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中文摘要 

正子發射斷層掃描（PET）會因為互毀光子於病人體內衰減導致影像

在視覺判讀和量化分析表現不佳，從而對核醫藥物活性分布的定量

與定性產生不良影響，此一現象產生了在 PET影像重建中實施衰減

校正的需求。本案目標為探討在無需額外解剖成像的情況下對腦部

PET影像以基於捲積神經網路（CNN）技術進行衰減校正的可行性，

研究執行是由高雄醫學大學醫放系楊晴晴老師實驗室完成以下工作：

（1）建立一套基於 GATE為計算核心的蒙地卡羅模擬器，以對核能

研究所設計的腦部 PET系統進行建模；（2）完成 198組的 PET模擬

掃描運算以訓練和測試 CNN模型；（3）研究計畫送交台大醫院臨床

試驗審查委員會(IRB)審議並獲得批准；（4）收集 20組臨床病人腦部

PET/CT 掃描以訓練和測試 CNN 模型；（5）建立了基於 Caffe 為演

算平台的深度學習環境；（6）探討一種 CNN 模型於實現 PET 衰減

校正的表現情形。本案所採用的 CNN模型，其輸出數據與標籤數據

仍有很大差異。然而我們從這些初步結果發現，為了成功訓練深度

學習模型於實現 PET衰減校正，可從模擬腦部數位假體、增加訓練

數據量和加深 CNN模型的結構上修正。本案所獲得的研究結果與衍

生建議將有助於開發基於深度學習法的 PET衰減校正技術。 
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英文摘要 

Attenuation of photons in vivo degrades the visual quality and 

quantitative accuracy of PET images, thereby adversely affecting 

interpretation and quantitation of activity concentration. Accurate 

attenuation correction is therefore mandatory in quantitative PET image 

reconstruction. This study aimed to investigate the feasibility of 

attenuation correction based on convolutional neural network (CNN) 

technique in brain PET imaging without additional anatomical imaging. 

To achieve this goal, our members from Dr. Ching-Ching Yang’s Lab at 

Kaohsiung Medical University have accomplished the following works: 

(1) a Monte Carlo simulator based on GATE has been built to model the 

brain PET system designed by Institute of Nuclear Energy Research; (2) 

198 simulations have been conducted to train and test the CNN model; 

(3) institutional review board approval issued by National Taiwan 

University Hospital was obtained; (4) 20 real PET/CT scans were 

collected to train and test the CNN model; (5) a deep learning 

environment based on Caffe has been set up; (6) a CNN model has been 

investigated for estimating attenuation corrected PET from uncorrected 

PET. Although the output data from the investigated CNN model have 

large discrepancy from the label data, these preliminary results give us 

valuable information concerning the simulation phantom type, the 

training data size, and the architecture of the CNN model. It is believed 

that the performance of the deep learning based attenuation correction 

for brain PET imaging can be substantially improved once the suggested 
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modifications have been made.  
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Investigation and performance evaluation of attenuation correction 

for dedicated brain PET system 

Ching-Ching Yang, Ph.D. 

Department of Medical Imaging and Radiological Sciences, 

Kaohsiung Medical University 

壹、計畫緣起與目的 

As worldwide health improvements have increased, life expectancy 

increases but neurodegenerative disorders become more common. 

18
F-FDG PET is not only a valuable tool in tumor imaging but also a 

very promising neuroimaging tool in the diagnosis of neurodegenerative 

disease because it reflects resting state cerebral metabolic rates of 

glucose, which is an indicator of neuronal activity (Fig. 1). Indications of 

dementing disorders include early diagnosis and differential diagnosis of 

dementing disorders, such as Alzheimer’s disease and frontotemporal 

dementia. Typical topographic patterns of hypometabolism may help 

diagnose the main neurodegenerative diseases at a predementia stage, i.e., 

 

Fig. 1. 
18

F-FDG PET scans of a representative cognitive normal individual (NL, 

left) and of four patients, each with a different movement disorder (from left to 

right): Parkinson’s disease (PD), multiple system atrophy (MSA), progressive 

supranuclear palsy (PSP), and corticobasal degeneration (CBD).
1
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mild cognitive impairment. 
18

F-FDG PET can also be used in differential 

diagnosis of cerebral space-occupying lesions, detection of viable tumor 

tissue and for noninvasive grading. As for epilepsy, a common indication 

is the preoperative evaluation of partial epilepsy in adults and in children 

to identify the functional deficit zone. With regards to movement 

disorders, 
18

F-FDG PET can be used for the differentiation between 

Parkinson’s disease and atypical parkinsonian syndromes.
1-5

 

 

PET imaging enables in vivo visualization and quantification of 

disease-specific radiotracer biodistributions in the patient's body. 

However, there are several parameters that affect the quality and 

quantitative accuracy of PET images, including positron range, the 

limited spatial resolution and resulting partial volume effect, contribution 

from scattered photons, photon attenuation, patient motion, and the 

image reconstruction algorithm. Attenuation of photons in vivo degrades 

the visual quality and quantitative accuracy of PET images, thereby 

adversely affecting interpretation and quantitation of activity 

concentration. Accurate attenuation correction is therefore mandatory in 

quantitative PET image reconstruction and plays a pivotal role in clinical 

PET scanning protocols. In stand-alone PET systems, attenuation 

correction is usually performed using either rod positron-emitting 

(
68

Ga/
68

Ge) or point single-photon emitting (
137

Cs) sources orbiting 

around the patient. Since the energy of photons emitted from 

positron-emitting rod sources is the same and the γ-rays emitted by 
137

Cs 

(662 keV) are very close to the energy of annihilation photons in PET 
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(511 keV), transmission scanning-based attenuation correction is the 

method of choice for stand-alone PET scanners. In recent years, PET/CT 

scanners have gained widespread acceptance in the clinical setting since 

the availability of correlated functional and anatomical images was 

shown to improve the detection or staging of disease by highlighting 

areas of increased radiotracer uptake on the anatomical images, whereas 

regions that look abnormal in the anatomical image can draw attention to 

a potential area of disease where radiopharmaceutical uptake may be low 

(Fig. 2). In PET/CT systems, attenuation correction is achieved by X-ray 

transmission scanning using the CT sub-system of the combined unit. 

CT-based attenuation correction (CTAC) reduces substantially total 

scanning time and yields much lower statistical noise in the generated 

attenuation map (μ-map) even when using low-dose CT scanning 

protocols. It also eliminates the need for rotating radionuclide 

transmission sources around the patient but suffers from many 

drawbacks, including the much higher radiation dose delivered to the 

patient compared to transmission scanning and the possibility brain PET 

 
Fig. 2. CT and PET images showing the effects of photon attenuation in the PET 

emission data.
6
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of producing artifacts in the attenuation corrected PET images, 

particularly in the presence of contrast agent and metallic objects in CT 

images. CT images display the distribution of attenuation coefficients 

within the patient’s body at an effective energy (∼55–80 keV) related to 

the generated X-ray spectra (80–140 kVp). Since the energy of the 

photons for the emission scan is 511 keV, reliable conversion methods 

are required to convert the attenuation coefficients (in Hounsfield units) 

acquired at the CT effective energy to linear attenuation coefficients (μ) 

at 511 keV. Another important issue is that CT uses a polychromatic 

X-ray spectrum whereas annihilation photons’ energy in PET is 

monochromatic (511 keV). Hence, a conversion of the broad energy 

spectrum attenuation coefficients to linear attenuation coefficients at 511 

keV is mandatory.
6-8

 

 

In the last two years, convolution neural networks (CNNs) have 

outperformed the state of the art in many medical imaging tasks, such as 

image denoising, image reconstruction and end-to-end lesion 

detection.
9-11

 However, CNN application for PET are more challenging 

than those for MR and CT due to the low resolution and noise 

characteristics of PET. This study aimed to investigate the feasibility of 

attenuation correction based on CNN technique in brain PET imaging 

without additional anatomical imaging. To reach this goal, a deep 

learning environment has been set up to create a CNN model, which was 

trained and tested by PET data obtained from both Monte Carlo 

simulation and real PET/CT scans. Based on our study results, several 
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suggestions have been made to improve the performance of deep 

learning based attenuation correction for brain PET imaging.  
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貳、研究方法與過程 

一、 深度學習模型 

Deep learning model can learn a hierarchy of features, i.e., high-level 

features built upon low-level features. CNN is one popular type of deep 

learning models, in which trainable filters and local neighborhood 

pooling operations are applied in an alternating sequence starting with 

the raw input images. In the following, a CNN architecture for PET 

attenuation correction adopted from the model proposed by Nie et al. is 

described.
12

 The training data for this CNN model consists of patches 

extracted from subjects with both uncorrected PET images and 

attenuation corrected PET images. The size of input (uncorrected) PET 

patch is 32 × 32 and the size of output (corrected) PET patch is 24 × 24. 

The input and output patches are in correspondence, which means that 

they share the same center position in their aligned image space. To 

generate training samples for CNN, a large number of patches from 

uncorrected PET volume are extracted as inputs, and the corresponding 

corrected PET image patches are extracted as outputs. The total number 

of patches extracted from each volume is about 6000, which is sufficient 

to cover majority of the image volume. 

 

In the CNN architecture, we first apply convolution with a filter size of 7 

× 7 on the input (uncorrected) PET patch to construct 32 feature maps in 

the first hidden layer. One voxel is padded along the first two dimensions. 

In the second layer, the outputs of the first layer are fed into another 
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convolutional layer with 64 filters of size 5 × 5. The third convolutional 

layer contains 32 feature maps. Each of the feature maps is connected to 

all the input feature maps through filters of size 3 × 3. The output layer 

contains only one feature map generated by 1 filter of size 3 × 3, and it 

corresponds to the predicted (attenuation corrected) PET image patch. To 

keep the same image size, one voxel is padded along three dimensions in 

the last two layers. In all layers, we set stride as 1 voxel. The latent 

nonlinear relationship between uncorrected PET and attenuation 

corrected PET images is encoded by the large number of parameters in 

the network.  

 

Caffe (Convolutional Architecture for Fast Feature Embedding) was 

modified to implement the architecture to minimize classification error 

and improves the directness and transparency of the hidden layer 

learning process.
13

 Fig. 3 demonstrate the deep learning architecture, 

which was set up and drawn using Caffe. Caffe has command line, 

Python, and MATLAB interfaces for  day-to-day usage, interfacing 

with research code, and rapid prototyping (Table 1).
14

 While Caffe is a 

C++ library at heart and it exposes a modular interface for development, 

 

Fig. 3. The architecture for estimating attenuation corrected PET image from uncorrected PET image.  
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not every occasion calls for custom compilation. The network 

parameters of CNN are updated by back-propagation using stochastic 

gradient descent algorithm. To train the network, the model 

hyper-parameters need to be appropriately determined. Specifically, the 

network weights are initialized by xavier algorithm, which can 

automatically determine the scale of initialization based on the number 

of input and output neurons. For the network bias, we initialize it to be 0. 

The initial learning rate and weight decay parameter are determined by 

conducting a coarse line search, followed by decreasing the learning rate 

during training. Both Monte Carlo simulation data and real patient data 

were used to train and test the CNN model for estimating attenuation 

corrected PET images from uncorrected PET images. 

 

二、 腦部 PET成像系統之蒙地卡羅模擬 

Table 1. Comparison of deep learning libraries.
14
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The GATE Monte Carlo toolkit based on the Geant4 code was used to 

simulate the brain PET system designed by Institute of Nuclear Energy 

Research (INER).
15

 The brain PET system modeled in this study consists 

of two flat-panel type detectors at 180 degrees opposite each other. Each 

panel is made up of 3 × 4 detector blocks, and each detector block 

contains 31 × 31 pixelated array of 1.51 × 1.51 × 10 mm
3
 LYSO with a 

crystal pitch of 1.52 mm. The system covered an area of 151 × 201.4 

mm
2
. The distance between two opposing detectors is 230 mm. The 

entire array is coupled with silicon photomultipliers (SiPMs) via a glass 

light guide. After data acquisition at the first angular position, the system 

rotated 90 degrees to the next angular position (Fig. 4). The simulated 

coincidence events from each angular position were stored in projection 

histogram with matrix size of 11532 × 11532.  

 

In GATE simulation, a complete simulation script can be defined in 

 

Fig. 4. Visualization of brain PET scanner modeled in GATE.  

 



14 
 

eight steps. The user needs to describe; (1) the camera geometry, (2) the 

phantom geometry, (3) the acquisition system (detector electronics 

response modeling), (4) the time parameters (acquisition start and stop 

times), (5) the data output format, (6) the physics processes, (7) the 

radioactive sources, and (8) the verbosity level. For each step, a specific 

macro was defined with standard GATE command lines. To describe a 

tomographic experiment, all components of the imaging device and the 

imaged object must be composed of elementary volumes. These volumes 

are arranged in a volume hierarchy where each volume possesses 

specific properties such as size, position, and material composition. The 

electromagnetic interactions used in GATE are derived from Geant4. 

The electromagnetic physics package manages electrons, positrons, 

γ-rays, X-rays, optical photons, muons, hadrons, and ions. Although 

GATE can simulate the physical process of positron source detection, 

511-keV back-to-back photon source was used in this work in order to 

speed up simulation. To train the CNN model, PET data generated by 

simulating back-to-back photon source in water were used as the input 

data, while the corresponding label data were generated by simulating 

activity distribution of back-to-back photon source in vacuum. As in 

Geant4, GATE can use two different packages to simulate 

electromagnetic processes: the standard energy package, and the low 

energy package. In the standard energy package, photoelectric effect and 

Compton scatter can be simulated at energies above 10 keV. The low 

energy package extends the treatment of photons and electrons down to 

250 eV and includes Rayleigh scattering. For biomedical applications, 
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the low energy package thus provides a more accurate model of the 

electromagnetic interactions. However, this comes at the price of 

increased computing time. In this work, the standard energy package was 

used to speed up simulation.   

 

Digitization is the process of simulating the electronics response of a 

detector within a scanner. This involves the conversion of the charged 

particle and photon interactions into energy bins, detection positions, and  

coincidences. This is one of the key features in GATE that allows it to 

accurately simulate the behavior of real scanners. In order to do this, 

portions of the scanner geometry are designated as sensitive detectors, 

which record interactions within these regions. Next, the digitizer chain 

processes these recorded interactions and produces counts and 

coincidences. Sensitive detectors are used to store information about 

particle interactions (hereafter referred to as hits) within physical 

volumes. GATE only stores hits for those volumes that have a sensitive 

detector attached. All information regarding interactions within 

nonsensitive volumes is discarded. Two types of sensitive detectors are 

 

Fig. 5. The digitizer is organized as a chain of several modules that processes the 

hits to yield a single, which represents a physical observable. 
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defined in GATE: the crystal sensitive detector (crystalSD) and the 

phantom sensitive detector (phantomSD). The aim of the digitizer chain 

is to mimic a realistic detection process by building the physical 

observables from the hits. The observables of each detection event are 

the energy, position, and time of the interaction. The digitizer consists of 

a chain of processing modules that takes a list of hits from the sensitive 

detectors and transforms them into pulses referred to as singles (Fig. 5). 

To test the impact of different signal processing strategies, a simulation 

can be reprocessed with different digitizer chains using DigiGATE. At 

the end of a digitizer chain a coincidence sort can be added to find pairs 

of singles that are in coincidence. Pairs of singles can be considered 

coincidences whenever the time interval between the singles is less than 

a user-defined coincidence window. Each single is stored with its 

corresponding event number. If the event numbers of the singles 

associated in a coincidence are not the same, then it is a random 

coincidence. A similar flag exists for Compton scatters. Thus, the 

Compton scatter flag can be used to differentiate true from scattered 

coincidence pairs that have identical event flags. To exclude 

auto-coincidences of a particle interacting within several crystalSDs and 

hence resulting in several singles with the same event numbers, a user 

defined neighboring threshold can be used to reject coincidences of 

singles that are detected in nearby crystalSDs. Finally, multiple 

coincidences that correspond to more than two singles that are within the 

same coincidence window are discarded.  
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三、 臨床病人腦部 PET/CT掃描 

Patient data were collected retrospectively from the Department of   

Nuclear Medicine at National Taiwan University Hospital. The  

institutional review board (IRB) has approved the protocol and issued a 

written notice of approval issued on October 16, 2019 (approval number: 

201908077RIND). All patient data were acquired on a Discovery 

PET/CT 710 scanner (GE Healthcare, Milwaukee, USA). The technical 

specifications of the Discovery PET/CT 710 scanner are summarized in 

Table 2.
16

 FDG PET/CT imaging was performed 45 min after injection 

Table 2. Technical characteristics of the Discovery PET/CT 710 scanner.
16 
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of  FDG at a dose of 10 mCi for adult patients. Before FDG 

administration, subjects were asked to fast for at least 6 hours. Blood 

glucose level at the time of FDG injection was less than 150 mg/dL in all 

subjects. No additional glucose control drugs were used in subjects with 

high blood glucose levels. Sixty minutes after the administration of FDG, 

low-dose CT was performed for attenuation correction and precise 

anatomical localization. Thereafter, an emission scan was conducted in 

the three-dimensional mode. The average total PET/CT examination 

time was 15 minutes. The CT scan was obtained with tube voltage of 120 

kVp and tube current of 50-150 mAs. The PET data were reconstructed 

by Vue Point Fx (6 iteration, 24 subsets) without and with CT-based 

attenuation correction. The uncorrected PET images were used as the 

input data to train the CNN model, while the corresponding label data 

were the PET images corrected for attenuation using CTAC.  

 

四、 工作項目與執行時程 

This project starts on September 29
th
 and ends on December 31

st
. 

Because the deadline for uploading the final report is December 15
th
, the 

Table 3. The Gantt chart describing the project works. 

 

 



19 
 

actual duration is 3.5 months. Table 3 summarizes the progress of this 

project. 

參、主要發現與結論 

一、 研究結果 
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A 30-minute PET data acquisition for a spherical source with 
18

F activity 

of 670000 Bq embedded in a cylindrical phantom (10 cm in height) was 

 

Fig. 6. (a) Illustration of geometry modeling in Monte Carlo simulation and (b) the simulated 

projections for spherical source in water (upper row) and in vacuum (lower row).  
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modeled in Monte Carlo simulation. Simulation was repeated using three 

different cylinder sizes (16, 18 and 20 cm in diameter), 2 different 

attenuation materials (water and vacuum), 3 different sphere sizes (40, 

50, 60 mm in diameter), 11 different sphere locations (at center, ±1 cm, 

±2 cm, ±3 cm, ±4 cm, ±5 cm). Hence, a total of 198 simulations were 

performed. It takes 2 days to complete each simulation job. Fig. 6 shows 

the illustration of geometry modeling in Monte Carlo simulation and the 

simulated projections for spherical source in water and in vacuum. Fig. 7 

shows the input data (spherical source in water) and the label data 

(spherical source in vacuum) generated from simulation and the output 

data from the CNN model. The CNN model has been trained for 3 weeks 
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(forward/backward iteration 1254500). The intensity profile of output 

data in Fig. 7(c) is more flat than that for the input data, but the 

difference is little. Concerning the image histogram, the mean value of 

output data is higher than that for the input data, but is still lower than 

that for label data. 

 

Our clinical brain dataset consists of 20 subjects, each with CT, 

uncorrected PET and attenuation corrected PET. Table 4 summarizes 

patient information of 20 real PET/CT scans. Fig. 8 demonstrate CT, 

uncorrected PET and attenuation corrected PET of brain in axial plane 

from 2 different patients. Fig. 9 shows the input data (uncorrected PET) 

 

Fig. 7. (a) The input data and (b) the label data generated from simulation and (c) the output data generated by 

testing the CNN model (upper row: projection; mid row: intensity profile through the dash line; lower row: 

image histogram).   
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and the label data (attenuation corrected PET) from real patient scan and 



24 
 

the output data generated by testing the CNN model. The CNN model 

Table 4. Patient information of 20 real PET/CT scans. 

 

 

Fig. 8. (a) CT, (b) uncorrected PET and (c) attenuation corrected PET of brain in axial plane 

from 2 different patients. 
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has the output data from the CNN model. The CNN model has been 

trained for 3 weeks (forward/backward iteration 1151500). For the 

output data in Fig. 9(c), the central portion of the intensity profile (red 

arrow) is higher than that for the input data, but the difference is not 

obvious compared to the label data. With regards to the image histogram 

of output data, the tendency of high intensity pixels is similar to that 

from label data, but not for the low intensity pixels.  

 

二、 討論與建議 

Based on our preliminary results, it was found that the performance of 

the CNN model investigated in this study is not acceptable. This 

 

Fig. 9. (a) The input data and (b) the label data from real patient scan and (c) the output data generated by 

testing the CNN model (upper row: reconstructed image in the axial plane; mid row: intensity profile through 

the dash line; lower row: image histogram).  
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phenomenon is suspected to be related with several issues. First, a CNN 

model shown in Fig. 3 may be too simple for this work. PET generally 

has higher image noise than MRI and CT. Since complicated neural 

network models can integrate and absorb noise better than simple neural 

network models, a more complicated CNN model should be used to 

improve the performance of the output results. The deeply supervised 

nets method enforces direct and early supervision for both the hidden 

layers and the output layer by introducing companion objective to the 

individual hidden layers, which is used as an additional constraint to the 

learning process.
17

 Fig. 10 demonstrate the modified CNN architecture 

for estimating attenuation corrected PET image from uncorrected PET 

image. The deeply supervised nets method can minimize classification 

error while making the learning process of hidden layers direct and 

transparent. It is expected that the CNN model with a deeply supervised 

feature can improve the performance of the output data. Second, the 

CNN model should be trained by using more image datasets to improve 

the performance of output data. The amount of training data plays a 

critical role in making the deep learning models successful. It has been 

well established both across industry and academia that for a given 

problem, with large enough data, a very different algorithms perform 

virtually the same. However, noisy labels inevitably degenerate the 

robustness of the learned model, especially for deep neural networks. 

The large data should have meaningful information and not just noise so 

that model can learn from it. Therefore, it is expected that if the CNN 

model is trained by using Monte Carlo simulation data generated with 
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voxelized brain phantom (Fig. 11) instead of the physical phantoms 
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Fig. 10. The CNN architecture with a deeply supervised feature for estimating 

attenuation corrected PET image from uncorrected PET image. (a)-(c): partial 

enlarged CNN model. 

 

(a) 

(b) 

(c) 
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with simple geometry settings as conducted in this study, the 

performance of the CNN model could be improved. However, it takes 

about 2 weeks to complete the simulation job shown in Fig. 11(b) and 

11(c). Third, when a 3D deep learning model is applied, the performance 

of the CNN output data could be improved. The CNN model used in this 

work is designed for 2D images, which may not be suitable for 3D 

volumetric images (i.e., MRI, CT and PET). Compared to 2D CNN, 3D 

CNN can better model the 3D spatial information due to the use of 3D 

convolution operations. 3D convolution preserves the spatial 

neighborhood of 3D image. As a result, 3D CNN can solve the 

discontinuity problem across slices, which are suffered by 2D CNN. 

 

三、 結論 

For this project, we have accomplished the following works: (1) a Monte 

Carlo simulator based on GATE has been built to model the brain PET 

 

Fig. 11. (a) The voxlized brain phantom in coronal (upper) and sagittal planes (lower) and 

the simulated projections for the activity distribution of 
18

F in (b) water and (c) vacuum.  
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system designed by INER; (2) 198 simulations have been conducted to 

train and test the CNN model; (3) IRB approval issued by National 

Taiwan University Hospital was obtained for this study; (4) 20 real 

PET/CT scans were collected to train and test the CNN model; (5) a deep 

learning environment based on Caffe has been set up; (6) a CNN model 

has been investigated for estimating attenuation corrected PET from 

uncorrected PET. Although the output data from the investigated CNN 

model have large discrepancy from the label data, these preliminary 

results give us valuable information concerning the simulation phantom 

type, the training data size, and the architecture of the CNN model. It is 

believed that the performance of the deep learning based attenuation 

correction for brain PET imaging can be substantially improved once the 

suggested modifications have been made. 
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