 的關係 式(在穩態時的表示法為下標等於 0):

$$\mathbf{f}_{CB-MN,0} = \left(\frac{\Phi_{CB}^2}{\Phi_{MN}^2 \cdot \Omega}\right)_0 \tag{59}$$

然後可以得到:

$$\mathbf{f}_{\mathrm{M}} \left( \frac{\boldsymbol{\phi}_{\mathrm{CB}}^{2}}{\boldsymbol{\phi}_{\mathrm{MN}}^{2} \cdot \boldsymbol{\Omega}} \right)_{0} \boldsymbol{\phi}_{\mathrm{MN}}^{2} \boldsymbol{\Omega} \frac{\mathbf{g}^{2}}{2\rho} = \mathbf{f}_{\mathrm{M}} \mathbf{f}_{\mathrm{CB}-\mathrm{MN},0} \boldsymbol{\phi}_{\mathrm{MN}}^{2} \boldsymbol{\Omega} \frac{\mathbf{g}^{2}}{2\rho}$$
(60)

此處與 LAPUR5.2 的算法相同,但是這裡的 f<sub>CB-mn.0</sub> 是用 LAPUR 6.0

的穩態條件自動計算。在LAPURW 中要計算偏微分時,這個修正因子 f<sub>CB-mn0</sub>的偏微分等於零。

三、LAPUR6 新增功能使用說明

(一)可變流動面積的輸入卡號與應用方式

在 LAPUR5.2 程式中,通道的流動面積是利用卡號 19 跟 20 指 定,只能針對不同的燃料種類做改變,不能夠隨著高度改變流動面 積,因此在碰到具有半長燃料棒的燃料組件時,沒有辦法有效的模 擬,只能當成全部燃料皆為全長棒模擬,這對於穩定性分析有不小 的影響。而在 LAPUR6.0 中,透過新增卡號的方式,加入了模擬不 同高度具有不同流動面積的燃料組件的能力。

依據使用者手冊,有關可變流動面積的輸入是在卡號 58 到 62, 如表 2.1 所示,使用者需要輸入每個軸向區間的高度以及相對應的 流動面積和水力直徑。這部分的設定在這邊是參考 SIMULATE-3 輸出檔,開啟.u 檔之後,搜尋「BWR.ZON」,選取 case2 的資料, 就會看到像圖 2.2 所示,它會詳細列出每個軸向區間的高度、流動 面積、熱周長和水力直徑,一一對應輸入 LAPURX 卡號 58 到 62 就完成可變動流動面積的設定。要注意的是,因為 SIMULATE-3 設定燃料底部為高度 0,所以進口的地方高度是負的,而 LAPUR

25

是設定進口處高度為 0, 所以在輸入高度的時候, 要把 SIMULATE-3 的值再加上進口到燃料底部的高度才是真正的高度, 設定完成的卡 號 58~62 則如圖 2.3 所示。而 SIMULATE-3 這部分數據的來源則是 依據 AREVA 的報告, 在軸向由於有效流動面積、加熱周長及水利 直徑的改變, 區分成 4 個區域, 如圖 2.4, 詳細的資料可以參考每 個周期的流量分佈模式計算書[3, 4]。

(二)加入計算局部壓降功能的輸入卡號與應用方式

LAPUR6.0 的特點之一可以計算由燃料格架(spacer)造成的壓 降,依據使用者手冊[2],有關局部壓降的設定是在卡號 63 到 66, 如表 2.2 所示,使用者需要輸入每個燃料格架的高度以及相對應 的損失係數。這部分的設定仍然是參考 SIMULATE-3 輸出檔,開 啟.u 檔之後,搜尋「Fuel Spacers」,選取 case2 的資料,就會看 到像圖 2.5 所示,每個燃料格架的高度以及相對應的損失係數, 一一對應輸入 LAPURX 卡號 63 到 66 就完成局部壓降的設定, 這邊的高度輸入一樣要加上進口到燃料底部的高度才是真正的 高度。設定完成的卡號 63~66 則如圖 2.6 所示。而 SIMULATE-3 這部分數據的來源則是依據 AREVA 的報告,從圖 2.5 可以看到 總共有 7 個高度跟損失係數,實際上 ATRIUM-10 燃料總共有入

26

個燃料格架,由於最下面的燃料格架的損失係數併入進口流阻 (inlet orifice)一起計算,因此這裡只輸入從下面往上算起的第二到 第八個燃料格架的軸向位置跟損失係數,燃料格架的損失係數是 根據 AREVA 對每個電廠 ATRIUM-10 燃料的熱流計算書[5,6]來 計算,詳細的資料可以參考每個周期的流量分佈模式計算書[3, 4]。

(三)摩擦模型Ⅰ與摩擦模型Ⅱ的輸入卡號與應用方式

根據使用者手冊[2],摩擦模型I是在LAPURX的卡號34到37, 在此部分輸入區域摩擦倍率的型式、摩擦倍率型態的軸向區間數 目、每個軸向區間的長度和相對應的摩擦倍率。這部分跟LAPUR5.2 相同,使用者利用調整卡號37,也就是每個軸向區間的摩擦倍率, 讓 LAPUR 算出來的壓降與流量跟 SIMULATE-3 不要相差太多。 在 LAPUR6.0 分析過程中,當找不到卡號67~72 及卡號73~76時, 或是變數 IFFM(輸入檔卡號67)等於1 還有變數 IFMM(輸入檔卡號 73)等於1的時候,程式會選擇使用摩擦模式1。

關於摩擦模型 II 的輸入是在卡號 67~72 以及卡號 73~76,如表 2.3 及表 2.4 所示。使用者要將變數 IFFM(輸入檔卡號 67)還有變數 IFMM(輸入檔卡號 73)都設為 2 時才能啟用摩擦模式 II。其中卡號 67~72 是關於 Generic 單相摩擦係數的相關參數設定,使用者必須 輸入公式中的 AN、BN、CN、DN 以及相對粗糙度,這些參數的 設定需要參考燃料廠商的資料,在這裡是依據 AREVA 燃料裝填報 告中的公式:

$$f_f = 0.0055 \left\{ 1 + \left[ 2 \times 10^4 \frac{\varepsilon}{D_h} + \frac{10^6}{\text{Re}_f} \right] \right\}$$
(61)

$$\operatorname{Re}_{f} = \frac{\operatorname{GD}_{h}}{\mu_{f}} \tag{62}$$

$$\varepsilon = 2 \times 10^{-4} in \quad (\oplus \mathbb{Z} \ \& \mathbb{Z} \ \mathbb{Z} \ \& \mathbb{Z} \ \mathbb{Z} \ \& \mathbb{Z} \ \& \mathbb{Z} \ \&$$

對照 LAPUR6.0 的 Generic 單相摩擦係數公式(51) 可以得知:: AN=0.0055 BN=2×10<sup>4</sup> CN=10<sup>6</sup> DN=1

$$R_{\rm r} = \frac{\varepsilon}{D_h} = \frac{2 \times 10^{-4}}{0.422} = 4.74 \times 10^{-4}$$

此處的水力直徑是根據 SIMULATE-3 計算書[3,4],因為是跟單相 壓降的計算有關,所以水利直徑是選擇第1跟第2個區域的水力直 徑(二個區域的值一樣)。
卡號 73~76 則是跟 Chisholm-Baroczy 雙相流摩擦壓降加成因子 的計算有關。卡號 74、75、76 依序是公式(58)裡面的係數 AJUSTAA、AJUSTAB、AJUSTAC,這三個參數的作用類似模型 I 的卡號 37 摩擦倍率,當 LAPUR 算出來的壓降跟流量和 SIMULATE-3 差距太大的時候,就可以調整這三個參數,讓二邊的 結果相近,手冊中的建議值是三個皆設為 1.0。設定完成的摩擦模 式 II 卡號 67~76 如圖 2.7 所示。

(四)再循環回路相關參數

在LAPUR6.0中,LAPURW 在熱流方面也有做一些微幅的修正, 主要是有關動量跟質量守恆中會用到的未沸騰區域與沸騰區域係 數。此外 LAPURW 新增了卡號 32,如表 2.5 所示,這個卡號延伸 了再循環迴路的傳遞函數。LAPUR5.2 的再循環迴路參數設定是在 LAPURW 卡號 4,輸入再循環迴路增益跟時間常數;在 LAPUR6.0 中如果卡號 32 存在,壓力對爐心流量的轉換函數(Transfer Function, T.F.)則會使用下列式子:

$$RLPY = \frac{\delta Y}{\delta n} = \frac{GAINPY[1+RL_Z1 \times s+RL_Z2 \times s^2]}{[1+TAUPY \times s+RL_P2 \times s^2 + RL_P3 \times s^3]}$$
(64)

由於來自於整個噴射泵浦(jet pump)的壓力差必須等於整個爐

心壓力差的再循環迴路動量方程式,以產生爐心入口流量。基於上 述再循環迴路動量方程式與入口流量(W)的關係,所以在過去的舊 版程式(LAPUR5.2)中是以流量做為依據,並具有相當的準確性; 也就是再循環時間常數:1/W,而再循環增益:1/W^2。此處以參數靈 敏度分析做驗證,由表 2.6 的再循環參數靈敏度分析結果可以得知 再循環參數的變異,對於衰減率的增減影響較不明顯,不會對穩定 性分析結果有較大的影響,因此目前的分析模式中仍沿用入口流量 計算的倒數關係式計算再循環參數,也就是 LAPURW 卡號 4。

四、LAPUR6 方法論

由於 LAPUR6.0 跟 LAPUR5.2 分析過程很類似,在前述章節中 已經針對新增功能的輸入與理論作介紹,此處要介紹 LAPUR6.0 分 析的程序。因為許多的輸入參數與輸入方法皆與 LAPUR5.2 相同, 所以僅針對有改變的部分做詳細的描述。目前的 LAPUR6.0 分析過 程可以劃分為五個部分,執行 SIMULATE-3、執行 PAPU 和 EXEVERA、編輯 LAPURX 和 LAPURW 輸入檔、比較 LAPUR 與 SIMULATE-3 的誤差、最後是讀取 LAPUR 的輸出檔。

首先是執行 SIMULATE-3,先選定要分析的功率/流量點和燃耗

值,接著編輯 SIMULATE-3 輸入檔,要修改的地方有三個:1.功率、 流量、壓力和入口次冷度,2.燃耗值,3.棒位圖,如圖 2.8 所示。修 改完後將輸入檔上傳到 FTP 然後執行 SIMULATE-3,最後會得到 KINETIC、.U、.S 三個輸出檔。

如同前面章節提到的 PAPU 和 EXEVERA 是專門用來處理 SIMULATE-3 與 LAPUR 的熱流模式差異性與中子模式差異性。因 為核一、核二與核四所得到的 KINETIC 檔格式會略有不同,所以要 先將格式調成一樣另存成 infile 檔當作 PAPU 的輸入檔,最後執行 PAPU 得到輸出檔 papusal,輸出 Doppler 係數跟密度反應度係數表 提供給 LAPURW 輸入檔使用。EXEVERA 能夠讀取.S 檔,將爐心 燃料束分區,輸出每個分區的軸向功率、進口流量與 K loss 值,提 供給 LAPURX 的輸入檔使用。

在 LAPUR6.0 分析過程中, LAPURW 的輸入檔編輯跟 5.2 版本 [1]一樣, LAPURX 的部分則是新增了第三章所說的部分,其餘卡號 也是維持跟 LAPUR5.2 一樣。表 2.7 和表 2.8 是隨著每次分析需要更 改到的卡號,詳細的卡號編輯過程可參考 LAPUR5.2 方法論的報告 [7]。在這邊跟 LAPUR5.2 比較不同的是,使用者必須決定要使用摩 擦模型 I 或是摩擦模型 II,對輸入檔進行相對應的修改,這會影響 到之後誤差比對過程中調整的參數。

當執行運算所需的輸入檔都準備好之後,接著就開始 LAPUR 程 式的運算,先執行 LAPURX.EXE 進行穩態時的初始化計算並且產 生熱流爐心參數所需的資料映圖穩態,產生輸出檔 LAPURX.OUT 和 CAIDAS.OUT;再執行 LAPURW.EXE 決定燃料傳輸函數、冷卻 劑傳輸函數、冷卻劑動態參數、反應度回饋與中子及系統的傳輸函 數等,得到輸出檔 LAPURW.OUT。此時程式的執行順序需注意, 一定要先執行 LAPURX.EXE 才可以執行 LAPURW.EXE,否則結果 會出現錯誤。執行完之後,此時的輸出檔還不是最後的結果,必須 要先比較 LAPUR 和 SIMULATE-3 的爐心壓力降、區域流量和爐心 的密度反應度係數的比較,以確保其誤差在規定的範圍內;依據西 班牙 IBERINCO 方法論規定的誤差範圍,爐心的壓力降為±2%、區 域流量為±10%、爐心的密度反應度係數為±1%。假如爐心壓力降或 區域流量超出誤差範圍,則需要調整 LAPURX 輸入檔。以目前所使 用的 12 個通道來區分爐心然棒,料假如是使用摩擦模型 I,就必須 調整卡號 37 的三個摩擦倍率 X1、X2、X3,其中 X1 是調整通道 1 到 10 的摩擦壓降,X2 是通道 11,X3 是通道 12。如果是使用摩擦 模型 II,則是調整卡號 74-76,也就是公式(51)中的那三個參數 AJUSTAA、AJUSTAB、AJUSTAC,然後再執行 LAPUR,再重新

與 SIMULATE-3 進行誤差比較,直到所有的誤差都在規定的誤差範 圍內。若是爐心的密度反應度係數超出誤差範圍,則必須調整 LAPURW 的卡號 28,也就是密度反應度係數倍率 W,直到其誤差 在規定範圍內。

當三項誤差都符合誤差規定時,就可以讀取 LAPUR 的輸出檔, 這個輸出檔才是最後我們要的結果;LAPUR 運算完之後會得到三個 輸出檔 LAPURX.OUT、CAIDAS.OUT 和 LAPURW.OUT。使用者可 以從 LAPURX.OUT 裡面找到每個通道的詳細壓降、沸騰起始點、 功率、流量和乾度,還有許多參數(例如壓降、乾度、空泡分率以及 熱焓等)在沸騰區域的軸向分布,如圖 2.9 和圖 2.10 所示; LAPURW 的輸出結果包含爐心同相衰減率、異相衰減率、通道衰減率、密度 反應度係數以及分析的頻率,如圖 2.11 和圖 2.12 所示。CAIDAS.OUT 是 LAPUR6.0 新加入的輸出檔, 如圖 2.13; 由於 LAPUR5.2 是將未 沸騰區域視為一個節點,所以在 LAPURX.OUT 裡面只有沸騰區域 的軸向數據,並沒有包含進出口以及未沸騰區,因此 LAPUR6.0 多 產生這個檔案紀錄各種壓降、乾度以及其他參數的軸向變化,如此 一來就可以與 SIMULATE-3 進行軸向壓降分布的比較。圖 2.14 為目 前的 LAPUR6.0 分析流程圖。目前自動化程式 DRASM 的更新已經 完成,已將新卡號的編輯加入。

SIMULATE-3 [8]是一套三維的爐心模擬程式,可用來分析計算 在不同狀態下的爐心熱流與中子狀態、安全參數及進行爐心內燃 料管理研究。在分析過程中使用SIMULATE-3程式在不同的功率/ 流量狀態點下,進行中子與熱流的資料分析,例如:計算組件依存 洩漏量(assembly dependent leakage)與水泵流量、爐心支撐板洩漏 到旁通區域的量、爐心入口溫度、使用不同的裂變產物選項來進 行運算、特殊的控制棒組成等,分析出來的資料數據將提供給後 續步驟使用。另外利用SIMULATE-3運行反應度擾動計算,包含 Doppler、壓力與緩和劑溫度的擾動;緩和劑溫度擾動數值必須小 到足以再現入口溫度的擾動,但不能太小而發生計算的擾動誤 差。壓力擾動範圍將給予一相似的爐心平均密度變化,如同上述 入口溫度擾動一樣,SIMULATE-3擾動設定如表2.9所示。

SIMULATE-3運算完畢後則會產生三個輸出檔,分別為.S檔、.U 檔、KINETIC檔,其中KINETIC檔提供給PAPU使用,.S檔提供給 EXAVERA使用與計算密度反應度係數,.U檔則提供給LAPURX與 LAPURW使用。簡單的說,SIMULATE-3提供了二項資料數據給 LAPUR使用,第一項為在不同的狀態下所計算出的爐心水流與中 子狀態,第二項為經由一連串的反應度擾動,所計算出的動態參 數。

六、PAPU 使用說明

PAPU[9]為Valencia Polytechnic大學的化工系與核工系以GPC程 式為基礎,而發展出的程式,是專門用來處理SIMULATE-3與 LAPUR的熱流模式差異性與中子模式差異性。因為LAPUR的中子 是點動態模式,而SIMULATE-3是二維或三維中子特性,而PAPU 中有所謂的中子動態參數產生器可以將SIMULATE-3的結果轉成 LAPUR所需要的中子相關數值,故利用從SIMULATE-3所得到的 資料數據(KINETIC輸出檔),可計算出Doppler與密度反應度係數 而提供給LAPUR使用。

PAPU的輸入檔有五個: Infile、Papudat、Ajustfile、Tempe、及 Tthfile。Papudat提供一些選擇性的輸入;而Ajustfile則調整參數的 初始值、誤差範圍、及運算次數。其中的Tempe與Tthfile則是非必 須的輸入檔,可省略。Infile是將SIMULATE的輸出檔更改檔名而 得到的,其提供有關中子動能與熱流的基本數據與擾動數據。Infile 之中含有三種參數擾動:

- 1. Doppler擾動 (doppler perturbation, DDP), 跟燃料溫度有關。
- 2. 壓力擾動 (pressure perturbation, PRE),可提供計算反應度密 度係數

與空泡分率變化。

 緩和劑擾動(moderator temperature coefficient perturbation, MTC),就是中子對水直接加熱產生的擾動,可提供計算密 度反應度係數與空泡分率變化。

PAPU 的輸出檔有兩個: Papusal 與 Output。Papusal 為提供點動 能反應度係數,包括一個 Doppler 係數與密度反應度係數表,分別 以 CDOPP 與 REACTDE 名稱列出。其餘 LAPURW 不需要的計算結 果則以 Output 檔案儲存。

七、EXAVERA 使用説明

西班牙的 LAPUR 方法論是用 EXTRAF 程式來處理 LAPUR 和 SIMULATE-3 二者程式在熱流方面的差異,但是西班牙並沒有提 供 EXTRAF 程式,所以由核研所與清華大學施純寬教授共同研發 了 EXAVERA 程式[10],其目的就是在處理 SIMULATE-3 與 LAPUR 因運算模式不同所衍生輸出檔案格式不同的問題。LAPUR 是以點動態模式分析中子,而 SIMULATE-3 則是具備有二維與三 維的功能來分析中子特性,若無適當的轉換輸出資料的處理程 式,則由 SIMULATE-3 所輸出的資料檔,須經由人工輸入並做轉 換排列格式與比對的過程,再輸入 EXCEL 程式中做運算。以上的 流程耗時且易有錯誤產生,因此極需發展一套處理輸出資料的程 式,以大幅縮短時程且確保運算結果的正確性,確保處理與轉換 資料過程的正確、迅速與效率;圖 2.15 為 EXAVERA 運算的流程 圖。

EXAVERA 程式的驗證可由圖 2.16 針對核二廠二號機 cycle17-功率/流量點: 88%P/60F%所做的驗證,針對最外圍燃料通道的分區 (ch6),可以證明此一程式所分析整理的結果與 EXCEL 整理計算的 結果相同。程式初期的研發主要是針對核一、核二廠,後來又為了 龍門電廠的爐心特性需求,將程式燃料分區功能予以擴充,由六個 分區增加到十二個分區,燃料的種類也能依使用者需要自行擴增。 目前 EXAVERA 的程式功能,已足以應付國內三座沸水式核電廠的 需求。 八、DRASM 程式使用說明

因為LAPUR分析過程中的輸入檔編輯以及誤差範圍計算都是 以人工輸入與調整的方式來進行,再加上要不停比對誤差,很容 易發生人為疏失而對分析結果造成影響。因此,核研所與清華大 學 施 純 寬 教 授 合 作 , 合 力 發 展 出 了 DRASM(decay ratio automatically search method)程式,此程式能幫助我們自動建立輸入 檔,並找出符合誤差範圍的最大衰減率,大幅地減少人為疏失與 縮短分析時間。

此程式是使用 Dev C++所撰寫,整個程式架構可以分為二個 部分。第一部分將人工把參數輸入 LAPUR 輸入檔的過程改成由 程式讀取檔案和寫入檔案的語法達到電腦自動輸入至 LAPUR 輸 入檔 的 目 的。LAPUR 共有二個輸入檔 LAPURX.DAT 和 LAPURW.DAT,首先建立 Olapurx.DAT 和 Olapurw.DAT 二個檔 案當做範本讓程式複製,當需要插入程式一開始抓出的參數時, 複製就先暫停,待參數插入後再繼續複製;另外在複製到 LAPURX.DAT 卡號 37 和 LAPURW.DAT 卡號 28 的位置時,先暫 停複製插入 for()迴圈提供的的摩擦倍率數值,最後再複製剩下的 部份來完成輸入檔。在進入 for()迴圈之前,程式會自動擷取 SIMULATE-3 的壓降、十二個通道的流量以及計算密度反應度係

38

數所需的參數並算出 SIMULATE-3 的密度反應度係數,之後再將 for() 迴圈內 LAPUR 跑出來的值與 SIMULATE-3 的值做比較,若 誤差是在規定的誤差範圍內,則將此組數值寫入 result 檔中;如 超出誤差範圍,則在螢幕上顯示"out of range"。第二部分則是誤 差比較的過程,一開始先固定密度反應度係數倍率 W,只試著調 整出摩擦倍率 X1、X2、X3 的所有組合,等到找出發生最大衰減 率時的三個摩擦倍率後再調整 W,以此方式便可以輕鬆的找到最 大衰減率。而對於每一個倍率係數皆採取先用大間隔(step)跑大區 間(range),找到最大值發生的區間後再切成更小的間隔去跑那個 區間,圖 2.17 之示意圖以 x 為例子顯示上述過程。由於 LAPUR 計算出來的衰減率只有到小數後第二位,因此當倍率係數的間隔 小到一個程度時,算出來的衰減率就不會有太大變化,因此程式 設定摩擦倍率跑到間隔 0.01、密度反應度係數倍率跑到間隔 0.001 時即結束搜尋。每一個間隔找到的倍率結果會顯示在 output 檔裡 面,方便分析者檢視搜尋的過程。詳細的搜尋流程圖如圖 2.18 所 示,其操作畫面、最後的結果產生畫面與輸出檔如圖 2.19、圖 2.20 和圖 2.21 所示。圖 2.22 是 DRASM 程式在 LAPUR 方法論中包含、 處理的範圍。此一程式的驗證將會在下一章節中列出, 目前主要 是與過去手動調整摩擦倍率作比較,已可證明 DRASM 計算結果 的正確性。

39

表 2.1 LAPURX 卡號 58~62

| Card58    | NXE(IX)        | 熱區域的數目,IX                 |  |  |
|-----------|----------------|---------------------------|--|--|
|           | NDIMV          | 第 IX 熱區域可變流動面積的通道類型       |  |  |
| Card59    | NTDV           | 可變流動面積通道類型的數目             |  |  |
|           | NODV(NV)       | 可變流動面積通道軸向區間的數目           |  |  |
| C = = 1(0 | DZVM(NV,<br>I) | 可變流動面積 NV 類型通道第 I 個軸向區間的高 |  |  |
| Cardoo    |                | 度(cm)                     |  |  |
| Card61    | AVM(NV, I)     | 可變流動面積 NV 類型通道第 I 個軸向區間的沸 |  |  |
|           |                | 腾區域流動截面積(cm^2)            |  |  |
| Card62    | DEVM(NV,       | 可變流動面積 NV 類型通道第 I 個軸向區間的水 |  |  |
|           | I)             | 力直徑(cm)                   |  |  |

表 2.2 LAPURX 卡號 63~66

| Card63 | NDIMLL(IX)       | 第 IX 熱區域局部壓降的類型        |
|--------|------------------|------------------------|
| Card64 | NTDLL            | 局部壓降通道類型的數目            |
|        | NODLL(NLL)       | 局部壓降通道的軸向區間的數目         |
| Card65 | DZLLM(NLL,<br>I) | 局部壓降通道第 I 個軸向區間的高度(cm) |
| Card66 | EVIIM            | 局部壓降通道第 I 個軸向區間的局部壓降   |
| Caldoo | ENLLIVI          | 常數                     |

表 2.3 LAPURX 卡號 67~72

| Card67 | NTFU      | 燃料棒類型的數目                              |  |  |  |  |
|--------|-----------|---------------------------------------|--|--|--|--|
|        | IFFM(IFU) | 對 IFU 類型的燃料棒選擇使用摩擦因子模式 II<br>(IFFM=2) |  |  |  |  |
| G 1(0  |           | 對 IFU 類型的燃料棒使用摩擦因子模式 II 時的            |  |  |  |  |
| Cardoo | ANN(IFO)  | 係數 AN                                 |  |  |  |  |
| Cond(0 | BNM(IFU)  | 對 IFU 類型的燃料棒使用摩擦因子模式 II 時的            |  |  |  |  |
| Cardoy |           | 係數 BN                                 |  |  |  |  |
| 0 170  | CNM(IFU)  | 對 IFU 類型的燃料棒使用摩擦因子模式 II 時的            |  |  |  |  |
| Card70 |           | 係數 CN                                 |  |  |  |  |
| Card71 | DNM(IFU)  | 對 IFU 類型的燃料棒使用摩擦因子模式 II 時的            |  |  |  |  |
| Calu/1 |           | 係數 DN                                 |  |  |  |  |
| Card72 |           | 對 IFU 類型的燃料棒使用摩擦因子模式 II 時的            |  |  |  |  |
|        | KRM(IFU)  | 相對粗糙度 Rr                              |  |  |  |  |

表 2.4 LAPURX 卡號 73~76

| Card73 | IFMM(IFU)    | 對燃料棒選擇使用摩擦因子模式 II<br>(IFMM=2) |
|--------|--------------|-------------------------------|
| Cond74 |              | 對燃料棒使用摩擦因子模式 II 時的係           |
| Card74 | AJUSIAA(IFU) | 數                             |
| Card75 | AJUSTAB(IFU) | 對燃料棒使用摩擦因子模式 Ⅱ 時的係            |
|        |              | 數                             |
| Card76 | AJUSTAC(IFU) | 對燃料棒使用摩擦因子模式 II 時的係           |
|        |              | 數                             |

表 2.5 LAPURW 卡號 32

| Card32 | GAINPY | 壓力對流量再循環迴路 TF 的增益值      |  |  |  |  |  |  |
|--------|--------|-------------------------|--|--|--|--|--|--|
|        | TALIPV | 壓力對流量再循環迴路 TF 的時間常數     |  |  |  |  |  |  |
|        | ΤΑυργ  | $(s^{-1})$              |  |  |  |  |  |  |
|        | RL_P2  | 壓力對流量再循環迴路 TF 的 Pole 常數 |  |  |  |  |  |  |
|        | RL_P3  | 壓力對流量再循環迴路 TF 的 Pole 常數 |  |  |  |  |  |  |
|        | RL_Z1  | 壓力對流量再循環迴路 TF 的 Zero 常數 |  |  |  |  |  |  |
|        | RL_Z2  | 壓力對流量再循環迴路 TF 的 Zero 常數 |  |  |  |  |  |  |

#### 表 2.6 電廠再循環參數靈敏度分析

| 核一廠二號機 cycle21                                                                                                                                          |             |       |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------|--|
| <b> </b>                                                                                                                                                | Decay Ratio |       |      |  |
| 行祖农运路时                                                                                                                                                  | Base        | +50%  | -50% |  |
| 間常數                                                                                                                                                     | 0.73        | 0.70  | 0.72 |  |
| 再循環增益                                                                                                                                                   | Decay       | Ratio |      |  |
|                                                                                                                                                         | Base        | +50%  | -50% |  |
|                                                                                                                                                         | 0.73        | 0.80  | 0.64 |  |
| 核二廠二號機 cy                                                                                                                                               | cle17       |       |      |  |
| 再循環迴路時                                                                                                                                                  | Decay       | Ratio |      |  |
|                                                                                                                                                         | Base        | +50%  | -50% |  |
| 間常數                                                                                                                                                     | 0.85        | 0.84  | 0.85 |  |
| 再循環增益                                                                                                                                                   | Decay Ratio |       |      |  |
|                                                                                                                                                         | Base        | +50%  | -50% |  |
|                                                                                                                                                         | 0.85        | 0.9   | 0.77 |  |
| 龍門電廠一號機                                                                                                                                                 |             |       |      |  |
| 再循環迴路時                                                                                                                                                  | Decay Ratio |       |      |  |
|                                                                                                                                                         | Base        | +50%  | -50% |  |
| 間常數                                                                                                                                                     | 0.32        | 0.28  | 0.33 |  |
| <b> </b> 雨 <i> 街</i> 晋 <sup> </sup> <sup></sup> | Decay       | Ratio |      |  |
|                                                                                                                                                         |             |       |      |  |
| 行個次百亚                                                                                                                                                   | Base        | +50%  | -50% |  |

## 表 2.7 LAPURX 每次分析需要更動的卡號

| Card 1  | PPSI   | 爐心壓力                             |
|---------|--------|----------------------------------|
|         | ENTBTU | 爐心入口冷卻水焓值                        |
|         | POWT   | 爐心熱功率                            |
|         | WLBSHR | 爐心流量                             |
|         | CWBYP  | 在總流量中,爐心旁通流量所佔的分率                |
|         | CPROMP | 在爐心熱功率中,中子與 射線直接對水加熱所<br>佔的分率    |
|         | CPRBYP | 同上,但為在旁通區域                       |
|         | UNITS  | 使用單位選項,若為0則使用公制單位,為1則使<br>用英制單位。 |
| Card 5  | POWN   | 節點的相對功率                          |
| Card 7  | NPOW   | 核區域數目,即第IX熱區域屬於第IP功率區域           |
| Card 9  | FPOW   | 區域的相對功率                          |
| Card 10 | ЕКСРМ  | 區域的入口收縮係數                        |
| Card 11 | EKEPM  | 區域的出口收縮係數                        |
| Card 13 | ZELP   | 從通道入口量起到壓力均勻點的高度(cm)             |
| Card 14 | NCH    | 區域的燃料束數目                         |
| Card 32 | HGAPM  | 間隙熱傳導係數                          |
| Card 37 | EKFM   | 軸向區間的摩擦倍率                        |

## 表 2.8 LAPURW 每次分析需要更動的卡號

| Card 2  | NCHXJ  | 通道數目(同LAPURX,卡號14) |
|---------|--------|--------------------|
| Card 4  | TAUPY  | 再循環時間常數            |
|         | GAINPY | 再循環增益值             |
| Card 7  | BTFR   | 延遲中子衰減常數表          |
| Card 8  | XLAND  | 衰減熱常數表             |
| Card 12 | ELST   | 中子壽命表              |
| Card 17 | CDOPP  | Doppler反應係數        |
| Card 21 | REACT1 | 密度反應係數表            |
| Card28  | REAMUL | 密度反應度係數倍率          |

# 表 2.9 SIMULATE-3 擾動設定

| DOPPLER                            | 'DDP' 20.° F 'DDP' 40 ° F. 'DDP' -20 ° F.                       |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| PRESSURE                           | 'PRE' 50.psia 'PRE' 75 psia.'PRE' 100 psia .<br>'PRE' -50 psia. |  |  |  |  |
| MODERATOR                          | 'MTC' +10 ° F. 'MTC' -10°F.                                     |  |  |  |  |
| TEMP COEFF 'MTC' -5°F. 'MTC' +5°F. |                                                                 |  |  |  |  |



圖 2.1 變動面積與相應節點

| BWR.ZON - Assembly Axial Zones |         |         |  |  |  |
|--------------------------------|---------|---------|--|--|--|
| Interface (cm) 396.24          |         |         |  |  |  |
| Flow Area                      | (cm**2) | 100.900 |  |  |  |
| Heated Perimeter               | (cm)    | 262.056 |  |  |  |
| Equiv Hyd Diam                 | (cm)    | 1.232   |  |  |  |
| Interface (cm)                 |         | 259.54  |  |  |  |
| Flow Area                      | (cm**2) | 94.548  |  |  |  |
| Heated Perimeter               | (cm)    | 262.056 |  |  |  |
| Equiv Hyd Diam                 | (cm)    | 1.155   |  |  |  |
| Interface (cm)                 |         | 243.84  |  |  |  |
| Flow Area                      | (cm**2) | 94.548  |  |  |  |
| Heated Perimeter               | (cm)    | 287.314 |  |  |  |
| Equiv Hyd Diam                 | (cm)    | 1.072   |  |  |  |
| Interface (cm)                 |         | 15.24   |  |  |  |
| Flow Area                      | (cm**2) | 94.548  |  |  |  |
| Heated Perimeter               | (cm)    | 262.056 |  |  |  |
| Equiv Hyd Diam                 | (cm)    | 1.072   |  |  |  |
| Interface (cm)                 |         | -15.24  |  |  |  |

圖 2.2 SIMULATE-3 的燃料軸向區間資料

| 58<br>12, | 1,   | 1,     | 1,       | 1,       | 1.      | 1,   | 1 |
|-----------|------|--------|----------|----------|---------|------|---|
| -         | 1,   | 1,     | 1,       | 1,       | 1       |      |   |
| 59        |      |        |          |          |         |      |   |
| 60        | 1,   | 4      |          |          |         |      |   |
|           | 30.  | 4800 3 | 259.0800 | 274.7800 | 411.    | 4800 |   |
| 61        |      |        |          |          |         | -    |   |
| 63        | 94.5 | 480 9  | 4.5480   | 94.5480  | 100.900 | 0    |   |
| 62        | 1.07 | 20 1   | .0720    | 1.1550   | 1.2320  |      |   |

圖 2.3 設定完成之 LAPURX 卡號 58~62



圖 2.4 ATRIUM-10 燃料軸向組成圖

| Fuel Spacers      | Axial Locations (cm)<br>K-Factors (Assembly Area) |        |         |         |         |         |         |
|-------------------|---------------------------------------------------|--------|---------|---------|---------|---------|---------|
| Mechanical Design |                                                   |        | -       |         |         |         |         |
| 6 -               | 47.990                                            | 99.170 | 150.380 | 201.580 | 252.790 | 303.970 | 355.180 |
|                   | 0.768                                             | 0.768  | 0.768   | 0.768   | 0.843   | 0.566   | 0.566   |

圖 2.5 SIMULATE-3 的燃料格架資料

| 63<br>12, | 1,          | 1,      | 1,      | 1,     | 1,      | 1,              | 1,     |          |         |       |
|-----------|-------------|---------|---------|--------|---------|-----------------|--------|----------|---------|-------|
| 64        | 1,          | ۱,<br>7 | Ι,      | Ι,     | Ι,      |                 |        |          |         |       |
| 65        | ۱,<br>د د د | 1,      | 14 4100 | 165 63 | 00 210  | 2200            | 260 02 | 00 219 2 | 100 270 | 11200 |
| 66        | 0.1         | 7680.   | 0.7680. | 0.7680 | 0. 0.76 | .8200,<br>80. 0 | .8430. | 0.5660.  | 0.5660  | 7200  |

圖 2.6 設定完成之 LAPURX 卡號 63~66

| 67        |    |         |
|-----------|----|---------|
|           | 1, | 2       |
| 68        |    |         |
| <b>co</b> | 1, | 0.0055  |
| 63        | 1  | 2 F04   |
| 70        | ι, | 2.201   |
|           | 1, | 1.E06   |
| 71        |    |         |
|           | 1, | 1.0     |
| 72        |    |         |
| 73        | Ι, | 4.14E-4 |
| 15        | 1. | 2       |
| 74        | ., | -       |
|           | 1, | 0.45    |
| 75        |    |         |
| 70        | 1, | 0.09    |
| 16        | 1  | 0.10    |
| 0         | Ι, | 0.16    |

圖 2.7 設定完成之 LAPURX 卡號 67~76



圖 2.8 SIMULATE-3 的輸入檔編輯示意圖

| STEADY STAT | E PRESSURE DROPS | (KG/CM2)     | FLOW RATE= | 5.67321E+01  | G/S CM2       |            |                   |             |             |
|-------------|------------------|--------------|------------|--------------|---------------|------------|-------------------|-------------|-------------|
|             |                  | DENSITY HEAD | FRICTION   | ACCELERATION | EXPANSION-IRR | LOCAL C    | CONTRACTION - IRR | CONTRACTION | TOTAL       |
| INLET       | CONFIGURATION    | 00.000E+00   | 00.000E+00 |              |               |            |                   | 5.6600E-02  | 5.6600E-02  |
| NON         | BOILING REGION   | 23.703E-03   | 90.775E-04 | 10.706E-06   | 00.000E+00    | 00.000E+00 | 00.000E+00        |             | 3.2791E-02  |
| SUBCOOLED   | BOILING REGION   | 75.729E-03   | 46.691E-03 | 10.258E-03   | 00.000E+00    | 00.000E+00 | 11.707E-03        |             | 1.4438E-01  |
| BULK        | BOILING REGION   | 39.223E-03   | 12.960E-02 | 76.897E-04   | 54.925E-06    | 00.000E+00 | 36.958E-03        |             | 2.1352E-01  |
| EXIT        | CONFIGURATION    | 00.000E+00   | 00.000E+00 |              |               |            |                   | -2.9954E-03 | -2.9954E-03 |

圖 2.9 LAPURX 輸出結果-壓降分布

| 1 ***                                                                             | STEADY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STATE FLOW DIS                                                                                                                                                                | STRIBUTION **                                                                                                                                                | *                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| M =<br>TOTAI                                                                      | 4 QPL<br>FLOW I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 4.44298E-01<br>RATE =SUM WNO(1                                                                                                                                              | ITERATION N<br>IX)/1000. = 2                                                                                                                                 | 0 OF WTP = 2<br>.31967E+03 KG/S                                                                                                                              | 5                                                                                                                                                            |                                                                                                                                                               |  |  |
| IX<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>10<br>11<br>12            | NCH<br>23<br>24<br>25<br>26<br>28<br>29<br>30<br>32<br>34<br>43<br>46<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POWFR<br>3.7560E-03<br>3.6383E-03<br>3.4704E-03<br>3.3284E-03<br>3.1228E-03<br>3.0217E-03<br>2.9390E-03<br>2.7740E-03<br>2.5688E-03<br>2.0514E-03<br>1.5611E-03<br>7.8867E-04 | QG<br>5.5832E+01<br>5.6732E+01<br>5.8881E+01<br>6.0346E+01<br>6.2511E+01<br>6.4225E+01<br>6.4900E+01<br>6.7341E+01<br>7.0465E+01<br>6.9082E+01<br>3.9213E+01 | QX<br>3.5779E-01<br>3.3834E-01<br>3.0623E-01<br>2.8283E-01<br>2.5067E-01<br>2.3269E-01<br>2.0026E-01<br>1.7762E-01<br>1.2174E-01<br>8.1450E-02<br>6.6079E-02 | QP<br>4.4429E-01<br>4.4430E-01<br>4.4430E-01<br>4.4430E-01<br>4.4421E-01<br>4.4428E-01<br>4.4428E-01<br>4.4428E-01<br>4.4430E-01<br>4.4544E-01<br>4.4590E-01 | WN0<br>1.2141E+05<br>1.2874E+05<br>1.3918E+05<br>1.4835E+05<br>1.6549E+05<br>1.7610E+05<br>2.0076E+05<br>2.1648E+05<br>2.8649E+05<br>3.0046E+05<br>2.5212E+05 |  |  |
| POWC0                                                                             | POWCOR= 8.9296E+02, ACTUAL POWER= 8.9296E+02 MW-TH<br>-00*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000*0000* |                                                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                               |  |  |
| Ch N<br>#<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>Avera | NCH Fue<br>Typ<br>23<br>24<br>25<br>26<br>28<br>29<br>30<br>32<br>34<br>43<br>46<br>68<br>54<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | el Power<br>(%)<br>2 153.25<br>2 148.44<br>2 141.59<br>2 135.80<br>2 127.41<br>2 123.29<br>2 119.91<br>2 113.18<br>2 104.81<br>2 83.70<br>2 63.69<br>2 32.18<br>117 600000000 | Flow<br>(%)<br>92.85<br>94.35<br>97.92<br>100.36<br>106.81<br>107.93<br>110.35<br>111.99<br>117.18<br>114.88<br>65.21<br>Boundary = 1                        | delta-P (bar) .4443 .4443 .4443 .4443 .4443 .4443 .4443 .4443 .4443 .4443 .4454 .4454 .4459 .036 m = 3.40                                                    | Exit<br>Quality<br>.3578<br>.3383<br>.3062<br>.2828<br>.2507<br>.2327<br>.2327<br>.2218<br>.2003<br>.1776<br>.1217<br>.0815<br>.0661<br>) ft                 | Zb<br>(m)<br>.717<br>.729<br>.776<br>.809<br>.862<br>.928<br>.944<br>.984<br>1.076<br>1.353<br>1.728<br>2.020                                                 |  |  |
| ***                                                                               | *** FLOW ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                               |  |  |

圖 2.10 LAPURX 輸出結果-通道流量與系統總壓降

| AVG DENSITY REACT COEFF =                  | 15.126 | (%K/K)/(g/cm3) | 19606  | (\$/%_VOID) |
|--------------------------------------------|--------|----------------|--------|-------------|
| CORE AVG (DENS*DRC*P**2) =                 | 8.7447 | (%K/K)         | 15.917 | (\$)        |
| CORE AVG (DENSITY*P**2) =                  | 57813  | (R/Bsat)       | 44.232 | (% VOID)    |
| CORE AVG (DENSITY*P**2) = $(DENSITY*P**2)$ | .57813 | (R/Rsat)       | 44.232 |             |

圖 2.11 LAPURW 輸出結果-密度反應度係數

| CORE<br>1Case | : DR = .4<br>800-200N0 | 46@.46H;<br>CH-200NPS-1 | z PM = 2<br>LONTD-10NT | 23.72 @ .42<br>TFU                                                  | 2 Hz GM =1. | 98@.56   | Hz     |
|---------------|------------------------|-------------------------|------------------------|---------------------------------------------------------------------|-------------|----------|--------|
| OUT           | OE DUASE 9             |                         | MODE SUN               | MADV                                                                |             |          |        |
| (DP           | $\sim 1  \Omega P$     |                         |                        | OP GATN                                                             | MARGIN < 1  | > INST   | ARES   |
| (DK           | PFACT(\$)              | DECAY RAT               | FREO(Hz                | $\mathbf{D} \mathbf{H} \mathbf{M} \mathbf{M} \mathbf{R} \mathbf{G}$ | G MARGIN    |          | AVG(%) |
|               | -1.23                  | 25                      | 48                     | 68 04                                                               | 3 47        | 100 00   |        |
|               | 63                     | .43                     | .50                    | 36.64                                                               | 2.35        | 100.00   | .00    |
|               | -1.22                  | .25                     | .48                    | 67.56                                                               | 3.45        | 100.00   | .00    |
|               | -1.33                  | .23                     | .47                    | 72.19                                                               | 3.66        | 100.00   | .00    |
|               | -1.64                  | .17                     | .46                    | 81.91                                                               | 4.27        | 100.00   | .00    |
|               | -2.08                  | .12                     | .45                    | 89.78                                                               | 5.14        | 100.00   | .00    |
| 1Case         | 800-200N               | CH-200NPS-1             | ONTD-10N               | IFU                                                                 |             |          |        |
| DEGU          |                        |                         |                        |                                                                     |             |          |        |
| RESU          | LTS OF FUI             | LL COMPLEX              | PLANE POI              | LE SEARCH                                                           | DECLAY DATT | <b>`</b> |        |
| 11EK<br>#     | KEAL_PA                |                         | UTION I                | $(\Pi_{\alpha})$                                                    | DECAI_KAIIC | )        |        |
| <b></b>       | 05764                  |                         | 12)                    | ( <u>nz</u> )<br>46104                                              | 45640       |          |        |
| 1             | - 05431                | 1 00                    | )334                   | 46293                                                               | 47850       |          |        |
| 2             | - 05426                | 5 .00                   | 0005                   | 46294                                                               | 47883       |          |        |
| ž             | 05431                  | 100                     | 0005                   | .46302                                                              | .47858      |          |        |
| 4             | 05432                  | 200                     | 0002                   | .46298                                                              | .47844      |          |        |
|               |                        |                         |                        |                                                                     |             |          |        |
|               |                        |                         |                        |                                                                     |             |          |        |
| DECA          | Y RATIO                | = .4                    | 18                     |                                                                     |             |          |        |
| DAMP          | ED FREQUEN             | NCY = 0.4               | Ho Hz                  | 40 H                                                                |             |          |        |
| PHAS          | E MARGIN               | = 23.1                  | 12 HZ (@               | .42 HZ                                                              |             |          |        |
| GAIN          | MAKGIN                 | = 1.9                   | /0 @                   | . 30 HZ                                                             |             |          |        |

圖 2.12 LAPURW 輸出結果-同相與異相衰減率

| .000         .00492         .01186         .00000         .00000           Height         Frict         Height         Exp/Con         Acele         Locals         Phi2lo         PhiChi         Beta         Qualit           30.480         .00000         .00000         .00000         1.0000         1.0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0000         .0023         .1213         .0569         .0011           55.880         .00244         .01878         .00000         .00105         .0023         .1821         .3649         .127         .0043           74.13         .00412         .03002         .00000         .0023         .29048         .5844         .2609         .0219           83.747         .00538         .03962         .00000         .00234         .0023         .4657         .8571         .4353         .0449         .0534         .1223         .131         .1414         .1423         .14031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Height  | Frict  | Height | Exp/Con | Acele  | Locals |         |          |           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|---------|--------|--------|---------|----------|-----------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 000   | .00492 | .01186 | .00000  | .00000 | .00000 |         |          |           |        |
| HeightFrictHeightExp/ConAceleLocalsPhi2loPhi2loPhiChiBetaQualit $y_{0.480}$ .00000.00000.000001.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00130.5955.0256.001055.880.00264.01878.00000.00023.002031.6153.2837.0872.004464.347.00330.02457.00000.00105.00203.14821.3649.1275.008372.813.00412.03002.00000.00150.00203.24120.4652.1898.014281.280.00513.03503.00000.00266.00203.4582.7194.3269.030998.213.00789.04766.00000.00256.00295.6394.1.847.8814.2609.0219123.613.01408.05454.00000.00450.00595.6394.1.847.8813.0744123.613.01408.05454.00000.00575.3464.1.8132.6119.0187149.013.02275.06333.00000.00757.0254.9.712.1.846.5502.8581140.547.02084.0596.00000.00767.01254.9.7971.2.418.6580.1.158173.480.02575.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.240  | .00984 | .02370 | .00000  | .00001 | .00000 |         |          |           |        |
| y         30.480         .00000         .00000         .00000         1.0000         1.0000         .0000           38.947         .00159         .00648         .00000         .00013         .00000         1.0847         .5955         .0256         .0004           47.413         .00208         .01274         .00000         .00028         .00001         1.0847         .5955         .0256         .0004           43.347         .00302         .02457         .00000         .00045         .00203         1.6153         .2837         .0872         .0083           28.13         .00130         .02457         .00000         .00165         .00203         2.9048         .5844         .2609         .0219           98.213         .00789         .04381         .00000         .00226         .00203         4.0637         .8671         .3859         .0409           115.147         .01174         .0172         .0038         .4355         .0139         .1434         .4811         .0630           123.613         .01408         .05444         .00000         .00635         .0399         1.3456         .5183         .0744           123.080         .01670         .05764         .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Height  | Frict  | Height | Exp/Con | Acele  | Locals | Phi2    | lo PhiCh | i Beta    | Qualit |
| 30.480       .00000       .00000       .00000       1.0000       1.0000       .0000       .0000         47.413       .00208       .01274       .00000       .00028       .00001       1.0847       .2193       .0569       .0014         55.880       .00244       .01878       .00000       .00045       .00203       1.6153       .2837       .0872       .0044         64.347       .00330       .02457       .00000       .00169       .00203       1.9821       .3649       .1275       .0083         72.813       .00412       .03002       .00000       .00165       .00203       2.9048       .5844       .2609       .0219         89.213       .00789       .04381       .00000       .00292       .00233       4.0637       .8671       .3589       .0409         106.680       .00867       .04766       .00000       .00355       6.3794       1.3456       .5183       .0744         132.613       .01470       .05754       .00000       .00555       .6349       1.5444       .6019       .5773       .0973         149.013       .02275       .66333       .00000       .00767       .01254       .61249       .1212       .1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | У       |        |        |         |        |        |         |          |           |        |
| 38.947       .00159       .00048       .00000       .10087       .2193       .0256       .0019         55.880       .00264       .01878       .00000       .00045       .00203       1.6153       .2837       .0872       .0044         64.347       .00330       .02457       .00000       .0019       .0203       1.9821       .3649       .1275       .0083         72.813       .00412       .03002       .00000       .00110       .00203       2.4120       .4652       .1888       .0142         89.747       .00638       .03962       .00000       .00266       .00203       3.4582       .7194       .3269       .0309         98.213       .00789       .04381       .00000       .00430       .00595       5.3698       1.847       .4811       .0630         123.613       .01474       .05764       .00000       .00355       .53698       1.847       .4813       .0634         123.080       .01670       .05764       .00000       .00557       .3464       1.6609       .5779       .0973         124.047       .0533       .00000       .00767       .01254       .8068       1.9610       .6229       .1198         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.480  | .00000 | .00000 | .00000  | .00000 | .00000 | 1.0000  | 1.0000   | .0000     | .0000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.947  | .00159 | .00648 | .00000  | .00013 | .00000 | 1.0847  | . 5955   | .0256     | .0004  |
| 55.880       .00264       .01878       .00000       .00069       .00203       1.9821       .3649       .1275       .0083         72.813       .00412       .03002       .00000       .00165       .00203       2.9048       .8844       .2609       .2119         89.747       .00638       .03962       .00000       .00226       .00203       3.4582       .7194       .3269       .0309         98.213       .00789       .04381       .00000       .00226       .00203       4.0637       .8671       .3859       .0409         106.680       .00967       .04766       .00000       .00395       5.3698       1.1847       .4811       .0630         123.080       .01670       .05764       .00000       .00657       .0595       6.6949       1.5046       .5183       .0744         132.080       .01670       .05764       .00000       .00657       .0595       7.3464       1.8609       .5779       .0973         149.013       .02275       .06333       .00000       .00767       .01254       8.068       1.9610       .6229       .1188         175.480       .03788       .07318       .00000       .00856       .1254       .97971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.413  | .00208 | .01274 | .00000  | .00028 | .00000 | 1.3087  | .2193    | .0569     | .0019  |
| 64.347       .00300       .00400       .00000       .00110       .00203       2.4120       .4652       .1898       .0142         81.280       .00513       .03503       .00000       .00125       .00203       2.9048       .5844       .2609       .0219         89.213       .00789       .04381       .00000       .00226       .00203       .4657       .8671       .3859       .0409         98.213       .00789       .04381       .00000       .00292       .00233       .4637       .8671       .3859       .0409         106.680       .00967       .04766       .00000       .00595       5.3698       1.1847       .4811       .0630         123.613       .01470       .05454       .00000       .00595       7.3464       1.6609       .5779       .0973         149.013       .02275       .06333       .00000       .00767       .01254       9.212       .1042       .6415       .1308         157.480       .02617       .06596       .00000       .00767       .01254       9.212       .1042       .6415       .1308         174.413       .03374       .0784       .00000       .00832       .01254       1.03589       .23735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.880  | .00264 | .01878 | .00000  | .00045 | .00203 | 1.6153  | .2837    | .0872     | .0044  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64.347  | .00330 | .02457 | .00000  | .00069 | .00203 | 1.9821  | .3649    | .1275     | .0083  |
| 81.280       .00513       .03962       .00000       .00226       .00203       2.9048       .5844       .2609       .0219         89.747       .00638       .03962       .00000       .00226       .00203       4.0637       .8671       .3859       .0409         106.680       .00967       .04766       .00000       .00430       .00595       5.3698       1.1847       .4811       .0630         123.613       .01408       .05454       .00000       .00635       .00595       6.6349       1.3456       .5183       .0744         132.080       .01670       .05764       .00000       .00635       .00595       7.3464       1.6609       .5779       .0973         140.547       .02984       .06847       .00000       .00632       .01254       9.2121       2.1042       .6415       .1308         157.480       .02617       .06596       .00000       .00832       .01254       9.23735       .6725       .1518         165.947       .02984       .06847       .00000       .00154       .03589       2.3735       .6725       .1518         174.413       .03374       .07756       .00000       .01254       1.030232       .26227       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.813  | .00412 | .03002 | .00000  | .00110 | .00203 | 2.4120  | .4652    | .1898     | .0142  |
| 89.747       .00638       .03962       .00000       .00226       .00203       3.4582       .7194       .3269       .0309         98.213       .00789       .04381       .00000       .00232       .00203       4.0637       .8671       .3859       .0409         115.147       .01174       .05122       .00000       .00430       .00595       5.3698       1.8476       .4811       .0630         123.613       .01408       .05454       .00000       .00595       6.6949       1.5046       .5502       .0858         140.547       .0159       .06333       .00000       .00767       .01254       8.6068       1.9610       .6229       .1198         165.947       .02267       .06333       .00000       .00767       .01254       9.2121       .1042       .6415       .1308         174.413       .03374       .07541       .00000       .001254       9.2121       .1042       .6415       .1308         174.413       .04680       .07754       .00000       .01254       .1.4293       .2627       .6778       .1620         199.813       .04230       .07541       .00000       .01254       .1.4293       .26277       .6778       .1620<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81.280  | .00513 | .03503 | .00000  | .00165 | .00203 | 2.9048  | . 5844   | .2609     | .0219  |
| 98.213       .00789       .04381       .00000       .00292       .00203       4.0637       .8671       .3859       .0409         106.680       .00967       .04766       .00000       .00430       .00595       5.3698       1.1847       .4811       .0630         123.613       .01408       .05454       .00000       .00499       .00595       6.6349       1.5046       .5502       .0858         140.547       .01959       .06056       .00000       .00635       .00595       7.3464       1.6609       .5779       .0973         149.013       .02275       .06333       .00000       .00707       .01254       8.6068       1.9610       .6229       .1198         157.480       .02617       .06596       .00000       .00832       .01254       9.2121       .1042       .6415       .1308         174.413       .03374       .07087       .00000       .00832       .01254       10.3589       2.3735       .6725       .1518         199.813       .04680       .07756       .00000       .01120       .01254       10.3089       .2499       .6857       .1620         199.813       .04680       .07766       .000000       .01120       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.747  | .00638 | .03962 | .00000  | .00226 | .00203 | 3.4582  | .7194    | .3269     | .0309  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.213  | .00789 | .04381 | .00000  | .00292 | .00203 | 4.0637  | .8671    | .3859     | .0409  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106.680 | .00967 | .04766 | .00000  | .00361 | .00595 | 4.7073  | 1.0238   | .4375     | .0518  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.147 | .01174 | .05122 | .00000  | .00430 | .00595 | 5.3698  | 1.1847   | .4811     | .0630  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123.613 | .01408 | .05454 | .00000  | .00499 | .00595 | 6.0349  | 1.3456   | .5183     | .0744  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132.080 | .01670 | .05764 | .00000  | .00567 | .00595 | 6.6949  | 1.5046   | . 5502    | .0858  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140.547 | .01959 | .06056 | .00000  | .00635 | .00595 | 7.3464  | 1.6609   | .5779     | .0973  |
| $            157, 480  .02617  .06596  .00000  .00767  .01254  8.6068  1.9610  .6229  .1198 \\ 165, 947  .02984  .06847  .00000  .00832  .01254  9.2121  2.1042  .6415  .1308 \\ 174, 413  .03374  .07087  .00000  .00996  .01254  10.3589  2.3735  .6725  .1518 \\ 191, 347  .04223  .07541  .00000  .01019  .01254  10.3589  2.3735  .6725  .1518 \\ 199, 813  .04680  .07756  .00000  .01019  .01254  11.493  2.6227  .6978  .1720 \\ 208, 280  .05158  .07964  .00000  .01140  .01254  11.4948  2.7419  .7088  .1818 \\ 216, 747  .05656  .08166  .00000  .01200  .02193  12.4468  2.8576  .7190  .1914 \\ 225, 213  .06173  .08362  .00000  .01259  .02193  12.4468  2.8576  .7190  .1914 \\ 225, 213  .06173  .08362  .00000  .01318  .02193  13.4134  3.0790  .7371  .2101 \\ 242, 147  .07265  .08737  .00000  .01377  .02193  13.8785  .1849  .7452  .2192 \\ 250, 613  .07738  .08918  .00000  .01435  .02193  14.736  .3875  .7598  .2369 \\ 267, 547  .08967  .09266  .00006  .01549  .03455  15.1974  3.4830  .7663  .2452 \\ 276, 013  .09505  .09435  .00006  .01518  .03455  15.6006  3.5734  .7721  .2532 \\ 284, 480  .09971  .09599  .00006  .01518  .03455  15.6006  3.5734  .7712  .2532 \\ 284, 480  .09971  .09599  .00006  .01518  .03455  15.6006  3.5734  .7778  .2611 \\ 292.947  .10449  .09761  .00006  .01555  .03455  16.3727  .7458  .7881  .2763 \\ 309, 880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7881  .2763 \\ 309, 880  .11435  .10075  .00006  .01655  .03455  16.3714  .7718  .2613 \\ 309, 800  .1143  .10937  .00006  .01655  .03455  16.3727  .7458  .7881  .2763 \\ 309, 880  .11435  .10877  .00006  .01655  .03455  16.3727  .7458  .7881  .2763 \\ 309, 880  .11435  .10877  .00006  .01635  .03455  16.3727  .7458  .7881  .2763 \\ 309, 840  .11435  .10877  .00006  .01874  .04312  18.8668  .1178  .8085  .30391 \\ 335.280  .1284  .10577  .00006  .01847  .04312 $ | 149.013 | .02275 | .06333 | .00000  | .00701 | .00595 | 7.9846  | 1.8132   | .6019     | .1087  |
| $      165.947  .02984  .06847  .00000  .00832  .01254  9.2121  2.1042  .6415  .1308 \\ 174.413  .03374  .07087  .00000  .00896  .01254  9.7971  2.2418  .6580  .1415 \\ 182.880  .03788  .07318  .00000  .00957  .01254  10.3589  2.3735  .6725  .1518 \\ 191.347  .04223  .07541  .00000  .01019  .01254  10.9009  2.4999  .6857  .1620 \\ 199.813  .04680  .07756  .00000  .01080  .01254  11.4293  2.6227  .6978  .1720 \\ 208.280  .05158  .07964  .00000  .01140  .01254  11.9448  2.7419  .7088  .1818 \\ 216.747  .05656  .08166  .00000  .01200  .02193  12.4468  2.8576  .7190  .1914 \\ 225.213  .06173  .08362  .00000  .01259  .02193  12.9362  2.9699  .7284  .2008 \\ 233.680  .06710  .08552  .00000  .01318  .02193  13.4134  3.0790  .7371  .2101 \\ 242.147  .07265  .08737  .00000  .01377  .02193  13.8785  3.1849  .7452  .2192 \\ 250.613  .07838  .08918  .00000  .01435  .02193  14.3321  3.2878  .7528  .2282 \\ 259.080  .08428  .09094  .00000  .01435  .02193  14.7736  3.3875  .7598  .2369 \\ 267.547  .08677  .09266  .00006  .01518  .03455  15.974  3.4830  .7663  .2452 \\ 276.013  .09505  .09435  .00006  .01518  .03455  15.974  3.4820  .7663  .2452 \\ 276.013  .09971  .09260  .00006  .01518  .03455  16.3727  .7458  .7881  .2689 \\ 301.413  .10937  .09920  .00006  .01518  .03455  16.3727  .7458  .7811  .2689 \\ 309.880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7881  .2689 \\ 309.880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7811  .2689 \\ 309.880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7881  .2689 \\ 309.880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7881  .2689 \\ 309.880  .11435  .10075  .00006  .01655  .03455  16.3727  .7458  .7881  .2689 \\ 309.880  .11435  .10075  .00006  .01518  .03455  16.3727  .7458  .7881  .2689 \\ 316.347  .15718  .1057  .00006  .01696  .04312  17.4299  .39799$    | 157.480 | .02617 | .06596 | .00000  | .00767 | .01254 | 8.6068  | 1.9610   | .6229     | .1198  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165.947 | .02984 | .06847 | .00000  | .00832 | .01254 | 9.2121  | 2.1042   | .6415     | .1308  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 174.413 | .03374 | .07087 | .00000  | .00896 | .01254 | 9.7971  | 2.2418   | .6580     | .1415  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 182.880 | .03788 | .07318 | .00000  | .00957 | .01254 | 10.3589 | 2.3735   | .6725     | .1518  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 191.347 | .04223 | .07541 | .00000  | .01019 | .01254 | 10.9009 | 2.4999   | .6857     | .1620  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199.813 | .04680 | .07756 | .00000  | .01080 | .01254 | 11.4293 | 2.6227   | .6978     | .1720  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208.280 | .05158 | .07964 | .00000  | .01140 | .01254 | 11.9448 | 2.7419   | .7088     | .1818  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 216.747 | .02626 | .08166 | .00000  | .01200 | .02193 | 12.4468 | 2.8576   | .7190     | .1914  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 223.213 | .06173 | .08362 | .00000  | .01239 | .02193 | 12.9362 | 2.9699   | . 1284    | .2008  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 233.080 | .00/10 | .08002 | .00000  | .01318 | .02193 | 13.4134 | 3.0/90   | . / 3 / 1 | .2101  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242.147 | .07200 | .08/3/ | .00000  | .013// | .02193 | 13.8/82 | 3.1849   | . 1432    | .2192  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250.015 | .0/838 | .08918 | .00000  | .01455 | .02193 | 14.3321 | 2.2010   | . 1528    | . 2262 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 239.000 | .00420 | .09094 | .00000  | .01493 | .02195 | 14.7730 | 2 4920   | . 1398    | . 2309 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201.041 | .08907 | .09200 | .00006  | .01349 | .03433 | 15.1974 | 2.4820   | . 7003    | .2432  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270.013 | .09303 | .09433 | .00000  | .014/1 | .03433 | 15.0000 | 2 6607   | .1121     | .2332  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 204.400 | 10440  | .09399 | .00000  | .01565 | .03455 | 16 2707 | 2 7459   | . / / /0  | 2680   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 292.947 | 10037  | .09701 | .00000  | 01611  | .03455 | 16 7/10 | 3 8776   | 7881      | 2763   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 880 | 11/35  | 10075  | .00000  | 01655  | 03455  | 17 0028 | 3 0055   | 7027      | 2834   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 318 347 | 110/2  | 10228  | 00006   | 01606  | 0/312  | 17 4200 | 3 0700   | 7068      | 2003   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 326 814 | 12/50  | 10220  | 00006   | 01738  | 04312  | 17 7518 | 1 0508   | 8008      | 2965   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 335 280 | 1293   | 10527  | 00006   | 01778  | 04312  | 18 0568 | 4.0508   | 8045      | 3030   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 343 747 | 13517  | 10673  | 00006   | 01817  | 04312  | 18 3482 | 4 1815   | 8080      | 3001   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 352 214 | 14058  | 10817  | 00006   | 01854  | 04312  | 18 6264 | 4 2423   | 8113      | 3148   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360 680 | 14606  | 10959  | 00006   | 01889  | 04312  | 18 8846 | 4 2985   | 8142      | 3200   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 369 147 | 15160  | 11099  | 00006   | 01915  | 05256  | 19 0994 | 4 3452   | 8163      | 3239   |
| 386.080         .16277         .11378         .00006         .01932         .05256         19.2900         4.3865         .8177         .3265           394.547         .16838         .11517         .00006         .01940         .05256         19.2900         4.3865         .8177         .3265           403.014         .17399         .11656         .00006         .01942         .05256         19.3781         4.4056         .8185         .3280           411.480         .17961         .11795         .00000         .01942         .00000         19.3836         4.4068         .8185         .3280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 377 614 | 15718  | 11230  | 00006   | 01926  | 05256  | 19 2301 | 4 3735   | 8172      | 3256   |
| 394.547         16838         11517         00006         01940         05256         19.3418         4.3977         8184         3278           403.014         17399         11656         00006         01942         05256         19.3418         4.4056         8184         3278           411.480         .17961         .11795         .00000         .01942         .00000         19.3836         4.4068         .8185         .3280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 386.080 | 16277  | 11378  | .00006  | .01932 | .05256 | 19,2900 | 4.3865   | .8177     | 3265   |
| 403.014 17399 11656 00006 01942 05256 19.3781 4.4056 8185 3280<br>411.480 17961 11795 00000 01942 00000 19.3836 4.4068 8185 3280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 394,547 | 16838  | .11517 | .00006  | .01940 | .05256 | 19.3418 | 4.3977   | .8184     | 3278   |
| 411.480 .17961 .11795 .00000 .01942 .00000 19.3836 4.4068 .8185 .3280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 403.014 | .17399 | .11656 | .00006  | .01942 | .05256 | 19.3781 | 4,4056   | .8185     | .3280  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 411.480 | .17961 | .11795 | .00000  | .01942 | .00000 | 19.3836 | 4.4068   | .8185     | .3280  |

圖 2.13 輸出檔 CAIDAS.OUT



圖 2.14 LAPUR6.0 分析模式流程圖



#### 圖 2.15 EXAVERA 運算的流程圖



圖 2.16 EXAVERA 驗證



圖 2.17 尋找區間與間隔之示意圖


圖 2.18 找出最大衰減率之流程圖



圖 2.19 DRASM 程式的操作介面



圖 2.20 DRASM 結果產生畫面

📕 output.txt - 記事本 檔案(E) 編輯(E) 格式(Q) 檢視(V) 說明(H) step=0.1 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 step=0.05 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 step=0.01 MAX DR is occur at X1=+0.60 X2=+0.30 X3=+0.20 ..... x1 x2 x3 w pressure ch1 ch2 ch3 ch4 ch5 ch6 0.60 0.30 0.20 1.172 +01.9390 -04.3922 -04.2292 -03.1901 -02.5212 -01.1626 -00.4540 ch9 ch10 ch11 ch12 DRC DR(g1) DR(re) ch7 ch8 -00.1432 +00.5813 +01.4014 +01.7479 +00.9641 +03.9795 +0.97 +0.26 +0.12 每一階段的搜尋結果與找到的最大衰減率的數據,分別為摩擦倍率與密度反 應度係數倍率,爐心總壓降、區域流量與密度反應度係數的誤差,同相與異 相的衰减率 >

圖 2.21 DRASM 產生的輸出檔



圖 2.22 DRASM 程式在 LAPUR5.2 方法論中所包含的範圍

## 叁、主要發現與結論

在執行此一研究計畫中所獲致的成果與結論主要是在相關的研 究文獻搜尋,以及經由 LAPUR6 與 LAPUR5.2 的差異比較呈現新增 卡號使用的結果。此外再藉由 LAPUR6.0 新增的功能,可以模擬具 有不同流動面積的燃料組件;藉以瞭解使用全長棒與半長棒對於穩 定性的影響。另外藉由新版程式對於加入局部壓降的計算,所以可 以模擬燃料格架造成的壓降並分析其影響性;對於摩擦模型 I 與摩 擦模型 II 的衰減率計算分析也作了相關的研究並陳述其結果。最後 也加入目前對於即將式運轉的龍門電廠以 LAPUR6.0 所分析的結 果,以及使用自動化程式 DRASM 的情形與驗證分析;茲將各項研 究成果分述如下:

一、LAPUR6穩定性分析研究之相關文獻

目前對於 LAPUR6.0 的相關學術研究最早見於 2005 年在法國 所舉行的國際研討會-NURETH 11[11],主要針對 LAPUR5 程式 所做的功能提升做理論模式推演。論文中強調新版的程式增加了 變動面積功能,對於半長燃料棒所造成流動面積的改變,可以較 為正確分析。此外也針對雙相壓降計算,考慮燃料棒因為流動面 積改變,如面積擴增、收縮與燃料格架所造成雙相壓力的損失(不

可逆的壓力損失—Irreversible Pressure Loss)。為了要能更正確估 算摩擦壓降新版程式也增加了新的摩擦壓降關係式-Chisholm-Barocky correlation, 會議論文中主要是將上述新增功能 做引介,但對於相關新增功能的影響與使用時機則未做討論。而 目前針對 LAPUR6 所發表的研究論文則十分稀少,對於摩擦壓降 影響爐心穩定性分析,新版程式在原來的 Friction Factor Model I (Martinelli-Nelson Correlation)後又加入了 Friction Factor Model Ⅱ (Chisholm-Baroczy Correlation)的選項,目前關於 LAPUR6.0 使用 Chisholm-Baroczy Correlation 分析模式的分析比較結果的相關期 刊論文發表,仍付之闕如。根據目前相關於 Chisholm-Baroczy Correlation 應用於沸水式反應器穩定性的研究文獻,僅出現於 2008 年於瑞典所舉行的反應器物理與核能國際會議[12] (International Conference on Reactor Physics, Nuclear Power), 學者 Lotfi Belblidia 以頻域分析程式 SIMULATE-3K 並結合電廠實驗結果做比對,發 現在衰減率低於 0.5 時以 Martinelli-Nelson 來取代 Chisholm-Baroczy 會使衰減增加 0.009, 若是衰減率大於 0.5 則以 Martinelli-Nelson 來取代 Chisholm-Baroczy 會使衰減最大增加值可 達到 0.19。此外 LAPUR 程式的主要作者- March-Leuba 博士[13], 在ICONE-18的國際核能工程會議中也發表以LAPUR6.0為分析工

具,針對爐心中混和裝填兩種不同燃料作穩定分析。獲致當爐心 運轉狀態處於在低流量(尤其是自然對流時)的穩定性會較爐心以 同一種燃料裝填時,前者會具有較差的穩定性。

二、LAPUR6 與 LAPUR5.2 的差異與新增卡號的使用

此處是要比較版本的不同與新卡號的加入與否對穩定性分析 的影響,藉由使用新舊版 LAPUR 以及使用不同版本輸入檔的分析 結果比較,了解其對於爐心穩定性分析的影響。藉由核一廠二號 機週期 25 燃料裝填穩定性分析的結果,除了比較計算出來的衰減 率之外,由於 LAPUR6.0 修改的部分大部分都是跟壓降有關,所 以也會針對壓降的結果作比較和分析。這裡分成三種情況,第一 種是用 LAPUR5.2 的輸入檔並且使用 LAPUR5.2 執行檔,第二種 則是 5.2 輸入檔配上 LAPUR6.0 執行檔,最後一種則是修改過的 6.0 輸入檔配上 6.0 的執行檔,再分成選用摩擦模型 I 跟摩擦模型 II 二種。

圖 3.1 是使用 LAPUR5.2 的輸入檔也就是沒有加入任何新卡號 的輸入檔,分別用 5.2 跟 6.0 的執行檔作運算分析,主要是為了測試 二個版本內部計算的差異。從圖 3.1 中可以看出,不論同相或是異 相衰減率,LAPUR6.0 所計算的衰減率都比 5.2 低一點,不過差異不

大。這部分的差異可歸納為二個原因;其一為由於二個版本在單相 區域的分法不同造成的,其二則是由於 LAPUR6.0 在 LAPURW 質 量跟動量守恆的計算上有做一些變動。表 3.1 是 CS2C25 穩定性邊界 上的幾個功率流量點,二個執行檔的衰減率與壓降比較;表 3.2 是 選取其中一個功率流量點-49.5/36.7,列出從進口到出口,各種不同 的壓降,可以看出來壓降的變化幅度都不大。圖 3.2 和圖 3.3 則是 LAPUR5.2 跟 LAPUR6.0 計算出來的衰減率比較,二個圖分別是代 表 LAPUR6.0 的摩擦模型 I 和摩擦模型 II。從圖 3.2 和圖 3.3 中可以 看出,不論是哪一種摩擦模型算出來的衰減率都比 LAPUR5.2 的結 果低,模型 I 的衰減率跟 LAPUR5.2 的差距還在可接受的範圍內, 而模型 II 的衰减率則有較大的差異,尤其是異相衰減率的差距更明 顯。這個結果主要還是因為新增了可變面積以及局部壓降的計算, 還有就是摩擦模型Ⅱ的使用,這三個改變都會造成計算出來的衰減 率變小。

三、使用半長棒對穩定性的影響

LAPUR6.0 的重要改進之一,既是可以針對有半長棒的爐心,執 行穩定性分析與並據此一特點計算爐心的衰減率。由於在美國專利 [16]中有提到,如果燃料組件底部之單相壓降增加或是雙相對單相 壓降的比值降低,這二種情況會增加通道的熱流穩定性;此外也有 不少文獻中曾經提到,在爐心入口裝設進口流阻能夠增加單相壓降 進而增強系統的穩定性。搜尋相關的研究論文顯示,針對全長棒與 半長棒對爐心的穩定性影響的研究不多,而 LAPUR5.2 是以全部為 全長棒模擬,而 LAPUR6.0 則是可以模擬半長棒,所以藉著 LAPUR5.2 與 LAPUR6.0 的比較驗證。由於二個版本內部的差異, 為了消除這個影響,本章節的數據皆是使用 LAPUR6.0 執行檔,僅 針對輸入檔的部分做調整。

由圖 2.4 中可以看出半長棒只有到區域 3 而已,所以區域 4 的流 動面積會比前面幾個區域大,水力直徑也會跟著改變,這個章節就 是利用增加區域 4 的流動面積來模擬具有半長棒的燃料組件,分析 使用半長棒對沸水式電廠穩定性的影響。

增加燃料上半部的流動面積最直接的影響就是反應在壓降上, 雙相壓降可細分為重力壓降、加速度壓降以及摩擦壓降;其中重力 壓降與流體的密度和空泡分率有關,加速度壓降受通道熱功率的影 響,摩擦壓降則跟有效燃料棒表面積和流動面積有關。有使用半長 棒的燃料組件因為區域4的燃料較少,所以熱功率跟燃料棒表面積 當然也會比較小,因此摩擦壓降跟加速度壓降會比只用全長棒的燃

74

料組件小,而重力壓降則是會略微變大;不過重力壓降的變化非常 的微小,所以整體來說,使用半長棒之後,雙相壓降會變小,而在 單相壓降沒什麼變化的情況之下,雙相對單相壓降的比值也會跟著 變小,進而改善了系統的穩定性。

表3.3是利用CS1C25燃料裝填的數據為參考,比較在不同功率流 量點之下,使用全長棒跟半長棒燃料組件,二者的各項壓力和衰減 率的變化。Group 1是代表爐心流量固定在40%,將功率由40%增加 到70%; Group 2則是將爐心流量固定在50%, 功率由50%增加到 70%。從表中我們可以看到不管是哪種設計計算出來的單相壓降都 差不多,推究其原委,可歸因於在未沸騰區域加熱功率以及流動面 積沒有顯著改變的關係。不過雙相壓降在使用半長棒之後下降了不 少,若將其分成次冷熊沸騰區域的壓降以及全面沸騰區域的壓降; 次冷熊沸騰區的壓降沒什麼顯著變化,但是全面沸騰區的壓降下降 許多。這是因為半長棒結束的區域剛好就是在全面沸騰區,所以此 處的壓降變化最大,而這也是雙相壓降為什麼會下降的原因。接著, 再將全面沸騰區域的壓降分成重力壓降、加速度壓降跟摩擦壓降, 重力壓降皆只有微小的變化,而加速度跟摩擦壓降則是明顯降低, 特別是摩擦壓降變化的幅度最大,跟前述的推論相符合。因為單相 壓降變化不大而雙相壓降下降許多,所以雙相對單相壓降的比值在

使用半長棒之後也是當然也降低了;依據美國專利[16],這對系統 的穩定性有很好的影響。最後再檢視同相衰減率與異相衰減率的變 化,從表3.3中可以看出不論是哪一個功率流量點,在使用半長棒之 後,衰減率都有明顯的下降,代表系統的穩定性有相當的改善;而 在同樣的功率流量點之下,可以看到異相衰減率的降幅比同相衰減 率來的大。

接下來皆是以CS1C25燃料裝填資料為參考,圖3.4是探討全長棒 與半長棒對同相衰減率、異相衰減率的影響,另外由圖3.5與圖3.6 對雙相壓降/單相壓降比值的關係,可以比較兩種不同長度的燃料 棒,對於壓降的影響。圖3.7以及圖3.8填滿顏色的符號代表只有使用 全長棒的案例,中空的符號則是指有使用半長棒的燃料組件。從圖 3.7以及圖3.8中可以很清楚的看到,不論是同相還是異相衰減率的變 化跟雙相對單相壓降比值的變化是成正比的,壓降比值降的越多衰 减率就降的越多。接著再來查核功率流量對於此一變化的影響,圖 3.8 中藍色的符號代表爐心流量是40%的案例,也就是表3.3 中的 Group 1; 紅色的符號代表爐心流量是50%,也就是Group 2的數據。 從圖3.8中可以看出不同的功率流量情況下,每一組數據衰減率的變 化情況(此處所比較的是在功率/流量相同時,但是一個使用半長棒, 另一個使用全長棒)。由圖3.8中可觀察到,在同樣流量下,功率越高

的組別衰減率的降幅會越大,例如同樣流量都是40%,功率70%的 那組衰減率降低了0.3,功率40%的只下降了0.1左右。另外在同樣功 率下,流量越低的組別衰減率下降越明顯,例如功率都是70%,流 量50%的這組只下降不到0.2,流量40%的則下降了0.3。

四、 加入燃料格架的壓降計算後對穩定性的影響

先前提及,LAPUR5.2 無法計算由燃料格架造成的壓降,而是 使用乘上一個摩擦倍率的方式來獲得一個等效的壓降。在這個章節 就是要比較一下,使用 LAPUR5.2 的方法和使用 LAPUR6.0 直接計 算燃料格架造成的壓降,這二種方法對於穩定性的分析有何影響。 這裡的數據一樣是以 CS1C25 燃料裝填的數據為參考,分成流量為 40%跟 50%的二組;相同的,在此處的數據都是利用 LAPUR6.0 執 行檔,只有調整輸入檔的相關卡號。

圖 3.9 顯示了二種方法的結果比較,從圖中可以看出加入局部壓 降的計算之後算出來的衰減率是略小於加入之前的,不過差異不 大,大約只差 0.01~0.03 左右,也就是說不論用哪種方式計算局部壓 降,對衰減率的影響都不大。表 3.4 是選擇其中一個功率流量點, 列出從進口到出口的各種壓降比較,可以看出摩擦壓降在加入局部 壓降的計算之後變小了,變小的部分轉移到因為收縮造成的不可逆 壓降部分,證明局部壓降的部分已經能獨立出來不再經由摩擦壓降 去模擬。其他壓降則是沒有什麼太大變化,因此計算出來的衰減率 也差不多。

五、使用不同摩擦模型對穩定性的影響

Lotfi B., Gerardo G.與Carlos A.等人在2008年[12]曾經利用 SIMULATE-3K (S3K)分析用 Martinelli-Nelson(簡稱 M-N)和 Chisholm-Baroczy(簡稱C-B)來計算雙相流摩擦壓降加成因子對於穩 定性的影響,最後得到使用C-B計算出來的衰減率比使用M-N計算的 結果低,如圖3.10所示。對於LAPUR6.0的二種摩擦模型而言,不只 是雙相流摩擦壓降加成因子的計算公式不同,單相摩擦係數的計算 也分成Moody和Generic二種公式。本章節便是要探討二種不同的摩 擦模型對計算出來的結果有怎樣的影響。相同的,在這裡的數據都 是利用LAPUR6.0執行檔,只有調整輸入檔的相關卡號。

圖3.11顯示了二種方法的結果,從圖中可以看出二種摩擦模型算 出來的衰減率差異甚大,模型II的異相衰減率甚至低到只有 0.1~0.3。表3.5和表3.6則是列出了相關的壓降比較,此處的數據是以 CS2C25燃料裝填報告為依據,所選擇的功率流量點都是穩定性邊界 上的狀態點。造成這個差異的主要原因有二個,一個是因為雙相流 摩擦壓降加成因子的計算差異,另一個則是單相摩擦係數計算的不 同。從上一段可以得知,用C-B公式計算雙相流摩擦壓降加成因子 計算出來的衰減率會比M-N計算出來的稍微低一點,因此模型II的衰 減率比模型I低,不過二者的差異應該不會像圖3.11中那麼大。而剩 下的另一因素就是單相摩擦係數;從表3.5和表3.6中可以發現,模型 Ⅱ所計算出來的單相摩擦壓降比模型I高很多,而因為總壓降差不 多,所以模型Ⅱ的雙相壓降就比較小,使得雙相對單相壓降的比值 大幅降低,算出來的衰減率才會那麼低。造成這種狀況的主要原因, 可歸究原因在卡號67-72,也就是計算Generic單相摩擦係數的那五個 使用者輸入參數;在3.3節有提到這五個參數必須參考燃料廠商的資 料,而目前的設定是依據核研所提供的AREVA燃料裝填報告中的公 式對應而來,表3.7是將這五個參數跟LAPUR6.0使用者手冊中附的 範例值對照,可以看到BN、CN都比範例的值大非常多,而相對粗 糙度則是小很多,代入公式(16)後計算出來的Generic單相摩擦係數 當然也會大很多,可能就是因此造成模型II的單相壓降變大,進而 影響計算出來的衰減率。

六、龍門電廠穩定性分析模式之建立

(一)龍門電廠的改進措施與穩定性特質

進步型沸水式反應器為最新設計並已開始商轉的沸水式反應 器;與傳統之沸水式反應器相同的是:在某些特殊的情況下,會因 為功率與流量的震盪而有不穩定性問題的發生。此一類型反應器的 不穩定性是結合了通道熱流不穩定與混合中子熱流不穩定。所以需 設定功率/流量運轉點的運轉邊界來防止上述不穩定性問題的發 生。在實際爐心運轉中皆會避免到上述不穩定邊界的功率/流量運 轉點,因為若是到此不穩定邊界在某種程度上代表著可能爐心運轉 可能發生了暫態事故,必須積極處理並儘速離開(例如降載,甚或 插入更多控制棒並緊急停機)。圖 3.15 顯示龍門電廠的功率/流量圖 譜,所設定禁止運轉區域為區域三(Region Ⅲ),因為龍門電廠針對 壓降,流動面積與控制棒作改良,使其具有較一般傳統沸水式核電 廠有更佳的穩定性特質。根據 FSAR4.4.3.7[14]所列舉的主要是下 列四點:

1. 較小的注水口(Small inlet orifice):

會增加單相壓力差(single-phase pressure drop),可改善爐心與通道的穩定性。

2.控制棒節距較大(Wider control rod pitch):

使流體面積增加,可減少負的空泡反應度係數(the void reactivity coefficient become less negative),可改善爐心與通道的穩定性。

3. 較多的汽水分離機(More steam separators):

會使雙相流壓力減少,增加系統穩定性。

4.自動的選擇性控制插棒 (Automatic SCRRI):

可防止電廠爐心運作進入較不穩定的第三區域(least stable region III)

(二) 龍門電廠的穩定性分析

ODYSY 是核四廠廠家使用的穩定性分析軟體,也是 GE 最佳 的工程電腦程式,程式包含了一個反應器爐心與其所連接的冷卻 水循環系統具有的線性化與小擾動的頻域模式。ODYSY 程式能 分析單一通道與爐心(core-wide)的流體力學的穩定性 (hydrodynamic stability),也能分析熱流、動態因素造成爐心的不 穩定性與單一通道的熱流不穩定性。

傳統的沸水式反應器的穩定邊界之衰減率為 0.85(或 0.8)與 0.9,但龍門核電廠的禁制區域邊界的衰減率大都在 0.4 以下,由 圖 3.12 中所管制的禁止運轉區域(Region III), 龍門電廠的燃料廠 商-GE 也針對此一區域的邊界(NCL,HFCL)選擇如圖所示的四個 功率/流量點作穩定性分析, 此處也以 LAPUR6.0 方法論分析這四 個點的衰減率, 結果如表 3.9 所示, LAPUR6.0 與 GE 的驗證程式 -ODYSY 的分析結果。此一結果也顯示出龍門電廠所採行的改進 爐心穩定性措施, 能有效的降低衰減率, 因此 LAPUR6.0 與 ODYSY 皆顯示遠低於 0.85 的衰減率。這些結果也與其他學者所 做的研究結果相類似。例如, 日本學者 Masahiro Furuya[15]以所 設計的實驗裝置 SIRIUS-F 來模擬 ABWR 爐心熱流與中子耦合機 制的穩定性分析, 特地為了模擬上述條件下的衰減率變化來印證 ABWR 的穩定性;經由其測試在功率最大幅增加至 62%而流量維 持不變的情下, 其最大衰減率仍未超過 0.8。

七、自動化執行程式的建立與驗證

為了解決LAPUR分析過程中的輸入檔編輯以及誤差範圍計算都是 以人工輸入與調整的方式來進行,再加上要不停比對誤差所造成 的繁複費時與容易造成錯誤,目前已可以藉由自動化執行程式 -DRASM解決。先前的章節中已說明DRASM的執行過程,此處主 要是呈現此一程式的驗證,藉以說明程式執行結果的正確性。經

82

由表3.10的比對,在以LAPUR分別用手動調整與DRASM程式兩種 方式去計算出最大衰減率的比較,從表中可以看出兩者計算出的 最大衰減率是差不多的,所以可以證明DRASM程式在求得最大衰 減率的正確性。

八. 結論

本計畫已成功建立 LAPUR6.0 的方法論,並且可實際應用於電廠 裝填分析,藉助此方法論驗證半長棒對於爐心穩定性的助益,此外 將燃料格架造成的壓降併入摩擦壓降計算,衰減率會較低,但是差 距很小。使用摩擦模型 I 算出來的衰減率會比模型 II 的大很多,此 與相關的研究文獻結果相同。經由自動化程式-DRASM 的建立,可 大幅縮減人工作業流程與時間,並提升分析結果的準確性。經由此 計畫的執行研究,目前共完成了3 篇 SCI 國際期刊論文、5 篇國際 研討會論文,成果豐碩。

| 功率(%)/流量(%)<br>壓降(kg/cm^2)                |     | 49.5/36.7 | 52.6/38.3 | 58.5/41.0 | 65.4/44.0 | 73.5/47.2 |
|-------------------------------------------|-----|-----------|-----------|-----------|-----------|-----------|
| 留扣厭败                                      | 5.2 | 0.040710  | 0.039592  | 0.037731  | 0.036790  | 0.035641  |
| 平阳座阵                                      | 6.0 | 0.041557  | 0.040720  | 0.038746  | 0.037449  | 0.036380  |
| 维扣原队                                      | 5.2 | 0.330006  | 0.331668  | 0.355353  | 0.388453  | 0.418493  |
| 受相座阵                                      | 6.0 | 0.331214  | 0.344499  | 0.364926  | 0.388672  | 0.417345  |
| 么么纳厭败                                     | 5.2 | 0.442316  | 0.449810  | 0.483028  | 0.528430  | 0.572577  |
| 系統總壓降                                     | 6.0 | 0.444816  | 0.463657  | 0.493505  | 0.529599  | 0.572440  |
| ላ የ( 2 ক )                                | 5.2 | 8.106     | 8.377     | 9.418     | 10.559    | 11.742    |
| $\frac{\Delta P(2\Phi)}{\Delta P(1\phi)}$ | 6.0 | 7.970     | 8.460     | 9.419     | 10.379    | 11.472    |
| 密度反應度係                                    | 5.2 | 15.128    | 14.940    | 14.943    | 15.092    | 15.059    |
| 數                                         | 6.0 | 15.116    | 14.943    | 14.946    | 15.090    | 15.061    |
| 日扣弃试家                                     | 5.2 | 0.84      | 0.74      | 0.73      | 0.72      | 0.71      |
| 问相衣减平                                     | 6.0 | 0.76      | 0.71      | 0.69      | 0.64      | 0.62      |
| 里扣弃试家                                     | 5.2 | 0.84      | 0.76      | 0.80      | 0.86      | 0.85      |
| <b>共相</b> 表 减 举                           | 6.0 | 0.72      | 0.73      | 0.72      | 0.71      | 0.70      |

表 3.1 同輸入檔不同執行檔的壓降與衰減率

| Power/Fl<br>49.5(%)/3 | ow:<br>36.7(%) | 入口       | 未沸騰      | 次冷態沸<br>騰 | 全面沸<br>騰 | 出口        | 總計       |
|-----------------------|----------------|----------|----------|-----------|----------|-----------|----------|
| £ l                   | 5.2            | 0.0      | 0.037700 | 0.109324  | 0.026980 | 0.0       | 0.174002 |
| 里刀                    | 6.0            | 0.0      | 0.038595 | 0.109195  | 0.028407 | 0.0       | 0.176198 |
| 廊坡                    | 5.2            | 0.0      | 0.002981 | 0.077683  | 0.101450 | 0.0       | 0.182114 |
| 净捺                    | 6.0            | 0.0      | 0.002933 | 0.073112  | 0.105893 | 0.0       | 0.181938 |
| 加速座                   | 5.2            | -        | 0.000029 | 0.010044  | 0.004526 | -         | 0.014599 |
| 加延及                   | 6.0            | -        | 0.000028 | 0.009946  | 0.004660 | -         | 0.014634 |
| 面積變                   | 5.2            | -        | -        | -         | -        | -         | -        |
| 大(个可<br>逆)            | 6.0            | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 日本                    | 5.2            | -        | -        | -         | -        | -         | -        |
|                       | 6.0            | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 面積變                   | 5.2            | -        | -        | -         | -        | -         | -        |
| 小(不可<br>逆)            | 6.0            | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 面積變                   | 5.2            | 0.074187 | -        | -         | -        | -0.002587 | 0.071600 |
| 小                     | 6.0            | 0.074643 | -        | -         | -        | -0.002598 | 0.072045 |
| 硇計                    | 5.2            | 0.074187 | 0.040710 | 0.197050  | 0.132956 | -0.002587 | 0.442315 |
| 總計                    | 6.0            | 0.074643 | 0.041557 | 0.192253  | 0.138961 | -0.002598 | 0.444817 |

表 3.2 LAPUR5.2 與 LAPUR6.0 的各種壓降比較

\* 壓降的單位: kg/cm^2

\*\*"-"表示程式沒有計算此種壓降

## 表 3.3 使用半長棒與全長棒之壓降與衰減率比較

| CS1C25                                    |     |        | Group 1 |        |        |        | Group 2 |        |  |
|-------------------------------------------|-----|--------|---------|--------|--------|--------|---------|--------|--|
| power(%)/flow(%)<br>壓降(kg/cm^2)           |     |        | 50/40   | 60/40  | 70/40  | 50/50  | 60/50   | 70/50  |  |
| 〕<br>單相壓降<br>」                            |     | 0.0508 | 0.0430  | 0.0424 | 0.0392 | 0.0533 | 0.0457  | 0.0416 |  |
|                                           |     | 0.0511 | 0.0429  | 0.0421 | 0.0388 | 0.0535 | 0.0452  | 0.0407 |  |
| 力公进账回顾险                                   | FLR | 0.2433 | 0.2176  | 0.1915 | 0.1801 | 0.2850 | 0.2345  | 0.2191 |  |
| 入マ「巾腐四座」年                                 | PLR | 0.2325 | 0.2129  | 0.1865 | 0.1778 | 0.2579 | 0.2301  | 0.2103 |  |
| 全面沸騰區壓降 =                                 | FLR | 0.0892 | 0.1288  | 0.1641 | 0.1872 | 0.0973 | 0.1673  | 0.2000 |  |
| 重力壓降+加速度壓降+摩擦壓降                           | PLR | 0.0744 | 0.1058  | 0.1391 | 0.1575 | 0.0912 | 0.1364  | 0.1711 |  |
| 千山匝内                                      | FLR | 0.0210 | 0.0248  | 0.0278 | 0.0281 | 0.0180 | 0.0267  | 0.0271 |  |
| 重刀座降                                      | PLR | 0.0213 | 0.0246  | 0.0282 | 0.0280 | 0.0202 | 0.0266  | 0.0295 |  |
| 一十六面内                                     | FLR | 0.0019 | 0.0043  | 0.0074 | 0.0103 | 0.0030 | 0.0069  | 0.0103 |  |
| 加速度壓降                                     | PLR | 0.0014 | 0.0032  | 0.0061 | 0.0085 | 0.0027 | 0.0051  | 0.0083 |  |
|                                           | FLR | 0.0662 | 0.0996  | 0.1289 | 0.1488 | 0.0763 | 0.1337  | 0.1626 |  |
| 摩擦壓降                                      | PLR | 0.0516 | 0.0780  | 0.1048 | 0.1210 | 0.0683 | 0.1046  | 0.1332 |  |
| 雙相壓降 =                                    | FLR | 0.3325 | 0.3464  | 0.3556 | 0.3673 | 0.3822 | 0.4018  | 0.4191 |  |
| 次冷沸騰區壓降+全面沸騰區壓降                           | PLR | 0.3069 | 0.3187  | 0.3256 | 0.3353 | 0.3491 | 0.3665  | 0.3814 |  |
| 人口上可改                                     | FLR | 0.4724 | 0.4776  | 0.4853 | 0.4935 | 0.5747 | 0.5857  | 0.5980 |  |
| 系統總壓降                                     | PLR | 0.4473 | 0.4499  | 0.4551 | 0.4609 | 0.5419 | 0.5500  | 0.5594 |  |
|                                           | FLR | 6.546  | 8.058   | 8.392  | 9.366  | 7.173  | 8.797   | 10.086 |  |
| $\frac{\Delta P(2\Box)}{\Delta P(1\Box)}$ |     | 6.010  | 7.434   | 7.737  | 8.633  | 6.531  | 8.105   | 9.361  |  |
| 灾亡亡死亡必必                                   | FLR | 14.763 | 15.193  | 15.628 | 15.694 | 15.328 | 15.455  | 15.751 |  |
| 密度反應度係數                                   | PLR | 14.740 | 15.170  | 15.606 | 15.672 | 15.310 | 15.438  | 15.733 |  |
|                                           | FLR | 0.42   | 0.61    | 0.85   | 1.09   | 0.31   | 0.42    | 0.51   |  |
| 门伯衣减华                                     | PLR | 0.32   | 0.46    | 0.63   | 0.78   | 0.25   | 0.32    | 0.37   |  |
| 田山六山本                                     | FLR | 0.21   | 0.51    | 0.81   | 1.12   | 0.11   | 0.23    | 0.41   |  |
| 異相衰減率                                     | PLR | 0.12   | 0.30    | 0.50   | 0.79   | 0.06   | 0.12    | 0.22   |  |

表 3.4 利用不同方式計算局部壓降的結果比較-70(%)/50(%)

|             | _    | 入口       | 未沸騰      | 次冷態沸<br>騰 | 全面沸<br>騰 | 出口        | 總計       |
|-------------|------|----------|----------|-----------|----------|-----------|----------|
|             | 法I   | 0.0      | 0.034054 | 0.100981  | 0.030756 | 0.0       | 0.165791 |
| 重力          | 法 II | 0.0      | 0.034076 | 0.101289  | 0.030486 | 0.0       | 0.165851 |
|             | 不調   | 0.0      | 0.034453 | 0.100283  | 0.030607 | 0.0       | 0.165343 |
|             | 法I   | 0.0      | 0.004205 | 0.104126  | 0.163060 | 0.0       | 0.271391 |
| 摩擦          | 法 II | 0.0      | 0.003021 | 0.076932  | 0.119525 | 0.0       | 0.199479 |
|             | 不調   | 0.0      | 0.004313 | 0.101548  | 0.162814 | 0.0       | 0.268675 |
|             | 法I   | -        | 0.000040 | 0.016468  | 0.008368 | -         | 0.024876 |
| 加速度         | 法 II | -        | 0.000040 | 0.016651  | 0.008213 | -         | 0.024904 |
|             | 不調   | -        | 0.000042 | 0.016076  | 0.008491 | -         | 0.024608 |
| 面積變         | 法I   | -        | 0.0      | 0.000019  | 0.000061 | -         | 0.000080 |
| 大(不         | 法 II | -        | 0.0      | 0.000019  | 0.000061 | -         | 0.000080 |
| 可逆)         | 不調   | -        | 0.0      | 0.000019  | 0.000060 | -         | 0.000079 |
|             | 法I   | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 局部          | 法 II | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
|             | 不調   | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 面積變         | 法I   | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 小(不         | 法 Ⅱ  | -        | 0.000728 | 0.031498  | 0.039491 | -         | 0.071716 |
| 可逆)         | 不調   | -        | 0.000780 | 0.030096  | 0.039660 | -         | 0.070536 |
| 下十城         | 法I   | 0.143566 | -        | -         | -        | -0.006278 | 0.137286 |
| 面積愛<br>小    | 法 Ⅱ  | 0.143703 | -        | -         | -        | -0.006285 | 0.137421 |
| <b>`1</b> . | 不調   | 0.144339 | -        | -         | -        | -0.006188 | 0.138154 |
|             | 法I   | 0.143566 | 0.038300 | 0.221595  | 0.202243 | -0.006278 | 0.599424 |
| 總計          | 法 II | 0.143703 | 0.037865 | 0.226388  | 0.197777 | -0.006285 | 0.599451 |
|             | 不調   | 0.144339 | 0.039586 | 0.248021  | 0.241631 | -0.006188 | 0.667392 |

\* 壓降的單位: kg/cm^2

\*\*"-"表示程式沒有計算此種壓降

| 功率(%)/流量(%)<br>壓降(kg/cm^2)   |       | 49.5/36.7 | 52.6/38.3 | 58.5/41.0 | 65.4/44.0 | 73.5/47.2 |
|------------------------------|-------|-----------|-----------|-----------|-----------|-----------|
| 留扣厭败                         | 模型I   | 0.041962  | 0.040882  | 0.038850  | 0.037648  | 0.036387  |
| 平阳座旧                         | 模型 II | 0.054170  | 0.053800  | 0.052263  | 0.051469  | 0.051256  |
| 维扣原政                         | 模型I   | 0.333534  | 0.344425  | 0.364675  | 0.388409  | 0.416785  |
| 受相座体                         | 模型 II | 0.317917  | 0.330966  | 0.350202  | 0.374258  | 0.401950  |
| 令妖伽厭败                        | 模型I   | 0.447661  | 0.463802  | 0.493441  | 0.529607  | 0.572599  |
| 系統總壓降                        | 模型 II | 0.444527  | 0.463464  | 0.492439  | 0.529393  | 0.572540  |
| Δ <b>P</b> (2Φ)              | 模型I   | 7.949     | 8.425     | 9.387     | 10.317    | 11.454    |
| $\overline{\Delta P(1\phi)}$ | 模型 II | 5.869     | 6.152     | 6.701     | 7.271     | 7.842     |
| 密度反應度係                       | 模型I   | 15.128    | 14.941    | 14.944    | 15.088    | 15.050    |
| 數                            | 模型 II | 15.126    | 14.941    | 14.952    | 15.085    | 15.050    |
| 日扣弃试家                        | 模型I   | 0.70      | 0.64      | 0.61      | 0.55      | 0.51      |
| 问怕衣减半                        | 模型 II | 0.48      | 0.45      | 0.41      | 0.33      | 0.30      |
| 異相衰減率                        | 模型I   | 0.63      | 0.61      | 0.60      | 0.59      | 0.55      |
|                              | 模型 II | 0.25      | 0.25      | 0.22      | 0.17      | 0.14      |

表 3.5 使用不同摩擦模型的壓降與衰減率

表 3.6 不同摩擦模型在軸向壓降結果比較-65.4(%)/44.0(%)

|                  |          | 入口       | 未沸騰      | 次冷態沸<br>騰 | 全面沸<br>騰 | 出口        | 總計       |
|------------------|----------|----------|----------|-----------|----------|-----------|----------|
|                  | 模型I      | 0.0      | 0.034413 | 0.100005  | 0.030619 | 0.0       | 0.165038 |
| 重力               | 模型<br>∏  | 0.0      | 0.033629 | 0.102244  | 0.029670 | 0.0       | 0.165543 |
|                  | 模型I      | 0.0      | 0.002631 | 0.068004  | 0.111088 | 0.0       | 0.181724 |
| 摩擦               | 模型<br>∏  | 0.0      | 0.017307 | 0.066456  | 0.095974 | 0.0       | 0.179739 |
| 加速               | 模型I      | -        | 0.000034 | 0.013432  | 0.007275 | -         | 0.020740 |
| 度                | 模型<br>[[ | -        | 0.000032 | 0.013918  | 0.007038 | -         | 0.020989 |
| 面積               | 模型I      | -        | 0.0      | 0.000015  | 0.000050 | -         | 0.000065 |
| 變大<br>(不可<br>逆)  | 模型<br>[] | -        | 0.0      | 0.000015  | 0.000051 | -         | 0.000066 |
|                  | 模型I      | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 局部               | 模型<br>[[ | -        | 0.0      | 0.0       | 0.0      | -         | 0.0      |
| 面積               | 模型I      | -        | 0.000570 | 0.024468  | 0.033454 | -         | 0.058492 |
| 變小<br>(不可<br>逆)  | 模型<br>[[ | -        | 0.000500 | 0.025658  | 0.033233 | -         | 0.059391 |
| 面積               | 模型I      | 0.107383 | -        | -         | -        | -0.003833 | 0.103551 |
| <b></b> 過禎<br>變小 | 模型<br>[] | 0.107556 | -        | -         | -        | -0.003891 | 0.103666 |
|                  | 模型I      | 0.107383 | 0.037648 | 0.205924  | 0.182485 | -0.003833 | 0.529608 |
| 總計               | 模型<br>[[ | 0.107556 | 0.051469 | 0.208291  | 0.165967 | -0.003891 | 0.529391 |

\* 壓降的單位: kg/cm^2, \*\* "-"表示程式沒有計算此種壓降

| 參數 | 使用者手册範例 | 目前的設定                 |
|----|---------|-----------------------|
| AN | 0.1002  | 0.0055                |
| BN | 1.000   | $2 \times 10^4$       |
| CN | 1.000   | 10 <sup>6</sup>       |
| DN | 0.1246  | 1                     |
| Rr | -1.000  | $4.74 \times 10^{-4}$ |

表 3.7 單相摩擦係數的係數比較

|       | 模型I      | 模型 II    | STAIF    |
|-------|----------|----------|----------|
| 入口壓降  | 0.107383 | 0.107556 | 0.213429 |
| 摩擦壓降  | 0.181724 | 0.179739 | 0.023396 |
| 加速度壓降 | 0.020740 | 0.020989 | 0.005099 |
| 重力壓降  | 0.165038 | 0.165543 | 0.247061 |
| 局部壓降  | 0.162108 | 0.163123 | 0.226531 |
| 總壓降   | 0.529608 | 0.529391 | 0.502082 |
| 同相衰減率 | 0.55     | 0.33     | 0.897    |
| 異相衰減率 | 0.59     | 0.17     | 0.609    |

表 3.8 不同摩擦模型的結果與廠商數據比較

\* 壓降的單位: kg/cm^2

| Case | Power (%)   | Exposure | Core Decay<br>Ratio | ODYSY<br>Result |  |
|------|-------------|----------|---------------------|-----------------|--|
|      | /Flow ( % ) |          |                     | icouit          |  |
| HFCL | 66.4%/40.0% | 8154     | 0.25                | 0.11            |  |
|      |             |          |                     |                 |  |
|      | 62.0%/34.1% | 8154     | 0.28                | 0.19            |  |
|      |             |          |                     |                 |  |
| NCL  | 37.7%/20.7% | 7824     | 0.38                | 0.59            |  |
|      |             |          |                     |                 |  |
|      | 32.0%/20.4% | 8154     | 0.30                | 0.46            |  |

表 3.9 LAPUR6.0 分析結果與 ODYSY 比較

表 3.10 核一廠一號機 Cycle24 手動與程式計算之衰減率比較

| Power(%)\Flow(%) | Exposure(MWd/t) | 手動計算值 | DRASM 計算值 |
|------------------|-----------------|-------|-----------|
| 48.9/36.7        | 6600            | 0.71  | 0.71      |
| 48.9/36.7        | 7480            | 0.7   | 0.7       |
| 48.9/36.7        | 8360            | 0.66  | 0.66      |



圖 3.1 同輸入檔不同執行檔的衰減率比較



圖 3.2 LAPUR5.2 與 6.0 摩擦模型 I 的衰減率比較



圖 3.3 LAPUR5.2 與 6.0 摩擦模型 II 的衰減率比較



圖 3.4 使用全長棒與半長棒對衰減率的影響



圖 3.5 使用全長棒的壓降分布比較



## 圖 3.6 使用半長棒的壓降分布比較



圖 3.7 同相衰減率對雙相除以單相壓降比率之比較圖



圖 3.8 異相衰減率對雙相除以單相壓降比率之比較圖


圖 3.9 使用不同方式計算局部壓降對衰減率的影響



圖 3.10 使用不同方式計算局部壓降對衰減率的影響



圖 3.11 不同雙相流摩擦加乘因子對衰減率的影響



圖 3.12 龍門電廠功率/流量圖譜之局部放大圖

## 肆、參考文獻

- Alberto Escrivá, and José March-Leuba, "LAPUR5.2 Verification and User's Manual," NUREG/CR-6696 ORNL/TM-2000/340, November 2000.
- A. Escrivá, J. L. Muńoz Cobo, J. M. San Roman, M Albendea Darriba, and J. March-Leuba, "LAPUR6 Verification and User's Manual," NUREG/CR-6958 ORNL/TM-2007/233 (October 2008).
- 3. 「核一廠 CS1-C25 ATRIUM-10 燃料 SIMULATE-3 流量分佈模式

計算書」, NED-CM-96B16809-CCS-029-01.

4. 「核二廠KS2C21 ATRIUM-10燃料 SIMULATE-3 流量分佈模式計

算書」, NED-CM-96B16809-CCS-031-01

- AREVA NP, Inc., "Thermal-Hydraulic Evaluation of ATRIUM<sup>™</sup>-10 Fuel in the Chinshan Units", KSQ: 06:009, August 30 2006.
- AREVA NP, Inc., "Chinshan Hydraulic Characteristics for Modeling ATRIUMTM-10 Fuel Assemblies with Advanced Fuel Channel and FUELGARDTM Lower Tie Plate in MICROBURN-B2", 51-9075557-000, March 14 2008.
- 林浩慈、王仲容、施純寬、謝昌倫,"沸水式反應器穩定性分析 方法之介紹與LAPUR穩定性分析模式之建立",INER-A0712R, 中華民國九十四年九月。
- 8. Umbager J. A., Digiovine A. S., "SIMULATE-3, Advanced Three Dimensional Two-Group Reactor Analysis Code. User's Manual",

Studsvik/SOA-92/01, 1992.

- Escriva, A. and Munoz-Cobo, J. L., "PAPU Models, Correlations, and User's Mannul", ThermalHydraulic and Nuclear Engineering Group, GTIN-02/001, March 2002.
- 10. 林浩慈、王仲容、施純寬、謝昌倫、邱茗秀, "EXAVERA程式建 立與驗證", , INER-OM-0762R, 中華民國九十四年九月。
- Alberto Escriva, et al, "Upgrade of the thermalhydraulic capabilities of the stability code LAPUR5, for the new fuel type designs 'The 11th International Topic Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Paper 082, Avignon, Fracce, October 2-6, 2005.
- 12. Lotfi Belblidia, et al, "SIMULATE-3K stability benchmarking and predictive calculations Leibstade" International Conference on Reactor Physics Power: A Sustainable Resource Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008.
- March-Leuba, et al, "A study of the effect of mixed cores on the stability of BWRs", The 18<sup>th</sup> International Conference on Nuclear Engineering (ICONE18), May 17-21, 2010, Xi'an China.
- 14. 核四龍門電廠 (ABWR) 訓練教材
- Masahiro Furuya et al., "Development of BWR Regional Stability Experimental Facility SIRIUS-F, Which Simulates

Thermohydraulic-Neutronics Coupling in Reactor Core, and Stability Evaluation of ABWR", NURETH-11 paper-233, Avignon, France, October 2-6, 2005.

- US Patent 5017332 Two-phase pressure drop reduction BWR assembly design, Issued on <u>May 21, 1991</u>.
- 17. Wu, Ping., "Lungmen ODYSY Stability Analysis," Rev. 1, 0000-0026-4971, 2004