TV ENES W
LERLPERL

BEINE * % gigﬁa,:‘s B2 RFREDEFFEEKE
Investigation and performance evaluation of attenuation correction

for dedicated brain PET system

4 %% : 108A015
£LEBUOE) B RFE 8
S RN LY
B g 0 (07)3121101 A 48 2356-51
E-mail address : cyang@kmu.edu.tw
Py #3F108#8% 29p 3 108 & 12 % 31 p
FPIER ARV LRIF/F B
I R S &
2 pH:108& 12% 15p



IR T 2 5

BN FTE BB AR e 10

i
fa
A
e
&
1%
e
-5*

TR B W BT ettt 10
adR PET =% ffok 2020 53 F B s 12
Tk s A P PETICT 4545 oo 17
R R L =< 3R 18

e NN 19
ZE BT IZ 2R oottt ettt e e 25
= R 28



4 R
:*%ET%”T%?%#J(PET)QW%_?'& ;’&}%A%ﬁ FRERE l%\
AR SR AT AR B S HPFESF LT TR

BEREALAARTE S -REAL T A PET BiEE? % %R

1,\4‘<

Rt ehg o A% PR

TRt R F IR RS iR T et
PET # 5 A5 B HA S (CNN)BIFE (7 R BRI 7 (744

FEd gRFg g i fagEirgmhiasnTair
(1) 222 - 24 GATE 2 3-8 P h ¥ + BHICRE » WP
FL R TR e s PET ks R34 (2) % & 198 o PET #4
Fde 85 R Aeipls# CNN 3] 5 () ML+ ¥ 2 &+ Flefph

%% AL R E(RB)FHT B EF 8 (4) foh 20 mTRA 4 620

il
)

PET/CT #4 3" fritl:® CNN #3415 (5) 2= 1 #A Caffe 5i#
BT SRR E Y R 5 (6) 31— 8 CNN #7309 3 PET ¢
e e IEA) o k& 4k o0 CNN HEAL - 3 i o0 il 22 R B el
R LR o BRa APLEEAR BB EER . LT AP IBUFR
FV AT R PET R RE - 7 AR SR AR~ H e R
Bofp B s CNN B ch i+ B0 o 2 R4 EE it S % & 7

2 kM BB A RA R Y 2 D PET %R e $U o



ERR

Attenuation of photons in vivo degrades the visual quality and
quantitative accuracy of PET images, thereby adversely affecting
interpretation and quantitation of activity concentration. Accurate
attenuation correction is therefore mandatory in quantitative PET image
reconstruction. This study aimed to investigate the feasibility of
attenuation correction based on convolutional neural network (CNN)
technique in brain PET imaging without additional anatomical imaging.
To achieve this goal, our members from Dr. Ching-Ching Yang’s Lab at
Kaohsiung Medical University have accomplished the following works:
(1) a Monte Carlo simulator based on GATE has been built to model the
brain PET system designed by Institute of Nuclear Energy Research; (2)
198 simulations have been conducted to train and test the CNN model;
(3) institutional review board approval issued by National Taiwan
University Hospital was obtained; (4) 20 real PET/CT scans were
collected to train and test the CNN model; (5) a deep learning
environment based on Caffe has been set up; (6) a CNN model has been
investigated for estimating attenuation corrected PET from uncorrected
PET. Although the output data from the investigated CNN model have
large discrepancy from the label data, these preliminary results give us
valuable information concerning the simulation phantom type, the
training data size, and the architecture of the CNN model. It is believed
that the performance of the deep learning based attenuation correction

for brain PET imaging can be substantially improved once the suggested



modifications have been made.



Investigation and performance evaluation of attenuation correction
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As worldwide health improvements have increased, life expectancy
increases but neurodegenerative disorders become more common.
F.FDG PET is not only a valuable tool in tumor imaging but also a
very promising neuroimaging tool in the diagnosis of neurodegenerative
disease because it reflects resting state cerebral metabolic rates of
glucose, which is an indicator of neuronal activity (Fig. 1). Indications of
dementing disorders include early diagnosis and differential diagnosis of
dementing disorders, such as Alzheimer’s disease and frontotemporal
dementia. Typical topographic patterns of hypometabolism may help

diagnose the main neurodegenerative diseases at a predementia stage, i.e.,

Fig. 1. 8F-FDG PET scans of a representative cognitive normal individual (NL,
left) and of four patients, each with a different movement disorder (from left to
right): Parkinson’s disease (PD), multiple system atrophy (MSA), progressive
supranuclear palsy (PSP), and corticobasal degeneration (CBD).!
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mild cognitive impairment. **F-FDG PET can also be used in differential
diagnosis of cerebral space-occupying lesions, detection of viable tumor
tissue and for noninvasive grading. As for epilepsy, a common indication
Is the preoperative evaluation of partial epilepsy in adults and in children
to identify the functional deficit zone. With regards to movement
disorders, ®F-FDG PET can be used for the differentiation between

Parkinson’s disease and atypical parkinsonian syndromes.*”

PET imaging enables in vivo visualization and quantification of
disease-specific radiotracer biodistributions in the patient's body.
However, there are several parameters that affect the quality and
quantitative accuracy of PET images, including positron range, the
limited spatial resolution and resulting partial volume effect, contribution
from scattered photons, photon attenuation, patient motion, and the
image reconstruction algorithm. Attenuation of photons in vivo degrades
the visual quality and quantitative accuracy of PET images, thereby
adversely affecting interpretation and quantitation of activity
concentration. Accurate attenuation correction is therefore mandatory in
quantitative PET image reconstruction and plays a pivotal role in clinical
PET scanning protocols. In stand-alone PET systems, attenuation
correction is usually performed using either rod positron-emitting
(*®Ga/®®Ge) or point single-photon emitting (**’Cs) sources orbiting
around the patient. Since the energy of photons emitted from
positron-emitting rod sources is the same and the y-rays emitted by **'Cs
(662 keV) are very close to the energy of annihilation photons in PET

6



reduced mediastinal uptake

:":
‘!
e
,-k =

Enhanced
lung
/ uptake

Non-
uniform
liver

Enhanced
b/ skin \A E

uptake 5 (

'

CT image (accurate) PET: attenuation corrected (accurate) PET: without attenuation correction

Fig. 2. CT and PET images showing the effects of photon attenuation in the PET
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(511 keV), transmission scanning-based attenuation correction is the
method of choice for stand-alone PET scanners. In recent years, PET/CT
scanners have gained widespread acceptance in the clinical setting since
the availability of correlated functional and anatomical images was
shown to improve the detection or staging of disease by highlighting
areas of increased radiotracer uptake on the anatomical images, whereas
regions that look abnormal in the anatomical image can draw attention to
a potential area of disease where radiopharmaceutical uptake may be low
(Fig. 2). In PET/CT systems, attenuation correction is achieved by X-ray
transmission scanning using the CT sub-system of the combined unit.
CT-based attenuation correction (CTAC) reduces substantially total
scanning time and yields much lower statistical noise in the generated
attenuation map (u-map) even when using low-dose CT scanning
protocols. It also eliminates the need for rotating radionuclide
transmission sources around the patient but suffers from many
drawbacks, including the much higher radiation dose delivered to the

patient compared to transmission scanning and the possibility brain PET



of producing artifacts in the attenuation corrected PET images,
particularly in the presence of contrast agent and metallic objects in CT
images. CT images display the distribution of attenuation coefficients
within the patient’s body at an effective energy (~55-80 keV) related to
the generated X-ray spectra (80-140 kVp). Since the energy of the
photons for the emission scan is 511 keV, reliable conversion methods
are required to convert the attenuation coefficients (in Hounsfield units)
acquired at the CT effective energy to linear attenuation coefficients ()
at 511 keV. Another important issue is that CT uses a polychromatic
X-ray spectrum whereas annihilation photons’ energy in PET is
monochromatic (511 keV). Hence, a conversion of the broad energy
spectrum attenuation coefficients to linear attenuation coefficients at 511

keV is mandatory.®®

In the last two years, convolution neural networks (CNNs) have
outperformed the state of the art in many medical imaging tasks, such as
image denoising, image reconstruction and end-to-end lesion
detection.”™ However, CNN application for PET are more challenging
than those for MR and CT due to the low resolution and noise
characteristics of PET. This study aimed to investigate the feasibility of
attenuation correction based on CNN technique in brain PET imaging
without additional anatomical imaging. To reach this goal, a deep
learning environment has been set up to create a CNN model, which was
trained and tested by PET data obtained from both Monte Carlo

simulation and real PET/CT scans. Based on our study results, several
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suggestions have been made to improve the performance of deep

learning based attenuation correction for brain PET imaging.
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Deep learning model can learn a hierarchy of features, i.e., high-level
features built upon low-level features. CNN is one popular type of deep
learning models, in which trainable filters and local neighborhood
pooling operations are applied in an alternating sequence starting with
the raw input images. In the following, a CNN architecture for PET
attenuation correction adopted from the model proposed by Nie et al. is
described.’ The training data for this CNN model consists of patches
extracted from subjects with both uncorrected PET images and
attenuation corrected PET images. The size of input (uncorrected) PET
patch is 32 x 32 and the size of output (corrected) PET patch is 24 x 24,
The input and output patches are in correspondence, which means that
they share the same center position in their aligned image space. To
generate training samples for CNN, a large number of patches from
uncorrected PET volume are extracted as inputs, and the corresponding
corrected PET image patches are extracted as outputs. The total number
of patches extracted from each volume is about 6000, which is sufficient

to cover majority of the image volume.

In the CNN architecture, we first apply convolution with a filter size of 7
x 7 on the input (uncorrected) PET patch to construct 32 feature maps in
the first hidden layer. One voxel is padded along the first two dimensions.

In the second layer, the outputs of the first layer are fed into another

10



Fig. 3. The architecture for estimating attenuation corrected PET image from uncorrected PET image.

convolutional layer with 64 filters of size 5 x 5. The third convolutional
layer contains 32 feature maps. Each of the feature maps is connected to
all the input feature maps through filters of size 3 x 3. The output layer
contains only one feature map generated by 1 filter of size 3 x 3, and it
corresponds to the predicted (attenuation corrected) PET image patch. To
keep the same image size, one voxel is padded along three dimensions in
the last two layers. In all layers, we set stride as 1 voxel. The latent
nonlinear relationship between uncorrected PET and attenuation
corrected PET images is encoded by the large number of parameters in

the network.

Caffe (Convolutional Architecture for Fast Feature Embedding) was
modified to implement the architecture to minimize classification error
and improves the directness and transparency of the hidden layer
learning process.”® Fig. 3 demonstrate the deep learning architecture,
which was set up and drawn using Caffe. Caffe has command line,
Python, and MATLAB interfaces for day-to-day usage, interfacing
with research code, and rapid prototyping (Table 1).** While Caffe is a

C++ library at heart and it exposes a modular interface for development,
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Table 1. Comparison of deep learning libraries.**

Name Caffe MXNet Torch Deeplearningdj Tensorflow  Theano CNTK Neon Keras
Creator uc CMU, Ronan Skymind Google Universite Microsoft  Nervana Franois
Berkeley UW and Collobert de Montreal System Chollet
Microsot et al.
Interface Cotey C++,R, Lua, Java, Cet, Python NDL, Python Python
Python, Python, LuaJlT, Scala, Python, C++,
MATLAB Scala, C Clojure GO, Python
Matlab, Java
JavaScript,
Go, Julia
Suitabe model CNN, CNN, DNN, DNN, DNN, DNN, CNN, DNN, DNN,
RNN RNN CNN, CNN, CNN, CNN, RNN CNN, CNN,
ENN ENN ENN RMNN RNN ENN
0s Linux, Linuzx, Linux, Linux, Linux, Linux, Linux, 0SX, Linux,
Win, Win, Win, Win, OSX, OSX, 0S¥, Linux Win,
08X, 08X, 08X, 08X, Win Win Win 08X
Andr. Andr. Andr.,i05  Andr.
Stars in github 20212 11170 7279 7203 68800 6914 123596 3200 19589
Multi-GPU J J v J J x J v x
Distributed x v x J J x J v *
Cloud = v * ® J b = J *
copmuting

not every occasion calls for custom compilation. The network
parameters of CNN are updated by back-propagation using stochastic
gradient descent algorithm. To train the network, the model
hyper-parameters need to be appropriately determined. Specifically, the
network weights are initialized by xavier algorithm, which can
automatically determine the scale of initialization based on the number
of input and output neurons. For the network bias, we initialize it to be 0.
The initial learning rate and weight decay parameter are determined by
conducting a coarse line search, followed by decreasing the learning rate
during training. Both Monte Carlo simulation data and real patient data
were used to train and test the CNN model for estimating attenuation

corrected PET images from uncorrected PET images.
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Fig. 4. Visualization of brain PET scanner modeled in GATE.

The GATE Monte Carlo toolkit based on the Geant4 code was used to
simulate the brain PET system designed by Institute of Nuclear Energy
Research (INER).™ The brain PET system modeled in this study consists
of two flat-panel type detectors at 180 degrees opposite each other. Each
panel is made up of 3 x 4 detector blocks, and each detector block
contains 31 x 31 pixelated array of 1.51 x 1.51 x 10 mm® LYSO with a
crystal pitch of 1.52 mm. The system covered an area of 151 x 201.4
mm? The distance between two opposing detectors is 230 mm. The
entire array is coupled with silicon photomultipliers (SiPMs) via a glass
light guide. After data acquisition at the first angular position, the system
rotated 90 degrees to the next angular position (Fig. 4). The simulated
coincidence events from each angular position were stored in projection

histogram with matrix size of 11532 x 11532.

In GATE simulation, a complete simulation script can be defined in

13



eight steps. The user needs to describe; (1) the camera geometry, (2) the
phantom geometry, (3) the acquisition system (detector electronics
response modeling), (4) the time parameters (acquisition start and stop
times), (5) the data output format, (6) the physics processes, (7) the
radioactive sources, and (8) the verbosity level. For each step, a specific
macro was defined with standard GATE command lines. To describe a
tomographic experiment, all components of the imaging device and the
imaged object must be composed of elementary volumes. These volumes
are arranged in a volume hierarchy where each volume possesses
specific properties such as size, position, and material composition. The
electromagnetic interactions used in GATE are derived from Geant4.
The electromagnetic physics package manages electrons, positrons,
y-rays, X-rays, optical photons, muons, hadrons, and ions. Although
GATE can simulate the physical process of positron source detection,
511-keV back-to-back photon source was used in this work in order to
speed up simulation. To train the CNN model, PET data generated by
simulating back-to-back photon source in water were used as the input
data, while the corresponding label data were generated by simulating
activity distribution of back-to-back photon source in vacuum. As in
Geant4, GATE can use two different packages to simulate
electromagnetic processes: the standard energy package, and the low
energy package. In the standard energy package, photoelectric effect and
Compton scatter can be simulated at energies above 10 keV. The low
energy package extends the treatment of photons and electrons down to
250 eV and includes Rayleigh scattering. For biomedical applications,
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Fig. 5. The digitizer is organized as a chain of several modules that processes the
hits to yield a single, which represents a physical observable.

the low energy package thus provides a more accurate model of the
electromagnetic interactions. However, this comes at the price of
increased computing time. In this work, the standard energy package was

used to speed up simulation.

Digitization is the process of simulating the electronics response of a
detector within a scanner. This involves the conversion of the charged
particle and photon interactions into energy bins, detection positions, and
coincidences. This is one of the key features in GATE that allows it to
accurately simulate the behavior of real scanners. In order to do this,
portions of the scanner geometry are designated as sensitive detectors,
which record interactions within these regions. Next, the digitizer chain
processes these recorded interactions and produces counts and
coincidences. Sensitive detectors are used to store information about
particle interactions (hereafter referred to as hits) within physical
volumes. GATE only stores hits for those volumes that have a sensitive
detector attached. All information regarding interactions within

nonsensitive volumes is discarded. Two types of sensitive detectors are
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defined in GATE: the crystal sensitive detector (crystalSD) and the
phantom sensitive detector (phantomSD). The aim of the digitizer chain
IS to mimic a realistic detection process by building the physical
observables from the hits. The observables of each detection event are
the energy, position, and time of the interaction. The digitizer consists of
a chain of processing modules that takes a list of hits from the sensitive
detectors and transforms them into pulses referred to as singles (Fig. 5).
To test the impact of different signal processing strategies, a simulation
can be reprocessed with different digitizer chains using DigiGATE. At
the end of a digitizer chain a coincidence sort can be added to find pairs
of singles that are in coincidence. Pairs of singles can be considered
coincidences whenever the time interval between the singles is less than
a user-defined coincidence window. Each single is stored with its
corresponding event number. If the event numbers of the singles
associated in a coincidence are not the same, then it is a random
coincidence. A similar flag exists for Compton scatters. Thus, the
Compton scatter flag can be used to differentiate true from scattered
coincidence pairs that have identical event flags. To exclude
auto-coincidences of a particle interacting within several crystalSDs and
hence resulting in several singles with the same event numbers, a user
defined neighboring threshold can be used to reject coincidences of
singles that are detected in nearby crystalSDs. Finally, multiple
coincidences that correspond to more than two singles that are within the

same coincidence window are discarded.

16



Table 2. Technical characteristics of the Discovery PET/CT 710 scanner.'®

PET Detector Specifications
Gantry dimensions (cm) 192 x 226.1 x 140
Weight (kg) 1,016

Patient port (cm) 70

Scintillator material LBS

(lutetinm-based scintillator)

Scintillator dimensions (mm) 4.2 x 6.3 x 25

Crystal array per block 9 x6

Number of detector rings 24

Number of crystals per ring 576

Number of crystals 13,824

Number of PMTs 1,024 (256 quad-anode)
Number of image planes 47

Axial field of view (cm) 15.7

Transaxial field of view (cm) 70

Slice overlap User defined 1-23.
Minimum recommendation 5
(10% overlap)

Image matrix sizes 128 x 128, 192 x 192, 256 x 256
Transmission source CT attenuation correction
Vertical travel (cm) 2.5 — 20.5 below the isocenter
Acquisition modes 3D, 4D

Coincidence window (ns) 4.9

Lower energy threshold (keV) 425

Maximum axial coverage (cm) 170 — 200

Z o~ TRA o A eI PETICT 4

Patient data were collected retrospectively from the Department of
Nuclear Medicine at National Taiwan University Hospital. The
institutional review board (IRB) has approved the protocol and issued a
written notice of approval issued on October 16, 2019 (approval number:
201908077RIND). All patient data were acquired on a Discovery
PET/CT 710 scanner (GE Healthcare, Milwaukee, USA). The technical
specifications of the Discovery PET/CT 710 scanner are summarized in

Table 2. FDG PET/CT imaging was performed 45 min after injection
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of FDG at a dose of 10 mCi for adult patients. Before FDG
administration, subjects were asked to fast for at least 6 hours. Blood
glucose level at the time of FDG injection was less than 150 mg/dL in all
subjects. No additional glucose control drugs were used in subjects with
high blood glucose levels. Sixty minutes after the administration of FDG,
low-dose CT was performed for attenuation correction and precise
anatomical localization. Thereafter, an emission scan was conducted in
the three-dimensional mode. The average total PET/CT examination
time was 15 minutes. The CT scan was obtained with tube voltage of 120
kVp and tube current of 50-150 mAs. The PET data were reconstructed
by Vue Point Fx (6 iteration, 24 subsets) without and with CT-based
attenuation correction. The uncorrected PET images were used as the
input data to train the CNN model, while the corresponding label data

were the PET images corrected for attenuation using CTAC.

PR R I 2

This project starts on September 29" and ends on December 31%.

Because the deadline for uploading the final report is December 15", the

Table 3. The Gantt chart describing the project works.

Month 9 10 11 12
Working list
Build up a brain PET simulator B Based on GATE
Set up deep learning environment [ | [ | Based on Caffe
Apply for IRB application [ ] [ ] Issued on 10/16
Generate simulation data [ | [ 198 simulations
Collect real PET/CT scans [ | 20 patient scans

Train and test CNN model Running on CPU

Compose final report Due by 12/15




actual duration is 3.5 months. Table 3 summarizes the progress of this

project.
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A 30-minute PET data acquisition for a spherical source with *F activity

of 670000 Bg embedded in a cylindrical phantom (10 cm in height) was

Detector

s \
.;/ \ Radial

) ) -affset
Water . P
phantom \ .

|
\

\ Jm/
\~ _ /i_,,__,,,.,

Detector

Vacuum

b} A0 mm diameter sphere, 50 mm diameter sphere, 60 mm diameter sphere,
0 mm shift 30 mm shift 50 mm shift

Water *

Fig. 6. (a) Ilustration of geometry modeling in Monte Carlo simulation and (b) the simulated
projections for spherical source in water (upper row) and in vacuum (lower row).
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modeled in Monte Carlo simulation. Simulation was repeated using three
different cylinder sizes (16, 18 and 20 cm in diameter), 2 different
attenuation materials (water and vacuum), 3 different sphere sizes (40,
50, 60 mm in diameter), 11 different sphere locations (at center, £1 cm,
+2 c¢cm, £3 cm, £4 cm, 5 cm). Hence, a total of 198 simulations were
performed. It takes 2 days to complete each simulation job. Fig. 6 shows
the illustration of geometry modeling in Monte Carlo simulation and the
simulated projections for spherical source in water and in vacuum. Fig. 7
shows the input data (spherical source in water) and the label data
(spherical source in vacuum) generated from simulation and the output

data from the CNN model. The CNN model has been trained for 3 weeks

21
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Fig. 7. (a) The input data and (b) the label data generated from simulation and (c) the output data generated by
testing the CNN model (upper row: projection; mid row: intensity profile through the dash line; lower row:
image histogram).

(forward/backward iteration 1254500). The intensity profile of output

data in Fig. 7(c) is more flat than that for the input data, but the

difference is little. Concerning the image histogram, the mean value of

output data is higher than that for the input data, but is still lower than

that for label data.

Our clinical brain dataset consists of 20 subjects, each with CT,
uncorrected PET and attenuation corrected PET. Table 4 summarizes
patient information of 20 real PET/CT scans. Fig. 8 demonstrate CT,
uncorrected PET and attenuation corrected PET of brain in axial plane

from 2 different patients. Fig. 9 shows the input data (uncorrected PET)

22



and the label data (attenuation corrected PET) from real patient scan and
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Table 4. Patient information of 20 real PET/CT scans.

No. Gender Age Diagnosis

1 M 79 Brain atrophy

2 F 19 Hashimoto's encenphalopathy

3 M 65 Left parietal ischemic stroke

4 F 23 Epilepsy

5 F 66 Brain atrophy

6 F 26 Suspected of autoimmune problems leading to dizziness and headache

7 M 73 Mild brain atrophy

8 M 75 Intracranial aneurysm and brain atrophy

9 F 23 Insufficient blood supply to the brain due to central nercous system damage

10 F 51 Patient falls, causes brain damage, decreases bilateral metabolism

11 F 64 Epilepsy

12 M 78 Dementia

13 M 59 Cerebral cavernous hemangioma

14 M 21 Drowsiness

15 F 34 Fever due to an unknown cause, FDG was performed and cerebellar blood flow was low
16 M 66 Demential

17 F 55 Parkinson's disease

18 F 70 Cortical basal ganglia degeneration, suspected due to waling impairment and cognitive decline
19 F 81 Mild cognitive impairment
20 M 56 Dementia

(a) cr (b) Uncorrected PET (© Attenuation corrected PET

3 4
-

Fig. 8. (a) CT, (b) uncorrected PET and (c) attenuation corrected PET of brain in axial plane
from 2 different patients.

the output data generated by testing, the CNN model. The CNN model



(a) input (b) label (c) output
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Fig. 9. (a) The input data and (b) the label data from real patient scan and (c) the output data generated by
testing the CNN model (upper row: reconstructed image in the axial plane; mid row: intensity profile through
the dash line; lower row: image histogram).

has the output data from the CNN model. The CNN model has been
trained for 3 weeks (forward/backward iteration 1151500). For the
output data in Fig. 9(c), the central portion of the intensity profile (red
arrow) is higher than that for the input data, but the difference is not
obvious compared to the label data. With regards to the image histogram
of output data, the tendency of high intensity pixels is similar to that

from label data, but not for the low intensity pixels.
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Based on our preliminary results, it was found that the performance of

the CNN model investigated in this study is not acceptable. This
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phenomenon is suspected to be related with several issues. First, a CNN
model shown in Fig. 3 may be too simple for this work. PET generally
has higher image noise than MRI and CT. Since complicated neural
network models can integrate and absorb noise better than simple neural
network models, a more complicated CNN model should be used to
improve the performance of the output results. The deeply supervised
nets method enforces direct and early supervision for both the hidden
layers and the output layer by introducing companion objective to the
individual hidden layers, which is used as an additional constraint to the
learning process.'” Fig. 10 demonstrate the modified CNN architecture
for estimating attenuation corrected PET image from uncorrected PET
image. The deeply supervised nets method can minimize classification
error while making the learning process of hidden layers direct and
transparent. It is expected that the CNN model with a deeply supervised
feature can improve the performance of the output data. Second, the
CNN model should be trained by using more image datasets to improve
the performance of output data. The amount of training data plays a
critical role in making the deep learning models successful. It has been
well established both across industry and academia that for a given
problem, with large enough data, a very different algorithms perform
virtually the same. However, noisy labels inevitably degenerate the
robustness of the learned model, especially for deep neural networks.
The large data should have meaningful information and not just noise so
that model can learn from it. Therefore, it is expected that if the CNN

model is trained by using Monte Carlo simulation data generated with
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voxelized brain phantom (Fig. 11) instead of the physical phantoms
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Fig. 10. The CNN architecture with a deeply supervised feature for estimating
attenuation corrected PET image from uncorrected PET image. (a)-(c): partial
enlarged CNN model.



(a) voxelized phantom

Fig. 11. (a) The voxlized brain phantom in coronal (upper) and sagittal planes (lower) and

18
the simulated projections for the activity distribution of F in (b) water and (c) vacuum.

with simple geometry settings as conducted in this study, the
performance of the CNN model could be improved. However, it takes
about 2 weeks to complete the simulation job shown in Fig. 11(b) and
11(c). Third, when a 3D deep learning model is applied, the performance
of the CNN output data could be improved. The CNN model used in this
work is designed for 2D images, which may not be suitable for 3D
volumetric images (i.e., MRI, CT and PET). Compared to 2D CNN, 3D
CNN can better model the 3D spatial information due to the use of 3D
convolution operations. 3D convolution preserves the spatial
neighborhood of 3D image. As a result, 3D CNN can solve the

discontinuity problem across slices, which are suffered by 2D CNN.
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For this project, we have accomplished the following works: (1) a Monte

Carlo simulator based on GATE has been built to model the brain PET
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system designed by INER; (2) 198 simulations have been conducted to
train and test the CNN model; (3) IRB approval issued by National
Taiwan University Hospital was obtained for this study; (4) 20 real
PET/CT scans were collected to train and test the CNN model; (5) a deep
learning environment based on Caffe has been set up; (6) a CNN model
has been investigated for estimating attenuation corrected PET from
uncorrected PET. Although the output data from the investigated CNN
model have large discrepancy from the label data, these preliminary
results give us valuable information concerning the simulation phantom
type, the training data size, and the architecture of the CNN model. It is
believed that the performance of the deep learning based attenuation
correction for brain PET imaging can be substantially improved once the

suggested modifications have been made.
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