行政院原子能委員會

委託研究計畫研究報告

核燃料臨界分析現況資料收集與研究 The review of the criticality analysis of nuclear fuels

計畫編號:1012001INER009

受委託機關(構):龍華科技大學

計畫主持人:宋大崙

核研所聯絡人員: 葉昭廷

聯絡電話:02-8209311 ext 5303

E-mail address : talun.sung@gamil.com

報告日期: 2012/11/27

目錄

中文摘要	6
Abstract	7
第一章、計畫緣起與目的	8
1.1 燃料貯存需求	8
1.2 電廠營運需求	9
1.3 中子吸收物退化(Absorber Degradation)	10
1.4 臨界額度(Credit)	12
1.5 管制單位	13
第二章、核臨界的相關物理	14
2.1 臨界的指標(Indices)	14
2.2 中子平衡	17
2.3 反應器動力學	19
2.4 反應度量測方法	20
2.4.1 臨界負載(critical loading experiment)	20
2.4.2 燃料取代技術(Fuel substituting techniques)	21
2.4.2 反應器週期(Asymptotic period measurement)	22
2.4.3 落棒測試(Rod drop method)	22
2.4.3 中子源退出測試(Source jerk method)	22
2.4.4 控制棒震盪法(Rod oscillator method)	23
2.4.5 中子源射入法(Pulsed neutron method)	23
第三章、中子模擬計算程式	26
3.1 中子遷移計算程式	26
3.1.1 統計(Stochastic)方法	27
3.1.2 決定論(Deterministic)方法	30
3.2 核臨界實驗介紹	31
3.2.1 B&W 臨界實驗	32
3.2.2 運輸貯存系統中輕水式反應器燃料	36
3.3 核臨界實驗驗證	42
3.3.1 臨界實驗問題描述	43
3.3.2 程式模擬臨界實驗設置	46
3.3.3 結果分析	47
3.3.4 統計方法	47
第四章、燃耗額度(BURNUP CREDIT)驗證	52
4.1 Kopp Memo	52
4.2 燃耗額度驗證	53

4.2.1 化學組成及本領的實驗(Chemical assays and worth experiments)
	.54
4.2.2 EPRI 對於 PWR 的處理方式	.59
4.2.3 BWR 的處理方式	.61
4.3 燃耗額度研究相關的資料	.62
第五章、臨界安全分析考量	.66
5.1 燃料組成與環境	.66
5.1.1 H/U Ratio	.67
5.1.2 水的密度	.67
5.1.3 燃料間距	.68
5.1.4 濃縮度的分佈	.70
5.1.5 燃料密度	.70
5.2 燃耗額度影響參數	.70
5.2.1 燃料温度	.71
5.2.2 緩和劑溫度(密度)	.72
5.2.3 水中的硼 (PWR)	.74
5.2.4 可燃耗的中子吸收物	.74
5.2.5 控制棒	.75
5.2.6 特定功率及冷卻時間	.75
5.2.7 燃耗的分佈(Burnup distribution)	.76
5.2.8 PWR	.77
5.2.9 BWR	.78
第六章、主要發現與結論	.79

圖	1 臨界負載實驗圖	.21
圖	2 中子通量量測位置對於臨界質量預測所造成之影響	.21
圖	3 Neutron pulse method for fundamental decay constant	.25
圖	4 B&W 臨界實驗 CX-10 之槽型核子設施	.33
圖	5B&W 臨界實驗 CX-10 核子設施之緩速劑填充系統	.34
圖	6B&W 臨界實驗 CX-10 核子設施之燃料棒尺寸	.34
圖	7B&W 臨界實驗 CX-10 核子設施之燃料束	.35
圖	8B&W 臨界實驗 CX-10 核子設施之燃料束 3x3 矩陣排列爐心	.35
圖	9B&W 臨界實驗 CX-10 核子設施之燃料束環型排列爐心	.36
圖	10 燃料棒幾何尺寸及材料組成	.43
圖	11 臨界實驗裝置照片	.44
圖	12 實驗裝置俯視圖及側視圖	.44
圖	13 不鏽鋼反射牆的幾何尺寸及材料組成	.45
圖	14 有效中子增殖因素與 USLSTATS 回歸分析比較(EALF)	.49
圖	15 有效中子增殖因素與 USLSTATS 回歸分析比較(h/x)	.50
圖	16 有效中子增殖因素與 USLSTATS 回歸分析比較(U-235/U)	.50
圖	17 有效中子增殖因素與 USLSTATS 回歸分析比較(Vm/Vf)	.51
圖	18 臨界分析流程圖	.54
圖	19 在高容量的貯存箱裡其裝載曲線	.55
圖	20 燃耗額度的偏差與不準度分析流程圖	.56
圖	21 Direct Difference 的 Bias 與燃耗的關係	.57
圖	22 化學組成 U-235 的分佈與燃耗的關係	.58
圖	23 BWR 燃料的增值因素 K 隨燃耗的變化	.62
圖	24 U-H ₂ O 的均匀系統,H/U 比值與濃縮度可以達到臨界之條件	.67
圖	25 Water density vs. keff for 10^3 array of dry 15 kg U235 units, (a)	
	un-reflected (b) reflected calculated by MCNP	.68
圖	26 燃料棒間距對於 k 值的影響	.69
圖	27 燃料束間距 (a), (b) 2x2 的情形 (c)實際由(b)組合所產生的情報	形
	(d)由(a)及(b)組合的情形	.69
圖	28 Effect of fuel density on kinf (40-GWd/MTU burnup, 5-year coolin	ng)
		.70
圖	29 Effect of fuel temperature during depletion on kinf (40-GWd/MTU	J
	burnup, 5-year cooling)	.71
圖	30 燃料是平均功率與燃耗的關係	.72
圖	31 Effect of moderator density during depletion on kinf (40-GWd/MT	U
	burnup, 5-year cooling)	.73

啚	32 BWR 的增值因素峰值隨燃耗的變化(Void 的影響)	.73
圖	33 Effect of BPR exposure on burnup-credit loading curves for the	
	GBC-32 cask	.74
圖	34 控制棒插入的影響情形	.75
圖	35 冷卻時間對於燃耗額度的影響	.76
圖	36 End effect 隨燃耗的影響	.77

表目錄

表 2 美國 PWR 及 BWR 燃料池維持次臨界的方法	表	1 中子吸收物退化情形	11
表 3 Geometry Buckling for Regular Geometry.15表 4 鈾燃料臨界實驗總表.32表 5 NUREG/CR-6361 報告中 180 個臨界實驗選取報告來源.38表 6 NUREG/CR-6361 報告中 180 個臨界實驗描述.39表 7 臨界實驗相關參數.42表 8 中子吸收板材料組成.42表 8 中子吸收板材料組成.45表 9 濃縮度 4.31wt% ²³⁵ U 燃料實驗設置狀態.46表 10 以程式計算各臨界實驗中子增殖因數.47表 11 USLSTATS 分析結果.49表 13 BWR Storage Rack 的燃耗額度偏差與不準度.58表 13 BWR Storage Rack 的燃耗額度偏差與不準度.59表 14 燃料組成與環境的考量.66表 15 影響 PWR 中子能譜的因素.78	表	2 美國 PWR 及 BWR 燃料池維持次臨界的方法	13
表 4 鈾燃料臨界實驗總表	表	3 Geometry Buckling for Regular Geometry	15
表 5 NUREG/CR-6361 報告中 180 個臨界實驗選取報告來源	表	4 鈾燃料臨界實驗總表	32
表 6 NUREG/CR-6361 報告中 180 個臨界實驗描述	表	5 NUREG/CR-6361 報告中 180 個臨界實驗選取報告來源	38
表 7 臨界實驗相關參數	表	6 NUREG/CR-6361 報告中 180 個臨界實驗描述	39
表 8 中子吸收板材料組成	表	7 臨界實驗相關參數	42
表 9 濃縮度 4.31wt% ²³⁵ U燃料實驗設置狀態46表 10 以程式計算各臨界實驗中子增殖因數47表 11 USLSTATS 分析結果49表 12 PWR Storage Rack 的燃耗額度偏差與不準度58表 13 BWR Storage Rack 的燃耗額度偏差與不準度59表 14 燃料組成與環境的考量66表 15 影響 PWR 中子能譜的因素78	表	8 中子吸收板材料組成	45
表 10 以程式計算各臨界實驗中子增殖因數	表	9 濃縮度 4.31wt% ²³⁵ U 燃料實驗設置狀態	46
表 11 USLSTATS 分析結果	表	10 以程式計算各臨界實驗中子增殖因數	47
表 12 PWR Storage Rack 的燃耗額度偏差與不準度	表	11 USLSTATS 分析結果	49
表 13 BWR Storage Rack 的燃耗額度偏差與不準度	表	12 PWR Storage Rack 的燃耗額度偏差與不準度	58
表 14 燃料組成與環境的考量66 表 15 影響 PWR 中子能譜的因素78	表	13 BWR Storage Rack 的燃耗額度偏差與不準度	59
表 15 影響 PWR 中子能譜的因素	表	14 燃料組成與環境的考量	66
	表	15 影響 PWR 中子能譜的因素	78

中文摘要

核能燃料在製造,運送及貯存,必須注意到臨界的問題,由於核能燃料的終 期貯存尚未開始,所以使用過燃料數量遠超過初期設計在反應器內所能擺放的容 量,因此增加格架擺放位置及移出燃料池以乾式法貯存。增加格架使燃料之間 的空間縮小,對於臨界安全的餘裕自然減少。伴隨著中子吸收物的退化,要求臨 界安全分析時,能夠更多的考量系統有的臨界額度(credit)例如燃耗額度(burn up credit),但是這讓保守分析更加的困難,因為有更多的複雜性及不確定性,初期 以專業工程上的判斷,給予一個審查用的不確定度,但是目前保守的主管機關希 望確認這個不準度是否合理?本研究針度核燃料臨界的分析資料加以蒐集及整 理,以提供相關單位在核臨界安全分析的參考。

關鍵字:核臨界、燃耗額度、中子物理

Abstract

Criticality is an important safety issue for nuclear fuels' manufacturing, transportation and storage. Because the final disposal plan of used fuels has not started yet, the used fuels stored in the reactor pool are increased to enormous amount for the reactor's initial design capacity. Re-racking and dry storage outside reactor are two common ways to solve the problems. However, re-racking will reduce the space between fuels and the safety margin of the storage pool. The neutron absorber degradation problem with re-racking, the power plants would like to have more credits from their system such as: burnup credit. However, due to the complexity and uncertainty, these credit concerns will make analysis more difficult. Originally, a NRC staff gave an uncertainty for burnup credit by his engineering judgment for reviewing but more conservative NRC staffs would like to have more analysis to confirm the uncertainty.

This report would like to focus on the nuclear fuel criticality analysis reports summarization. This midterm report discusses the issues, related physics, neutron software and benchmarking in order to provide nuclear criticality analysis information to those who concerns criticality safety analysis.

Keywords: criticality, burnup credit, reactor physics

第一章、計畫緣起與目的

核能發電是人類史上重要的發明,利用愛因斯坦的質能互變公式 E=mc² 將 質量轉變成能量,1g 的質量可以轉變為 9x10¹³ J 的能量,但是核能事故意外是 很多人所恐懼的,因此核能利用分裂產生能量的核能電廠,一直有許多人持反對 的意見。經過三哩島、車諾比爾及日本福島的核能電廠事故的影響,也使得所有 核能發展的國家,必須小心謹慎的保證核能的安全及消除疑慮。

核能事故分析中,核臨界分析(nuclear criticality)分析是很重要的一項,因 為如果超過臨界,則表示是反應會一直持續並迅速產生能量,而且這事故可能是 無法控制的,因而後果將會十分嚴重。在考慮其他安全問題時,必須確保核能臨 界安全。雖然核子反應器內一定要達到中子的連鎖反應,才能成功使用核能發電, 但是要確保其連鎖反應是能夠控制的,也就是臨界安全。原則上,核能電廠在運 轉時,核子反應器需要維持臨界,才能使電廠運轉,因此其臨界安全要求的是能 控制核子反應器的臨界狀況。本報告所討論的臨界分析,主要是排除核子反應器 部分,主要考量的情形是應該永遠維持不發生核臨界,不會發生連鎖反應的情形。 例如貯存、運送及處理製作核燃料時的臨界分析,。

原始考慮臨界安全,多以保守為原則,因此原始設計的臨界安全,其安全餘 裕多於實際需求。但是當時代環境改變,電廠有時為了節省改善設備的支出,因 此僅改變保守的原則或定義,重新分析計算分析,而達到管制單位的需求,將是 電廠的一項選擇。但這也使臨界安全的議題浮現。

1.1 燃料貯存需求

例如電廠內的貯存,原始設計多僅是考慮暫時貯存,其擺放位置並不是很多, 當暫時貯存的燃料數量增加,但是原訂計畫移出用過燃料時程一直延後,使得擺 放位置減少,為增加用過燃料的擺放,減少用過燃料間的間距,或者是格架距離, 成為許多電廠貯存的策略

以台灣核能電廠為例[1]:核二廠總共進行二次格架改裝工程,第一次在 1990 年由美商 Holtec 公司得標,第二次在 2003 年由西班牙 ENSA 公司得標,但 FSAR 分析工作則由 ENSA 下包給 IBERDROLA。第二次工程臨界分析,台電訂的設計 規範為 Kmax=0.935,保留 15 mk 餘裕。核一廠總共進行二次格架改裝工程,第 一次在 1987 年完成,每部機組可存放 2470 根,第二次在 1998 年完成,由美商 HOLTEC 公司得標,每部機組可存放 3083 根燃料束,貯存能力可延長 5 週期。 第二次工程臨界分析,最大有效增殖因數設計規範為 Kmax=0.95。

核三廠建廠設計容量 746 組,至 EOC-10 將喪失全爐心保留餘裕,影響機組 營運。Reracking 工程以統包方式發包,由法商 Framatome/ATEA 得標。新格架 為高度以加硼不銹鋼為中子毒物之自由站立式設計,分為兩區域,Region-I 儲存 初始濃縮度至 5.0wt%之新燃料,共 208 單元。Region-II 儲存用過燃料,其燃耗 為初始濃縮度之函數,共有 1952 單元。總計儲存容量擴增至 2160 單元。

雖然核一二廠已經將水池擺放能力增加,但是仍然不足。所以皆已經提出乾 式貯存的計畫。目前核一廠乾式貯存已經通過還評,而核二廠則是在原能會審查 其安全評估報告。

1.2 電廠營運需求

目前核能電廠傾向於提升功率運轉及長週期,以維持經濟效應。由於壓水式 及沸水式反應器中當初趨於保守的設計,目前將近四分之一的美國核能電廠進行 適當的功率提升,增加更多的功率輸出,爐心內必須裝填更高濃縮度的鈾燃料。 此外燃料在反應爐中使用週期將增長,其燃耗也已增長由原先的 30GWD/MTU 增加至 30GWD/MTU,這也使燃料的濃縮度提高。

功率提昇通常使得爐心溫度增加,因此燃料溫度及緩和劑溫度提昇,造成中 子能譜改變。基本上用過燃料,在相同燃耗的條件下,其反應度會因燃料溫度及 緩和劑溫度變高而提昇。加上高濃縮度燃料要求,其燃料之反應度提昇,自然使

9/84

得臨界分析可能要重新計算。 台電公司[2]自 92 年開始推動小幅度功率提升計畫,從 96 年 7 月起到 98 年 7 月 7 日為止,已經成功地完成 6 部機組的小幅度功率提升。其運轉週期由 12 個月增長為 18 個月,燃料濃縮度也已經提昇。

1.3 中子吸收物退化(Absorber Degradation)

燃料擺放時因為安全需求,會設計中子吸收物的擺放,其材料多為含硼的物質,原先並未考量這些材料因為輻射照射、熱能及與環境作用(如水)而有變質的可能性,所以臨界分析時有考量這些中子吸收物的能力,但如隨時間退化而失去其應該具有的中子吸收能力,就要考慮這些吸收物的退化及能力的分析[3]。

目前使用的材料有 Borflex, Carborundum 及 Boral。1980年開始, Borflex[4-5] 是核能電廠採用的中子吸收物之一,是 silicon rubber, boron carbide 及 crystalline silica 的混合材料,約有 75%核能電廠使用。但數年之後卻發現 Borflex 有裂開 及萎縮的情形。其退化的機制是 CH3 或 H 之鍵結受到輻射被打斷而與原分子分 離,接著原分子自由鍵結這些被打斷的地方,因此受到輻射照射後,Boraflex 會 收縮變小。由於縮小萎縮,所以製成的板子退化後會產生間隙,影響中子吸收的 能力。目前觀察的結果,核臨界安全分析所預留的計算誤差餘裕,尚在容許範圍 內。但是當照射時間增加時,這些自由鍵結的位置可能不再是互相結合,而是與 水中的 O 及 OH 作用。因而分解成非晶質的石英,二氧化矽及甲烷氣體 (CH4) 等,然後 Boraflex 逐漸溶於水中。可能會造成問題,因此目前使用 RACKLIFE[6] 模擬計算其退化情形。

Carborundum 的吸收板也發現板中硼(中子吸收物)有減少。在 2008 年發 現 Palisades 的電廠[7],所使用的 B₄C 嚴重的流失,使得原先安全分析的計算需 要重新計算,將 B₄C 的中子吸收完全不列入考量之內。其他電廠如 Crystal River Unit 3 及 Calvert Cliffs Unit 1 則分別預測 20 年將損失 10%及 28 年損失 15%, 仍在安全分析可容許的範圍內。其退化機制尚未完全瞭解。

Boral[8,9] 也發現有水泡的現象,但是並無硼的流失。Boral 是鋁與 B₄C 混

和物,夾在兩片銘板中,其退化的疑慮在 NRC Resolution of Generic Safety Issues: Section 3. New Generic Issues (NUREG-0933, Main Report with Supplements 1-34) 的 issue 196 就是 Boral Degradation. 而 Boral 的使用有在用過燃料池,也有用在 乾式貯存箱。所發現的問題是 Boral 的表面會產生泡狀的突起。當水進入 Boral 的 核心時,將會與鋁作用產生 Al₂O₃及 H₂,當水及 H₂,被 Al₂O₃及所包覆,其形 狀將會改變且增加壓力而形成泡狀。目前此情形並無發現有硼的流失,而影響臨 界安全,但是仍然持續的追蹤。表1將各材料目前退化情形作一整理[5-10]。

	材料	退化情形	處置情形
Borflexl	silicon rubber, boron carbide 及 crystalline silica 的混合材料	裂開及萎縮 退化機制:照射後,分解成 非晶質的石英,二氧化矽及 甲烷氣體(CH ₄)等,然後 Boraflex 逐漸溶於水中	NRC 採取 BADGER 系 統 監 測 並 以 程 式 RACKLIFE 模擬計算其 退化
Carborundum	73% B ₄ C , 27% resin	 硼流失 退化機制:不清楚 硼流失 	Palisades 2/3 硼 流 失,計算分析時,已經 重新計算不考慮硼, Calvert Cliffs Crystal
	$64\% B_4C$, 18% resin, 18% fiber glass	退化機制:不清楚	River and La Coroose, 約流失 10-15%,仍在安 全分析可容許的範圍
Boral	Al + B ₄ C	水泡,目前未發現硼流失 退化機制:當水進入 Boral 的核心時,將會與鋁作用產 生 Al ₂ O ₃ 及 H ₂ ,當水及 H ₂ , 被 Al ₂ O ₃ 及所包覆,其形狀 將會改變且增加壓力而形 成泡狀。	BADGER 系統監測

表 1 中子吸收物退化情形

為了解決中子吸收物的退化,新材料開發是解決問題的一個途徑。新的銘 與 B₄C 的產品也以開發並提供給電廠使用及測試,例如 Rio Tinyo Alcan 的 Alcan Composite, Ceradyne 的 Bortec 及 Holtec 的 Metamic 皆是新的製程及材料,可以 避免發生泡狀物的產生。

除了開發新的材料外,新的中子吸收物插入格架,來補足中子吸收物退化物 作法,也開始進行。首先利用額外的空間插入中子吸收物,例如 Racksaver, Holtec 的 DREAM,增加負的反應度。這個方式可以是固定的,或可以移動的。可以移 動的好處,是在幾年後可以取出做檢測。而 PWR 的燃料設計是有留導引管(Guide Tube),插入導引管來降低其反應度是其中之一可能的設計。置換 BWR 的 Flow Chanel 為 BORAL 的 Chanel,或採用 Flux Trap Liner,則可能是其他兩種可能的 方式。

1.4 臨界額度(Credit)

保守的臨界分析,多採用新燃料,無中子分析物,無燃耗等十分保守的假設, 所以所分析出來的臨界值與實際的臨界值會有差異,稱為臨界額度 (Credit)。但 是因為經濟與環境需求,使用者(電廠)希望分析能越接近實際,也就是使用這 些臨界額度,爭取經濟利益,額度的使用將使臨界餘裕減少。管制單位也開始審 慎檢視這些使用者的假設分析改變。其中如使用中子吸收物的額度,採用燃耗額 度(burnup credit),水中溶硼的額度(boron credit),使用棋盤式擺放,使用燃 耗裝載曲線 (loading curve),較複雜的裝填規範,可以依據不同燃料特性進行臨 界分析,再依特性進行裝填,例如燃料軸向是否有反射體?冷卻時間?燃料是否 擺放在燃料池周圍等?都有人開始提出其分析的假設。越複雜的假設其分析越複 雜,是否能符合保守的原則,是大家所關心的。美國 NRC 將其反應器目前燃料 池所使用的臨界度控制的情形列表[11], PWR 使用 Storage Pattern/Burnup, Burnup, + ppm Boron, Neutron absorber, Burnable absorber and Flux Traps 等方式 來達到次臨界,其中 Neutron absorber, Burnable absorber 的差異在於, Neutron absorber 是期待儲存中一直存在,而 Burnable absorber 則是在燃料運轉中使用, 燃耗後原則上會減少或消失的。BWR 使用 Burnable absorber Gd 及 Neutron Absorber 為主,顯示目前臨界的計算分析日趨複雜,也希望能儘量使用額度, 未來可能甚至每週期實際的用過燃料擺放位置的分析,都有人開始提出其可能 性。

12/84

	Means to meet subscriticality requirements
PWR	1. Storage patterns/Burnup
	2. Burnup
	3. + ? ppm Boron
	4. Neutron absorber (Boral, Borflex, Metamic, Carbornumdum)
	5. Burnable Absorber (Gd, IFBA)
	6. Flux Trap Racks
	7. Others
BWR	1. Neutron absorber (Boral, Borflex, Metamic, Carbornumdum)
	2. Burnable Absorber (Gd)
	3. Others

表 2 美國 PWR 及 BWR 燃料池維持次臨界的方法

資料來源:美國 NRC ML121090500, Spent Fuel Pool Criticality Management[11],本研究整理

1.5 管制單位

如果僅用新燃料來做臨界分析,不考慮其他環境條件,則分析十分簡易。但 事與願違,越來越複雜的設計,儘量使用額度,也讓許多人懷疑是否有這麼多額 度?其中最困難的就是燃耗額度的使用,新燃料經過燃燒後,其反應度下降,但 這個降幅是否有保守的估計,是值得討論的。原先管制單位(NRC),使用 Kopp Memo[12],建議下降幅度的不準度因為幅度之 5%,但這沒有依據。管制單位希 望能建立一個的審查標準來審核日益複雜的臨界分析,必須確保計算分析的程式 的驗證及不準度,要審慎檢視這些假設條件改變,雖然保守的假設條件改變,但 臨界安全卻不容忽視,而且一定要確定保守[13-15]。

本計畫針對核臨界分析的議題,及目前所重視的問題,以提供相關單位參考。 論文架構:第一章前言說明計畫的背景,第二章核臨界的相關物理,第三章中子 模擬計算程式,第四章 BURNUP CREDIT (燃耗額度)驗證,第五章臨界安全 分析考量,第六章結論。

第二章、核臨界的相關物理

核反應器物理,是主要計算反應器的臨界及控制的理論,因此在計算核臨界 上,也是應用相同的理論。

2.1 臨界的指標(Indices)

一個中子的連鎖反應,是否能持續,可以使用有效中子增值因數(effective multiplication factor) k_{eff} 來表示,有時也僅用 k 來表示。其定義為

 $k_{eff} = \frac{number \ of \ neutrons \ in \ one \ generation}{number \ of \ neutrons \ in \ just-previous \ generation}$ (公式 1)

就是每代產生的中子數與前一代的中子數比

或可以說

$$k_{eff} = \frac{neutron \, production \, rate}{neutron \, loos \, rate} \quad (\, \& \ddagger 2\,)$$

也就是中子的產生與中子失去的比值,當二者達到平衡,此時 keff =1 也就是 系統達到臨界。如果以 keff 的值來分類,可以分為下列三種情形:

k_{eff} <1 subcritical (次臨界)

k_{eff}=1 critical (臨界)

k_{eff}>1 supercritical (超臨界)

次臨界的系統,具有零功率或是一個功率降低的狀態,是根據系統的初始狀態;臨界系統則是維持一個穩定的功率;超臨界系統其功率則是一直增加中。因此臨界安全是指避免臨界及超臨界的狀態,而且在反應器的外面,可分裂的材料 必須一直維持次臨界狀態。

無限的中子增值因數 k_{inf} 是指在無限系統中子無洩漏情況下的 k, 通常以 4 因子來表示

$$k_{inf} = \epsilon p \eta f \quad (\Delta \pm 3)$$

 ε : fast fission factor

p : resonance escape probability

 η : number of neutrons per neutron absorbed in fuel

f: thermal utilization

如考慮有限的系統,則必須考慮洩漏的中子機率

$$\mathbf{k}_{\rm eff} = \mathbf{k}_{\rm inf} \boldsymbol{P}_{fnl} \boldsymbol{P}_{tnl} \quad (\boldsymbol{\ \boldsymbol{\ } \boldsymbol{\ } \boldsymbol{\ } \boldsymbol{\ } \boldsymbol{5}})$$

 P_{fnl} = fast neutron nonleakage probability

 P_{tnl} = thermal neutron nonleakage probability

因此增值因數可以寫作

$$k_{eff} = \epsilon p \eta f P_{fnl} P_{tnl} \quad (\Delta \pm 6)$$

由中子擴散理論(diffusion theory),可以定義一個與中子洩漏率有關的量 Buckling B²(曲度),是和系統的形狀尺寸與材料組成有關。Material buckling B_m² 是指材料組成,而B_g²則是幾何形狀的 geometry buckling,如果系統達到臨界則 B_m²= B_g²。如果 B_m²> B_g²則系統超臨界,反之 B_m²< B_g²則系統維持次臨界。 一般形狀的 B_g² geometry buckling 列在表 3,而 B_m²則可簡單由B_m² = $\frac{v\Sigma_f - \Sigma_a}{D}$ 來 表示.

表	3 Geometry	Buckling	for Regular	Geometry
---	------------	----------	-------------	----------

Geometry	${\rm B_g}^2$ geometry buckling
Spheres of radius r	$(\frac{\pi}{r})^2$
Cylinder of radius r and height h	$(\frac{2.405}{r})^2 + (\frac{\pi}{h})^2$
Cuboid of dimensions a,b and c	$(\frac{\pi}{a})^2 + (\frac{\pi}{b})^2 + (\frac{\pi}{c})^2$

由於擴散方程式可能高估臨界的尺寸,所以會再加以修正。如果有均匀反射 體,其修正為:

$$X_r = X_{dt} - d - \delta_r$$
 (公式 8)

 X_r 是有反射體的臨界尺寸; X_{dt} 是擴散理論所預測的; d 是修正擴散理論; δ_r

則是反射體節約。

中子的洩漏率,快中子及熱中子的洩漏率可以 neutron age τ, thermal diffusion length L 及 Buckling B² 來表示

 $P_{fnl} = \exp(-B^2 \tau)$

 $P_{tnl} = 1/(1 + L^2 B^2)$

 $P_{nl} = P_{tnl} P_{fnl} = -1/(1 + M^2 B^2)$; $M^2 = \tau + B^2$ (公式 9)

由於中子擴散沒考慮中子散射方向不一致性,因此必須是很大,很均匀的環 境下才適合。雖然反應器的系統是非均質,有燃料、護套及緩和劑,但是如果從 中子的行為來看,是可以均質化的假設。雖然擴散理論很少用在核臨界安全分析 上,但是因為 B² buckling 可以瞭解形狀造成的中子洩漏,在用手計算上是很好 用的,進而可以用實驗決定 M² 將可以很快的針對某種材料,在某形狀下其增值 因數,並決定其臨界安全。

臨界安全的計算,多為中子遷移理論,某一體積為 V 的系統中有外加或內 在的中子射源,各中子在系統中生成後,依不同位置、角度及能量在系統中不斷 遷移,直到與原子核作用或是洩漏至系統外。與原子核作用的機制有中子捕獲反 應、中子散射反應與中子分裂反應。中子分裂反應使原子核分裂為兩個子核,產 生數個高能中子。

完整的中子遷移理論,對於系統的描述包含以下的知識:

 空間位置 r: 需要有三個變數表示(三度空間)如直角座標的 x,y,z 或球 座標的 r, θ,φ

2. 移動的方向 Ω, 需要兩個變數

3. 動能 E: 或是速度 v, neutron lethargy u= ln(E₀/E) 中子對數能量損失

4. 時間 t:當具有能量 E 的中子從位置 \mathbf{r} 以 Ω 移動

對一個中子通量 $\Phi(\mathbf{r}, E, \Omega, t)$ 來說,中子遷移方程式可以寫作

 $\frac{1}{v(E)}\frac{d\Phi(\mathbf{r}, E, \mathbf{\Omega}, t)}{dt} = -\mathbf{\Omega} \cdot \nabla \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) - \Sigma_t(\mathbf{r}, E, \mathbf{\Omega}) \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) + S(\mathbf{r}, E, \mathbf{\Omega}, t) + C(\mathbf{r}, E, \mathbf{\Omega},$

 $\int_{F'} dE' \int_{\mathbf{0}'} d\mathbf{\Omega}' [\Sigma_s(r; \mathbf{\Omega}' \to \mathbf{\Omega}; E' \to E) \times \mathbf{\Phi}(r, E', \mathbf{\Omega}', t)] \quad (\Delta \mathfrak{K} \ 10)$

此方程式表示中子最終變化率是等於洩漏率與作用率(負的)加上中子源及 被散射回來的中子(正的)之和。如果中子源為分裂材料所釋放的S(r,E,Ω,t)式 子將修正為

 $S(\mathbf{r}, E, \mathbf{\Omega}, t) = \chi(E) \int_{F'} dE' \int_{\mathbf{\Omega}'} d\mathbf{\Omega}' v \Sigma_f(\mathbf{r}, E', \mathbf{\Omega}') \Phi(\mathbf{r}, E', \mathbf{\Omega}', t) \quad (\Delta \not \preccurlyeq 11)$

原則上中子遷移方程式,給予適當的截面積及幾何形狀,可以數值的方法求 解。但實際上實際系統的截面積與幾何形狀,十分複雜,所以必須簡化。首先是 時間的因素去掉,因為僅有是在事故時,才會產生很大的中子數量瞬時變化,所 以臨界安全分析以穩態計算是合理的。

接者,中子能量以群體表示,某群能量的中子Фg可以表示為

$$\Phi_{\rm g} = \int_{\Delta E_a} dE \, \Phi(E) \quad (\, \& \ {\rm d} 12 \,)$$

而這群能量中子所對應的截面積Σrg 則可表示為

$$\Sigma_{\rm rg} = \frac{\int_{\Delta E_g} dE \Sigma_r(E) \Phi(E)}{\int_{\Delta E_g} dE \Phi(E)} \quad (\ \& \ \ddagger \ 13 \)$$

將能量分群,與連續能量自然有差異,但是群數的增加,則可以接近連續能 量的情形。

2.2 中子平衡

核臨界是中子產生及中子損失的總和,而中子損失則可以分為中子吸收及中 子洩漏。因此在控制臨界的方法中就有使用中子吸收物,如控制棒來調整其臨界 的狀態,達到所需的功率。但是臨界安全分析,是要維持次臨界,因此不需要隨 時調整臨界狀態。因此維持次臨界狀態之方法,考慮較低的中子產生,高中子吸 收及高中子洩漏將可以達到需求。而這三者皆要考慮中子被緩和的情形,因為中 子緩和會影響者甚劇。中子產生率是根據系統中可分裂的材料如 U233, U235, Pu239 及 Pu241),因此將可分裂的元素移除將可以很快達到次臨界。因此限制 濃縮度及燃料質量是目前去除中子平衡中中子產生的部分。例如目前反應器燃料 鈾的濃縮度,是在5%以下。

中子吸收的部分,則是燃料中非分裂材料及外加的中子吸收物如 Boron, Cadmium 或 Gadolinium 在固態或液態型式,來增加中子的吸收。因增加中子的 吸收,可以是限制濃縮度,使用控制其化學混和物,及加入額外的中子吸收物(固 態或可溶的中子吸收物)。

中子洩漏主要是系統的幾何形狀及密度。給予一已知的材料及數量,表面面 積的幾何增加(如長及細的圓柱,長、寬或薄的平板)或降低密度來強化中子洩 漏。而中子反射體會降低中子洩漏率。因此形狀、密度及反射體的限制將可強化 中子洩漏的可能性。中子洩漏率利用幾何形狀來控制,在臨界安全上是很重要的。 當一個容器不會裝下足夠的可分裂材料產生臨界,且不用管此可分裂材料的濃縮 度、濃度及外部反射體的情形,皆可維持次臨界。這時稱為 geometrically favorable, 或 geometrically subcritical, subcritical by geometry,雖然也可稱為 geometrically safe 但卻會誤導,因為如果有很多容器擺在一起,就不一定能維持次臨界。

當一個均質的密度改變時,其中子產生、吸收及洩漏的關係也會改變。舉例 來說當一個沒有反射體的球,其臨界質量隨密度的變化如下

$$\frac{\mathrm{m}}{\mathrm{m}_0} = \left(\frac{\mathrm{\rho}_0}{\mathrm{\rho}}\right)^2 \quad (\, \mathrm{\&d} \, 14 \,)$$

m₀是初始的臨界質量,ρ₀是初始的密度,m是最終的臨界質量,ρ是最終的 密度。而這個式子是原子彈爆炸的基本原理,可以增加其密度而減少臨界質量。 一個臨界的系統可以被壓縮後成為超臨界,也可以擴張後成為次臨界。

當緩和材料存在時,其增值因數可能會增加。因為緩和材料可降低中子速度, 使中子分裂的可能性增加,或者降低中子洩漏的可能性。因此限制液態的量,固 態中的水氣及反射體的存在,將可以控制次臨界的狀態。

還要注意的事,貯存單位的互相影響,因為雖然一個貯存單位是次臨界,但 從此單位洩漏中子可能成為另一個單位的中子源造成影響。因此不管是溶液的容 器,機械操作,貯存護箱或傳送護箱等,都必須注意限制數量,型式及相關的空 間距離。

2.3 反應器動力學

臨界其實要依賴瞬發中子及延遲中子。反應器系統設計通常在意外發生,或 是超臨界的發生時,系統會朝向抑制超臨界的方向進行。一個超臨界系統,其功 率是以指數型式增加。增加的時間常數與增值因數接近1之程度有關,或者可以 用另一個參數來表示,那就是反應度p, 其定義為

$$\rho = \frac{k_{eff} - 1}{k_{eff}} \quad (\, \& \not \exists \, 15 \,)$$

當p遠小於延遲中子比率β時,延遲中子將會主導,而反應週期約在數秒鐘至 數分鐘,當p接近於延遲中子比率β,瞬時臨界的情形發生,也就是當反應器單獨 以瞬發中子達到臨界(p=β,這時反應度的值稱為1\$),此時功率的提升反應週 期接近於瞬發中子中子壽命(10⁻⁸-10⁻⁴s)。增加瞬發的超臨界,其反應週期將更 接近瞬發中子中子壽命。

反應度與延遲中子及瞬發中子的關係式,可以

$$\rho = \omega l^* + \sum_{i=1}^{6} \frac{\omega \beta_i}{\omega + \lambda_i} \ (\ \text{\circ} \ \textbf{I} \ \textbf{6} \)$$

1*:中子壽命;β_i: 延遲中子分率;λ_i: 衰變常數;ω: 參數

倘若反應度p是正的,即keff>1,則知有6個根是負的,1個是正的,取ω0 為正,ω1,ω2等為負,數值上ω的6個負值的每一個都與延遲中子母核的6個衰 變常數的某一個具有相同數量級。換句話說在反應度做階梯變化時除第一項ω0 的貢獻外,其餘很快就降為0。所以反應器週期Tp:定義為中子通率變化到 e 倍 時所需的時間。Tp:反應器週期=1/ω0,並稱為穩定反應器週期。

當發生超臨界偏離情形,功率及溫度會提昇,而反饋效應會將增值因數降低。 金屬系統之溫度提昇,密度會降低將增加中子洩漏率是一個主要的負反饋效應。 溫度的 Doppler 效應使共振吸收截面增加,也會降低增值因數。如果這些效應無 法阻止超臨界情形持續產生,系統的解離是可以解除超臨界的偏離情形。一個初始的超臨界偏離會產生一個或多個負反饋效應使其回到次臨界狀態。因此所造成的情形是一個功率的脈衝 (power pulse or spike)現象。

偏離時其系統的大小及組成會決定其特性。通常金屬系統的功率脈衝的時間 很短,因為其膨脹和熱傳很快,所以負反饋效應很快。而液態系統其功率脈衝則 是較為擴大(broader pulse)。如果解離情形沒有產生,是有可能再產生功率脈衝或 是維持臨界。

2.4 反應度量測方法

2.4.1 臨界負載(critical loading experiment)

臨界的測量,其中之一是採用臨界負載(critical loading experiment) 或增值因 數的倒數法 (reciprocal multiplication method)。當狀態處在次臨界時,量測中子 的通量並將核子燃料逐漸增加,如果增值因素 k 可以決定,那麼中子的數量總和 St 應該等於原有的中子數量(中子源)So 的整合

 $S_t = S_0 + kS_0 + k^2 S_0 + k^3 S_0 + \dots$

 $= S_0(1-k)^{-1} = M S_0$

因此實驗的作法,是逐漸增加燃料質量(fuel mass)或反應度(reactivity) (例 如抽出控制棒),並安全達到臨界。圖 1 是臨界負載實驗,調整反應度(增加燃 料質量或抽出控制棒)所得的 1/M 的相關曲線圖。圓點是實驗的數據,將實驗 數據外插至 X 軸 (1/M=0),就是達到臨界質量(critical mass)。這種量測方式, 要注意中子量測的裝置的位置擺放,如果量測位置太靠近中子源,則量測的中子 會多數屬於中子源本身,因而造成預測誤差並高估臨界質量,是非常危險,如圖 2 所示,而如果量測儀器離太遠,則是會有低估臨界質量的誤差。在量測時除了 中子偵測器的位置會影響外,實驗所獲得的曲線關係,其添加的燃料質量並不是 與 1/M 成一直線,可能還有其他因素:(1)如中子通率過大,超過儀器的範圍。

20/84

(2)添加的燃料之反應度不同,如濃縮度或結構不同(3)在控制棒抽出或添加燃料,其反應的核心(core)的幾何形狀跟著改變。

2.4.2 燃料取代技術(Fuel substituting techniques)

如果均匀地將中子吸收物替換一小部分燃料,則利用一階的擾動方程式(公式17),可以知道反應度的改變。

這方法可以使用在控制棒的矯正,例如添加適量的中子吸收物,來平衡因控制棒移動所造的影響,將可得到控制棒的移動的反應度。

2.4.2 反應器週期(Asymptotic period measurement)

在一個臨界的反應器爐心,產生一個小的擾動,然後測量穩態反應器週期 (asymptotic period)由前述反應器動力學可得知,其反應度或是這個擾動的本領 (worth)就可以從所量得反應器週期獲得。並需注意此方法僅限於正週期的測 定,因為負週期是由延遲中子的衰變主導,因此對於負反應度是很不敏感的。

2.4.3 落棒測試(Rod drop method)

在以落棒方法做控制棒教準時,先抽出測試棒,使反應器達穩定運轉維持一定的功率 P₀,然後令此棒突然掉落於反應器內至一已知程度,相當於插入一個 負反應度-δρ。在幾個瞬發中子的壽命時間,反應器功率會降到 P₁,維持一個類 平衡狀態,然後才由延遲中子的衰變繼續下降。這時 P₁ 大小是由所插入的負反 應度的大小決定:

$$\frac{P_1}{P_0} = \frac{\beta}{\beta + \delta \rho} \quad (\& \ddagger 18)$$

因此所插入的反應度將可以用 \$ dollars 表示

$$\frac{\delta\rho}{\beta} = \frac{P_0}{P_1} - 1 \quad (\Delta \vec{x} \ 19)$$

2.4.3 中子源退出測試(Source jerk method)

與 Rod Drop 類似,在一個次臨界的系統,可以量測次臨界系統增值因數。 假設一個次臨界系統由中子源 SO 來維持功率 PO, 那麼可以用下式來表示

$$P_0 = \frac{l}{\delta \rho + \beta} \left[\sum_{i}^6 \lambda_i C_{i0} + S_0 \right] \quad (\ \& \ \rat{L} \ 20)$$

δρ是此系統的次臨界狀態,假設中子源被退出系統,則系統會瞬時變到功率 P1可以表示為

$$\mathbf{P}_0 = \frac{l}{\delta \rho + \beta} \left[\sum_i^6 \lambda_i C_{i0} \right] \quad (\ \& \ \rat{L} \ 21)$$

整理之後可得

$$\frac{P_0}{P_1} = 1 + \frac{\delta\rho}{\beta} (\& \ddagger 22)$$

因此次系統的次臨界可以使用

$$\frac{\delta\rho}{\beta} = \frac{P_0}{P_1} - 1 \ (\ \text{\meestad} \ \textbf{Z} \ \textbf{$$

來表示

雖然看起來這方法與 Rod Drop 相類似,但是不同的是此方法僅是移開一小部分材料(中子源)而 Rod Drop 則是快速的插入一根或多根的控制棒來完成。

2.4.4 控制棒震盪法(Rod oscillator method)

如果將一根控制棒在臨界的爐心產生一個正弦抽插,將會伴隨一個相對的功率震盪。如果測量功率震盪的相位差及其大小,將可以得到反應器傳遞方程式 (reactor transfer function)

$$\frac{\delta P}{P} = L(i\omega)\delta \rho$$
 (公式 24)

當功率低時,高頻時

$$\delta \rho = \omega l^* \frac{\delta P}{P} (公式 25)$$

所以瞬發中子的壽命或是控制棒的本領

2.4.5 中子源射入法(Pulsed neutron method)

將一個中子源射入燃料,觀察並測量其中子通量的變化,就可以瞭解這系統 有關的參數。假設我們在 t=0 的時間將中子源射入一個沒有不會增值的燃料。由 單一速度擴散方程式可得其中子通量如下

$$\frac{1}{v}\frac{\partial\phi}{\partial t} = D\nabla^2\phi - \Sigma_a\phi(\mathbf{r},t) \quad (\, \mathrm{ \& t } 26 \,)$$

其初始條件為φ(r,o)= φ₀(r),也是原先射入的中子源

時間夠長之後,燃料內的中子通量將會接近 asymptotic form 也就是

$$\phi(\mathbf{r},t) \sim a_1 \psi_1(\mathbf{r}) \exp\left(-(\mathbf{v}\Sigma_a + DB_g^2)\right) t \ (\ \text{\ensuremath{\Delta t}} \ \text{\ensuremath{\Delta t}} \ 27 \)$$

 $\psi_1(\mathbf{r})$ 是燃料形狀的 fundamental mode 所以中子通量的行為會依照衰變常數

$$\alpha_0 \equiv v\Sigma_a + vDB_g^2 \ (\ \Delta \ \pounds \ 28)$$

依照這個式子,如果改變燃料的尺寸大小,量測 α_0 並以 α_0 對 B_g^2 做圖,可以發現與 y 軸(α_0)的交叉點($B_g^2=0$)會是 v Σa ,但如果此燃料有增值的情形則式子將可修正成

$$\frac{1}{v}\frac{\partial\phi}{\partial t} = D\nabla^2\phi - (\Sigma_a - v\Sigma_f)\phi(\mathbf{r}, t) \quad (\, \boldsymbol{\bigtriangleup t} \, 29 \,)$$

所以衰變常數也會修正成

$$\alpha_0 \equiv \mathbf{v}(\Sigma_a - \nu \Sigma_f) + \mathbf{v} D B_g^2 \ (\ \text{\lefter} \ \texttt{x} \ \texttt{30} \)$$

與 y 軸 (α_0) 的交叉點($B_g^2=0$)會是 v(Σ_a - $\nu\Sigma_f$)

圖 3 是 neutron pulse 實驗,所量得α₀與 Bg²的關係圖,此外也可以直接量 測反應度。使用較快的脈衝,時間的行為將會由瞬發中子來主導,因此α₀ 會是 功率變化的率變常數

因此

$$\alpha_0 = \frac{1}{P} \frac{dP}{dt} = \frac{\rho - \beta}{l} \; (\, \text{ \cdots δ} \, 1 \,)$$

因此只要知道 β 及1,就可由量測的 α_0 求得反應度。

第三章、中子模擬計算程式

自 1950 年代起,原子能相關研究快速發展,使得核能發電在人類文明史上 扮演重要角色。核能發電相關知識大致可依其功能性分為電子儀控、熱流、材料、 輻射屏蔽及中子物理,本章探討中子遷移行為及其模擬計算程式,第一節討論中 子與物質作用機制及中子遷移計算程式的理論基礎,第二節介紹核臨界實驗,第 三節逐步說明以模擬計算程式驗證核臨界實驗之過程。全分析的目的是在反應器 設計時,能滿足核能安全法規。目前最常用的安全分析有確定性安全分析方法及 機率論安全分析方法,確定性安全分析就是事故發生後其輻射外洩或劑量滿足安 全法規,而機率論則是告知其發生的機率,以不同機率的肇因事件分析,找出事 故序列評估發生的機率及造成的後果。

3.1 中子遷移計算程式

在傳統中子遷移問題中,常為某一體積為 V 的系統中有外加或內在的中子 射源,各中子在系統中生成後,依不同位置、角度及能量在系統中不斷遷移,直 到與原子核作用或是洩漏至系統外。與原子核作用的機制有中子捕獲反應、中子 散射反應與中子分裂反應。中子分裂反應使原子核分裂為兩個子核,產生數個高 能中子,同時放出輻射線。在穩態系統中,利用波茲蔓方程式,描述其中子行為, 使用中子遷移模擬計算程式,求得系統中各部位的中子通量。探討用於臨界安全 評估中有關遷移計算的方法,最常用的方法方為兩大類:統計(Stochastic)方法及決 定論(Deterministic)方法。

原子核粒子與物質發生反應的機率大小通常以截面(Cross Section)表示,一 核種對一核反應截面的大小,表示此核種發生某核反應機率大小的一種量度。中 子與物質作用機制為自由的中子與靶材原子核間反應,其反應有複合核形成 (compound nucleus formation)、彈性碰撞(elastic scattering)、非彈性碰撞(inelastic scattering)、放射性捕獲(radiative capture)、帶電粒子反應(charged particle reaction)、 核分裂(fission)及(n,2n)、(n,np)等反應。一般而言,由於中子不帶電,可不受靶 原子核內電場及原子影響,使得中子最容易穿越電場與靶原子核發生核反應。中 子反應截面範圍大約在 10⁻²²~10⁻²⁶ cm²,定義截面單位為邦(barn),1 barn=10⁻²⁴cm²。 在描述一顆中子的行為時,最為關鍵即為中子行為的隨機性(Random events)。各 中子碰撞的位置,以及碰撞瞬間發生捕獲、散射或是分裂反應,或是發生散射反 應時,其碰撞粒子能量與方向性皆不同。

在系統中任何一點,所有任何方向之入射中子束強度的總和,稱為該處的中 子通率(neutron flux)。中子通率單位為#/cm²-s,與中子入射方向無關,為一非向 量值。在波茲蔓方程式中,並無任何對隨機反應做描述,但對於中子而言,以上 隨機反應發生的機率以反應截面(Cross Section)來表示。而一般中子遷移問題中, 透過大量計算求得其平均效應,得到其平均中子通量。而在傳統決定論 (Deterministic)方法模擬程式中,分為兩階段計算。在燃料晶格計算時,考量其 具方向性的中子遷移方程式(32)求解,而在爐心模擬程式並未考慮中子遷移特性, 忽略中子遷移具方向特性,在節點中以中子擴散方程式(33)來描述中子特性。統 計方法中的蒙地卡羅法(Monte Carlo)即忽略其問題中的數學描述,透過上述大量 模擬粒子數,以求得其平均的中子通量。而決定論法則是忽略其問題中子隨機的 行為,透過分割其各變數,使成為一個繁複的代數方程組,使用數值方法求解。

 $\frac{1}{v}\frac{\partial\varphi}{\partial t} + \vec{\Omega}\nabla\varphi + \Sigma_{t}\varphi(\vec{r}, E, \vec{\Omega}, t) = \int_{4\pi} d\vec{\Omega'} \int_{0}^{\infty} dE' \Sigma_{s}(E' \to E, \vec{\Omega'} \to \vec{\Omega})\varphi(\vec{r}, E, \vec{\Omega}, t) + S(\vec{r}, E, \vec{\Omega}, t) \quad (\Delta \not\equiv 32)$

$$\frac{1}{v}\frac{\partial\varphi}{\partial t} + \nabla \cdot \vec{J} + \Sigma_{t}\phi(\vec{r}, E, t) = \int_{0}^{\infty} dE' \Sigma_{s}(E' \to E)\phi(\vec{r}, E, t) + S(\vec{r}, E, t) \quad (\Delta \not\preccurlyeq 33)$$

3.1.1 統計(Stochastic)方法

在蒙地卡羅方法中,不需要針對波茲蔓方程式求解,而直接就中子及光子之

物理遷移特性進行計算,模擬各粒子遷移的歷史軌跡,再將其結果作平均。若可 以知道系統內詳細的幾何尺寸及各部位粒子的反應截面資料,計算無數的粒子數, 將可得到真實的解。但實際上的運算,並無法達到計算無數的粒子數,所以使用 蒙地卡羅法模擬粒子遷移特性,在一定的粒子數計算中,將會造成若干的統計誤 差。一般來說其誤差值與計算之粒子數目成反比根號倍,若要使計算誤差小 10 倍,則需要增加 100 倍的計算粒子數。另外,在蒙地卡羅方法中,往往需要耗費 相當多時間,固常利用變異數縮減技巧,而增加其計算效率。

本報告就目前使用蒙地卡羅方法較為廣為流傳的程式做介紹,一為美國 Los Alamos 國家實驗室發展的 MCNP(Monte Carlo Neutron and Photon Transport Code System)[16]程式,另一為美國 NRC(Nuclear Regulatory Commission)資助 ORNL 起源發展 SCALE (Standardized Computer Analyses for Licensing Evaluation)[17] 模組化程式系統。

3.1.1.1 MCNP

MCNP[16]程式是美國 LANL (Los Alamos National Laboratory)國家實驗室 發展出的 MCNP 蒙地卡羅程式,目前發展至 MCNP5 版及 MCNPX,而最新的 MCNP6 希望結合以上兩程式,可計算中子、光子及質子。蒙地卡羅法最大優點 為計算精準度高,可正確模擬粒子物理過程及系統幾何形狀,以數學模式記錄追 蹤每個粒子,在產生到最後吸收或是逃逸間每一次碰撞過程記錄,碰撞中的位置、 角度及能量的改變,均由粒子的反應截面推導,而得其機率分佈,最後再用統計 方法,分析各中子的碰撞過程來得到計算結果。唯一的缺點為計算時間過長,近 年來隨著電腦科技的進步,透過網路連接各電腦平行運算,可降低其計算時間, 並透過適當的變異數縮減技巧,求得可靠之結果。

MCNP 程式對於幾何描述的精確度極高,可使用內建之幾何圖形(Marco Body)及圖形介面 Vised 軟體輔助,幾乎可完全依實際的形狀建立三維圖形,而 程式也提供重覆模式 (repeated structure),對於高度重複性的幾何形狀,例如燃 料束單元,此功能可減少輸入時間及大幅降低錯誤的發生。而模擬完畢,可透過

28/84

內建之 Plot 功能或是 Vised 軟體,逐一檢視各單元之幾何形狀及組成成份。

MCNP 程式另外一項特色為,搭配使用連續能量的中子截面庫資料,不需要 依不同問題,而選擇適當的中子通率做加權平均的問題。另外,在蒙地卡羅計算 中,變異數降低的技巧為一項精隨,正確使用將可大幅降低計算時間並得到精準 的結果,但也可能錯誤使用,造成計算時間增加卻不為使用者所知,所以使用者 在這方面運用上,需有相當的知識及經驗。

3.1.1.2 SCALE

SCALE[17]程式系統中使用大眾化的電腦程式碼、計算方法與資料庫,應 用在核臨界安全分析、屏蔽計算、燃耗/衰變計算、與反應器物理等相關問題。 此系統最早釋出於 1980 年,且已經被廣泛使用在計算核燃料設施與儲存設施。

SCALE系統可建構於UNIX/LINUX與WINDOW,程式碼由Fortran77/90/95 所寫成。SCALE具有控制模組、子模組、GUI(Graphical User Interfaces)模組三 種。控制模組由數個子模組集合而成的標準序列可針對不同應用問題進行分析, 如:Criticality-CSAS5、CSAS6、STARBUCS、SMORES、TSUNAMI, Reactor Physics-TRITON、ORIGEN-ARP, Shielding-MAVRIC、QADS、SAS1。GUI 模 組為圖形化介面,方便使用者更建立輸入檔,但 GUI 模組只適合在 WINDOWS 環境下操作使用。

計算反應器物理相關問題時,使用 SCALE 中 TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion) [17]控制模组。 其中包含許多程式序列(sequence),例如:處理截面資料庫的 T-XSEC; T-NEWT 使用二維近似遷移計算的角度分隔座標法(Discrete Ordinates); T-DEPL 計算燃耗 效應; T5-DEPL 以三維蒙地卡羅(KENO V.a)進行遷移及燃耗計算。其中 KENO V.a 內建基本之幾何形狀有立方體、球體、圓柱體及堆疊(Array)功能等等,使用者可 依其選擇以符合問題之描述,搭配程式內相關中子參數,如:中子平均壽命、能 量相依的中子吸收機率及中子洩漏率等,選擇其計算週期數及粒子數,進行三維 的蒙地卡羅臨界計算。

3.1.2 決定論(Deterministic)方法

多群(multi-group energy method)可以使用於中子擴散(neutron diffusion)及 中子遷移(neutron transport)理論。中子擴散因為缺少方向的資訊(擴散是均匀的 向四周擴散)適合於反應器爐心的計算,但不適合於非均勻幾何形狀且考慮臨界 安全的分析。角度分隔座標法(discrete ordinate method)除了能量分群外,將方 向的相依也分為群組。最常見的分法是 Sn 利用 n 階展開來描述從中子從散射源 出來的方向。由於時間計算耗費,能量群組,方向角度群組及空間的網格點是重 要的考量。早期如1 維 16 群能量的程式如 ANISN 及 DTF-IV 程式,可以針對球 形、無限長的圓柱及無限長平板等,進行分析;而二維則是以圓柱的對稱如 DOT, TWOTRAN, NEWT 等程式。CASMO-4 也是屬於二維的中子遷移計算程式。 TORT 則是 3 維的中子遷移程式,DIF3D/VARIANT 是 Argonne 國家實驗室針 對快中子反應爐所開發的三維中子遷移程式。

CASMO[18-19]程式在 1970 年代開始發展,主要應用於燃料設計及臨界分析 計算,其中提供單一燃料束模式及色組(Colorset)模式進行遷移計算,也可針對用 過核燃料的臨界計算。另外 CASMO 程式可產生均質化的反應截面及非均質化的 燃料棒間的形狀函數 (form function) 給爐心模擬程式計算。使用者輸入燃料束 中各單位的材料組成,幾何形狀,燃料密度及濃縮度及溫度壓力等資料,由 CASMO 計算出燃料晶格截面庫資料,經由 CMS-LINK[]轉成兩能群的反應截面 資料庫給結合中子及熱流分析的三維節點擴散程式 SIMULATE[]模擬全爐心狀 況。

近年來,將機率與決定論兩種方法整合以降低計算時間或是增加準確率,也 逐漸成為趨勢。例如陳昂佑的 TORT-coupled MCNP 計算法[20],乃是以 CADIS 演算法為基礎,自行將 TORT 伴隨計算所得的伴隨函數,轉換為蒙地卡羅程式 MCNP 使用變異數降低技巧所需之「重要性加權射源」與「重量視窗」,以提高 MCNP 追蹤粒子之計算效率。

3.2 核臨界實驗介紹

由美國工業界及政府單位共同組成截面資料庫評估工作團隊(Cross Section Evaluation Working Group, CSEWG),主要針對核子截面資料庫相關業務進行研 究。自 1966 年起開始進行 ENDF/B 截面資料庫研究,近年來隨著理論的更新及 新實驗的引進,逐步更新,並於 1989-1990 年發展表 ENDF/B-VI 截面資料庫。 2002 年 Russell 臨界實驗相關文獻中[21],清楚說明 ENDF/B-VI 截面資料庫相關 資訊及以 MCNP 程式進行相關臨界實驗的介紹。

臨界實驗中,將對各類型爐心進行一連串的實驗,其中可能針對某項條件(水 鈾比/燃料匣間距/可燃性毒物濃度等)做些微更改,而探討其對臨界狀態的影響。 在同一類型爐心狀況中,臨界實驗會做很多組數據,以降低單一系統可能造成的 誤差及實驗中某些特殊因素的影響,以降低其誤差發生的可能。表 4 列出廣為 流傳之臨界實驗,其中經過 CSEWG 及國際核臨界安全評估團隊(International Criticality Safety Benchmark Evaluation Project, ICSBEP)認可,其詳細臨界實驗收 錄在 Benchmark-Specification Report[22]及 International Handbook of Evaluation Criticality Safety Benchmark Experiments[23]。鈾燃料可依不同濃縮度分成高濃縮 度(HEU)、低濃縮度(LEU)U-235 燃料及 U-233 燃料,臨界實驗中盡可能的使中 子增殖因數為1,達到核臨界狀態,但也可能因為臨界實驗中可能出現一些理想 狀態下的假設,或是特定量測方法造成增殖因數略大或小於1。本報告針對 B&W 低濃縮度(LEU)鈾燃料及運輸貯存系統中輕水式反應器燃料(NUREG/CR-6361) [24]的臨界實驗進行說明。

Case title	Principal fuel	Moderator	Reflector	Basic geometry	Source	Benchmark k _{eff}
Godiva	HEU metal	None	None	Sphere	ICSBEP	1.0000 ± 0.0010
Topsy sphere	HEU metal	None	Normal U	Nested spheres	ICSBEP	1.0000 ± 0.0030
FLATTOP-25	HEU metal	None	Normal U	Nested spheres	ICSBEP ⁴	1.0000 ± 0.0030
Jemima pairs	HEU, normal U	None	None	Pairs of platters	ICSBEP	0.9988 ± 0.0009
Jemima triplets	HEU, normal U	None	None	Triplets of platters	ICSBEP	0.9987 ± 0.0009
HEU sphere in water	HEU metal	None	Water	Nested spheres	ICSBEP	0.9985 ± 0.0000
HEU cube in water	HEU metal	None	Water	Nested cubes	ICSBEP	1.0000 ± 0.0010
Jezebel-233	²³³ U metal	None	None	Sphere	ICSBEP	1.0000 ± 0.0010
FLATTOP-23	233U metal	None	Normal U	Nested spheres	ICSBEP	1.0000 ± 0.0030
B&W core XI, loading 1	LEU (UO ₃)	Water	Water	Uniform lattice	ICSBEP	1.0007 ± 0.0012
B&W core XI, loading 2	LEU (UO ₃)	Water	Water	Heterogeneous lattice	ICSBEP	1.0007 ± 0.0012
B&W core XI, loading 8	LEU (UO ₂)	Water	Water	Heterogeneous lattice	ICSBEP	1.0007 ± 0.0012
ORNL-1	HEU (uranyl nitrate)	Water	None	Sphere	CSEWG	1.0003
ORNL-2	HEU (uranyl nitrate)	Water	None	Sphere	CSEWG	0.9998
ORNL-3	HEU (uranyl nitrate)	Water	None	Sphere	CSEWG	0.9999
ORNL-4	HEU (uranyl nitrate)	Water	None	Sphere	CSEWG	0.9992
ORNL-10	HEU (uranyl nitrate)	Water	None	Sphere	CSEWG	1.0003
SHEB A-II	LEU (uranyl fluoride)	Water	None	Nested cylinders	ICSBEP ^a	0.9991 ± 0.0039
Uranyl fluoride in D ₂ O	HEU (uranyl fluoride)	Heavy water	Heavy water	Nested spheres	ICSBEP	1.0000 ± 0.0104
ORNL-5	²³³ U (uranyl nitrate)	Water	None	Nested spheres	ICSBEP	1.0000 ± 0.0032
ORNL-6	233U (uranyl nitrate)	Water	None	Nested spheres	ICSBEP	1.0005 ± 0.0032
ORNL-7	233U (uranyl nitrate)	Water	None	Nested spheres	ICSBEP	1.0006 ± 0.0032
ORNL-8	233U (uranyl nitrate)	Water	None	Nested spheres	ICSBEP	0.9998 ± 0.0032
ORNL-9	233U (uranyl nitrate)	Water	None	Nested spheres	ICSBEP	0.9999 ± 0.0032

3.2.1 B&W 臨界實驗

Babcock & Wilcox[25]為美國能源公司,其核能部門分佈在美國及加拿大, 業務涵蓋全世界。早期發表若干臨界實驗文獻[26],由 B&W 公司 Lynchburg Research Center 在 CX-10 臨界設施所做臨界實驗,主要為模擬輕水式反應爐中核 燃料貼近(Closed-Packed)貯存情況,主要為9根燃料束排成3x3矩陣,藉由調整 燃料匣間距離及組成物質構成不同的臨界實驗,並比較蒙地卡羅程式 KENO IV 計算增殖因數與實驗值之差別,主要目的為提供在此條件下的實驗數據,驗證各 模擬計算程式計算之差值。

CX-10 為經核准可從事以水緩速之 UO₂ 及鈽鈾混核燃料之槽型(Tank-Type) 核子設施,其中雖可使用重水或輕水來緩速,但在臨界實驗中只使用輕水來進行 緩速。如圖 4,其鋼槽為一直徑為 152.4 公分,高為 198 公分,外層包有 1.27 公分鋁壁之鋼槽。圖 5 為緩速劑填充系統,圖 6 為燃料棒幾何尺寸之描述,燃 料丸裝填於鋁合金護套中,為濃縮度為 2.46wt% UO₂,圖 7 燃料束由 14x14 矩 陣排列的燃料棒組成,圖 8 為裝有 3x3 燃料束矩陣排列的爐心。實驗裝置中有 21 中不同的爐心狀態(CoreI~XXI),除了圖 9 Core I 為 438 根燃料束環型排列外, 其餘爐心皆由燃料束 3x3 矩陣排列。其中各 Core 差異為燃料匣間隔距離及有無 中子吸收物 B₄C。

3.2.2 運輸貯存系統中輕水式反應器燃料

由美國 Oak Ridge 國家實驗室發行的 NUREG/CR-6361[24]報告,針對運輸 及貯存系統中輕水式反應器燃料提供相關臨界實驗資料。報告中考量在運輸及貯 存輕水式反應器燃料系統中,各式各樣的材料、形狀、結構及中子反應等特徵, 提供 180 個鈾燃料與鈽鈾混合燃料的臨界實驗。各實驗依不同的濃縮度、水鈾比 及燃料晶格間距等參數分類,而同組的實驗則有相似的條件,如相同的分隔板、 屏蔽厚度及硼酸水濃度。而報告中也提供實驗值及統計誤差分析,報告中使用 SCALE 程式搭配 44 能群的 ENDF-V 截面庫資料做計算,以提供使用者在驗證相 關計算程式時,充分掌握其程式的計算偏差值(Bias)及不準度。

表 5 列出各臨界實驗報告[24],從主要的臨界實驗報告中選取,包含 ANS、 BAW、PNL、NS&E、EPRI-NP、WCAP、DSN 及 NUREG 等等中挑選出 180 個 適合運輸及貯存輕水式反應器燃料系統相關的臨界實驗。其中包含173個晶格式 實驗及7個均質化鈾燃料實驗。在173個晶格式實驗中,包含方型及六角型燃料, 其中可依以下各參數的不同加以分類,包含間隔板、反射體、含可燃性毒物燃料 棒、水棒、毒物棒及硼酸化緩和劑。表 6列出此180個實驗中重要參數,包含 燃料濃縮度、燃料間距及水鈾比。

表 5 NUREG/CR-6361 報告中 180 個臨界實驗選取報告來源

Report	No. of available	No. of selected experiments	Description of criticality experiments
ANS Transactions, Vol. 33, p.362 (Ref. 5)	25	9	4.74 wt % ²⁹ U UO ₂ fuel rods in square lattices of 1.35-cm pitch; fuel clusters separated by air, polystyrene, polysthylene, or water, fuel elusters submersed in aqueous NaNO ₃ solution
BAW-1484 (Ref. 6)	37	. 10	2.46 vt % ²³² U UO ₂ fuel rods in square lattices of 1.636-cm pitch; the spacing between 3 × 3 array of LWR-type fuel assemblies is filled with water and B ₂ C juns, stainless stell sheets, or borsted stainless steel sheets, lattices with borsted moderator
EPRI-NP-196 (Ref. 7)	6	6	2.35 wt $\%$ ^{135}U UO2 fuel rods in square lattices of 1.562-, 1.905-, and 2.210-cm pitch; lattices with borated moderator
NS&E, Vol. 71, p. 154 (Ref. 8)	26	6	4.74 wt % ²⁰ U UO ₂ fuel rods in square lattices of 1.26-, 1.60-, 2.10-, and 2.52-cm pitch; triangular and triangular with pseudo-cylindrical shape lattices of 1.35-, 1.72-, and 2.26-cm pitch; irregular hexagonal lattices of 1.35-cm pitch; lattices with water holes
PNL-2438 (Ref. 9)	48	- 6 - ·	2.35 wt $\%$ $^{219}UUO_1$ fuel rods in square lattices of 2.032-cm pitch; Cd, Al, Cu, stainless steel, borated stainless steel, Boral, and Zirealoy separator plates between assemblies
PNL-2827 (Ref. 10)	23	9	2.35 and 4.31 wt % ²³⁵ U UO ₂ fuel rods in square lattices of 2.032- and 2.540-cm pitch; reflecting walls of Pb or depleted uranium
PNL-3314 (Ref. 11)	142	27	2.35 and 4.31 wt 56 ²¹¹ U UO ₂ fuel rods in square lattices of 1.684 and 1.892 -cm pitch; stainless steel, borated stainless steel, Cd, Al, Cu, Boral, Borollex, and Zircalov sparator plates between assemblies; lattices with water holes and voids
PNL-3926 (Ref. 12)	22	14	2.35 and 4.31 wt % $^{133}\rm UUO_2$ fuel rods in square lattices of 1.684- and 1.892-cm pitch; reflecting walls of Pb or depleted uranium
PNL-4267 (Ref. 13)	9	7	4.31 wt % ²³⁵ U UO ₂ fuel rods in square lattices of 1.890- and 1.715-cm pitch; lattices with borated moderator
PNL-4976 (Ref. 14)	17	. 1	4.31 wt % (2.35 wt %) ²³³ U UO ₃ fuel rods in hexagonal lattices of 2.398-, 1.801-, and 1.598-em pitch; moderator contains Gadolinium
WCAP-3269 (Ref. 15)	157	9	$2.7, 3.7,$ and 5.7 wt % ^{235}U UO ₂ fuel rods in square lattices of 1.029-, 1.105 -, and 1.422 -cm pitch; lattices with Ag-In-Cd absorber rods, water holes, void tubes
WCAP-3385 (Ref. 16)	3	2	5.74 wt % ²³⁵ U UO ₂ fuel rods in square lattices of 1.321-, 1.422-, and 2.012-em pitch

Report	experiments	experiments	Description of criticality experiments
BAW-1645 (Ref. 17)	21	8	2.46 wt $\%$ $^{29}\mathrm{U}$ UO, fuel rods in close-packed triangular lattices of 1.209-cm pitch, close-packed square lattices of 1.209-cm pitch, and square lattices of 1.410-cm pitch
DSN 399/80 (Ref. 18)	4	4	4.74 wt % ²³⁵ U UO ₂ fuel rods in square lattices of 1.6-em pitch; hafniu separator plates between assemblies
PNL-2615 (Ref. 19)	32	7	4.31 wt % ^{33}U UO ₂ fuel rods in square lattices of 2.540-cm pitch; stainless steel, borated stainless steel, Cd, Al, Cu, Boral, and Zirealoy separator plates between assemblies
PNL-6205 (Ref. 20)	19	1	4.31 wt % ²³⁵ U UO ₃ fuel rods in square lattices of 1.891-em pitch; Boral flux traps
PNL-7167 (Ref. 21)	9	4	4.31 wt % ^{205}U UO ₂ fuel rods in square lattices of 1.891-cm pitch; Bort flux traps containing voids filled with Al plates, Al rods, or UO ₂ fuel rods
PNL-3602 (Ref. 22)	49	26	2.35 and 4.31 wt % ³³ U UO ₂ fuel rods in square lattices of 2.032 and 2.540-cm pitch; reflecting walls of stainless steel; separator plates of stainless steel, borated stainless steel, Boral, Cu, Cd, and Boroflex between assemblies
Haon et al., PATRAM '80 (Ref. 23)	12	4	4.74 wt % ²³⁵ UO ₃ fuel rods in square lattices of 1.6-cm pitch; Boral separator plates; lead, steel, or water reflecting walls
BAW-1810 (Ref. 24)	23	10	$2.46, 4.02,$ and 2.46 and 4.02 wt $\%$ ^{195}U UO ₂ fuel rods in square lattice of 1.636 -cm pitch; lattices with 1.94 wt $\%$ ^{19}U UO ₂ -Od ₂ O ₃ fuel rods, Ag-In-Cd and B ₄ C absorber rods, void rods
BAW-1231 (Ref. 25)	10	2	4.02 wt % ²³⁵ U UO ₂ fuel rods in square lattices of 1.511-cm pitch; lattice with borated moderator
BAW-1273 (Ref. 26)	10	1	2.46 and 4.02 wt $\%$ ^{215}U UO ₁ fuel rods in square lattices of 1.702, 1.511, and 1.450-cm pitch; lattice with borated moderator
Y-DR-14 (Ref. 27)	32	4	Paraffin reflected or unreflected rectangular parallelepipeds of paraffin and homogeneous $U(2)F_4$ or $U(3)F_4$
NUREG/CR-0674 (Ref. 28) NUREG/CR-1071 (Ref. 29) NUREG/CR-1653 (Ref. 30) NUREG/CR-2500 (Ref. 31)	20	3	Plastic reflected or concrete reflected fuel cans with 4.46 % enriched $U_{\rm J}O_{\rm g}$
Total	756	180	

Case	Case	Enrich.	Pitch	H ₂ O/fuel	Description	Reference
<u>N0.</u>	ANS22AL 1	(WL %)	(cm)	2 202	H O filled Al craciform boyes	5
2	ANS22AL 2	4.74	1.35	2.302	H O filled Al cruciform boxes	5
2	ANS22AL2	4.74	1.35	2.302	H O filled Al cruciform boxes	5
3	ANGSSALS	4.74	1.35	2.302	Polyathylene balls in Al cruciform boyes	5
4	ANS33ED1	4.74	1.35	2.302	Polyethylene balls in Al cruciform boxes	5
5	ANS33ED2	4.74	1.35	2.302	Polyethylene pourder in Al cruciform boxes	5
0	ANGODERI	4.74	1.35	2.302	Polyethylene powder in Al cruciform boxes	5
,	ANS33EP2	4.74	1.35	2.302	Simple course lettice	5
8	ANSJJELG	4.74	1.35	2.302	Simple square fattice	5
10	D1645501	4.74	1.35	1.015	Al separator plates borated H O	17
10	B1645501	2.40	1.410	1.015	Al separator plates, borated H O	17
10	B1045502	2.40	1.410	1.015	Al separator plates, obtailed H ₂ O	25
12	BW1231B1	4.02	1.511	1.139	Borated H O	25
13	DW1231D2	4.02	1.511	1.139	Borated H O	25
14	BW12/3M	2.46	1.511	1.370	Borated Al absorber plater, borated H.O.	20
15	BW1484A1	2.46	1.030	1.841	Borated Al absorber plates, borated H ₂ O	6
16	BW1484A2	2.40	1.030	1.041	Borated H O	6
17	BW1484B1	2.46	1.636	1.841	Dorated H ₂ O	6
18	BW1484B2	2.46	1.636	1.841	Boraco H2O	0
19	BW1484B3	2.46	1.636	1.841	Borated H ₂ O	0
20	BW1484C1	2.46	1.636	1.841	B ₄ C rods	0
21	BW1484C2	2.46	1.636	1.841	B ₄ C rods	6
22	BW1484S1	2.46	1.636	1.841	Stamless steel absorber plates, borated H2O	6
23	BW1484S2	2.46	1.636	1.841	Stainless steel absorber plates, borated H ₂ O	6
24	BW1484SL	2.46	1.636	1.841	Simple square lattice	6
25	BW1645S1	2.46	1.209	0.383	AI separator plates, borated H ₂ O	17
26	BW1645S2	2.46	1.209	0.383	Al separator plates, borated H ₂ O	17
27	BW1645T1	2.46	1.209	0.148	Hexagonal lattice, Al separator plates, borated H2O	17
28	BW1645T2	2.46	1.209	0.148	Hexagonal lattice, Al separator plates, borated H2O	17
29	BW1645T3	2.46	1.209	0.148	Hexagonal lattice, Al separator plates, borated H2O	17
30	BW1645T4	2.46	1.209	0.148	Hexagonal lattice, Al separator plates, borated H ₂ O	24
31	BW1810A BW1810B	2.46	1.636	1.841	UO ₂ -Gd ₂ O ₃ rods, water holes, borated H ₂ O	24
33	BW1810C	2.46 & 4.02	1.636	1.841 & 1.532	UO_2 -Gd ₂ O ₃ rods, water holes, borated H ₂ O	24
Case	Case	Enrich.	Pitch	H ₂ O/fuel	Description	Reference No.
140.	DW1010D	246 8 4 02	1.626	1 941 8 1 522	UO Gd O rode water holes horsted H.O	24
34	BW1810D	2.46 & 4.02	1.030	1.841 & 1.532	UQ_Cd Q_rods, water holes, borated H ₂ O	24
35	BW1810E	2.46 & 4.02	1.636	1.841 & 1.532	UO2-Ga2O3 rods, water holes, borated H2O	24
36	BW1810F	2.46	1.636	1.841	Water holes, borated H ₂ O	24
37	BW1810G	2.46 & 4.02	1.636	1.841 & 1.532	Water holes, borated H ₂ O	24
38	BW1810H	2.46 & 4.02	1.636	1.841 & 1.532	Water holes, borated H2O	24
39	BW1810I	2.46	1.636	1.841	Water holes, Ag-In-Cd rods, borated H2O	24
40	BW1810J	2.46 & 4.02	1.636	1.841 & 1.532	Water holes, B4C rods, borated H2O	24
41	CP1071AS	4 46	2 43	0.77	U.O. fuel cans	28
41	CRIU/IAS	4.40	2.43	1.25	II O fuel cans	28
42	CK1653AS	4.48	2.43	1.45	U.O. fuel cans	20
43	CR2500S	4.48	2.43	2.03	U ₃ U ₈ ruei cans	28
44	DSN399-1	4.74	1.6	3.807	Hamium separator plates	18
45	DSN399-2	4.74	1.6	3.807	Hafnium separator plates	18
46	DSN399-3	4.74	1.6	3.807	Hafnium separator plates	18
47	DSN399-4	4.74	1.6	3.807	Hafnium separator plates	18
48	EPRU65	2.35	1.562	1.196	Simple square lattice	7
10	EDDUGED	2.35	1 562	1 196	Borated H-O	7
49	EPROOSB	2.35	1.002	2.190	Simple square lattice	. 7
50	EPR075	2.35	1.905	2.408	Simple square faulce	,
51	EPRU75B	2.35	1.905	2.408	Borated H ₂ O	-
52	EPRU87	2.35	2.210	3.687	Simple square lattice	7
53	EPRU87B	2.35	2.210	3.687	Borated H ₂ O	7
54	NSE71H1	4.74	1.35	2.302	Simple hexagonal lattice	8
66	NSETIUT	4.74	1.72	4.619	Simple hexagonal lattice	8
22	NSE/THZ	4.74	1.72	4.019	Simple have a const lattice	2
~ ~	NSE71H3	4.74	2.26	9.004	Simple nexagonal lattice	0
56	A TOTAL OF COMPANY	4.74	1.26	1.823	Simple square lattice	8
56 57	NSE/TSQ					
56 57 58	NSE71SQ NSE71W1	4.74	1.26	1.823	Water holes	8
56 57 58 59	NSE71SQ NSE71W1 NSE71W2	4.74 4.74	1.26 1.26	1.823 1.823	Water holes Water holes	8
56 57 58 59 60	NSE71SQ NSE71W1 NSE71W2 P2438AL	4.74 4.74 2.35	1.26 1.26 2.032	1.823 1.823 2.918	Water holes Water holes Aluminum separator plates	8 8 9
56 57 58 59 60	NSE71W1 NSE71W2 P2438AL P2438BA	4.74 4.74 2.35 2.35	1.26 1.26 2.032 2.032	1.823 1.823 2.918 2.918	Water holes Water holes Aluminum separator plates Boral-A separator plates	8 8 9 9
56 57 58 59 60 61	NSE71SQ NSE71W1 NSE71W2 P2438AL P2438BA	4.74 4.74 2.35 2.35 2.35	1.26 1.26 2.032 2.032	1.823 1.823 2.918 2.918	Water holes Water holes Aluminum separator plates Boral-A separator plates Concer senarator plates	8 8 9 9

	NURE	EG/CR	L-636	1 积石		
Case No.	Case	Enric (wt %	h. Pitel	h H ₂ O/fue) volume	el Description	Reference No.
63	P2438SLG	2.35	2.03	2 2.918	Simple square lattice	9
64	P2438SS	2.35	2.03	2 2.918	Stainless steel separator plates	9
65	P2438ZR	2.35	2.03	2 2.918	Zircaloy-4 separator plates	9
66	P2615AL	4.31	2.54	0 3.883	Aluminum separator plates	19
67.	P2615BA	4.31	2.54	0 3.883	Boral-A separator plates	19
68	P2615CD1	4.31	2.54	0 3.883	Cadmium separator plates	19
69	P2615CD2	4.31	2.54	0 3.883	Cadmium separator plates	19
70	P2615CU	4.31	2.54	0 3.883	Copper separator plates	19
71	P2615SS	4.31	2.54	0 3.883	Stainless steel separator plates	19
72	P2615ZK	4.31	2.54	0 3.883	Zircaloy-4 separator plates	19
73	P2827L1	2.35	2.03	2 2.918	Lead reflecting walls	10
75	P2827L2	4 31	2.03	0 3 883	Lead reflecting walls	10
76	P2827L4	4.31	2.54	0 3.883	Lead reflecting walls	10
77	P2827SLG	2.35	2.03	2 2.918	Simple square lattice	10
78	P2827U1	2.35	2.03	2 2.918	Uranium reflecting walls	10
79	P2827U2	2.35	2.03	2 2.918	Uranium reflecting walls	10
80	P2827U3	4.31	2.54	0 3.883	Uranium reflecting walls	10
81	P2827U4	4.31	2.54	0 3.883	Uranium reflecting walls	10
82	P3314AL	4.31	1.89	2 1.60	Aluminum separator plates	11
83	P3314BA	4.31	1.89	2 1.60	Boral-A separator plates	11
84	P3314BC	4.31	1.89	2 1.60	Boral-C separator plates	11
85	P3314BF1	4.31	1.89	2 1.60	Boroflex separator plates	11
86	P3314BF2	4.31	1.89	2 1.60	Boroflex separator plates	11
87	P3314BS1	2.35	1.68	4 1.60	Borated steel separator plates	11
88	P3314BS2	2.35	1.68	4 1.60	Borated steel separator plates	11
89	P3314BS3	4.31	1.89	2 1.60	Borated steel separator plates	11
90	P3314BS4	4.31	1.89	2 1.60	Borated steel separator plates	11
	D22140D1		1.89	2 1.00	Contractioner and constant and at an	11
91	P3314CD1	4.31	1 40	4 160	Cadmium separator plates	11
91 92 93	P3314CD1 P3314CD2 P3314CU1	4.31 2.35 4.31	1.68	4 1.60	Cadmium separator plates Cadmium separator plates Conner separator plates	11 11 11
91 92 93 94	P3314CD1 P3314CD2 P3314CU1 P3314CU2	4.31 2.35 4.31 4.31	1.68 1.89 1.89	4 1.60 2 1.60 2 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates	11 11 11 11
91 92 93 94 Case	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation	4.31 2.35 4.31 4.31 Enrich.	1.68 1.89 1.89 Pitch (cm)	4 1.60 2 1.60 2 1.60 H ₂ O/fuel	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates	II II II Reference
91 92 93 94 Case No.	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3	4.31 2.35 4.31 4.31 Enrich. (wt %)	1.68 1.89 1.89 Pitch (cm)	4 1.60 2 1.60 2 1.60 H ₂ O/fuel volume	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Conner senarator plates	II II II Reference number
91 92 93 94 Case No. 95 96	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4	4.31 2.35 4.31 4.31 Enrich. (wt %) 4.31 4.31	1.68 1.89 1.89 1.89 1.89 1.892 1.892	4 1.60 2 1.60 2 1.60 2 1.60 H ₂ O/fuel volume 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Conner-cadmium senarator plates	II II II Reference number II
91 92 93 94 Case No. 95 96 97	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4 P3314CU5	4.31 2.35 4.31 4.31 Enrich. (wt %) 4.31 4.31 2.35	1.68 1.89 1.89 1.89 1.892 1.892 1.892 1.684	4 1.60 2 1.60 2 1.60 2 1.60 H ₂ O/fuel volume 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper separator plates	11 11 11 11 11 Reference number 11 11
91 92 93 94 Case No. 95 96 97 98	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5	4.31 2.35 4.31 4.31 (wt %) 4.31 4.31 2.35 2.35	1.68 1.89 1.89 1.89 1.892 1.892 1.684 1.684	4 1.60 2 1.60 2 1.60 2 1.60 H ₂ O/fuel volume 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper cadmium separator plates Copper separator plates	11 11 11 11 11 11 11 11 11
91 92 93 94 Case No. 95 96 97 98 99	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314SLG	4.31 2.35 4.31 4.31 (wt %) 4.31 4.31 2.35 2.35 4.31	1.68 1.89 1.89 1.89 1.892 1.892 1.892 1.684 1.684	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper separator plates Copper-cadmium separator plates Simple separator plates	11 11 11 11 11 11 11 11 11
91 92 93 94 Case No. 95 96 97 98 99 100	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314SLG P3314SL1	4.31 2.35 4.31 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31	1.68 1.89 1.89 1.89 1.892 1.892 1.684 1.684 1.684 1.892 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper -cadmium separator plates Copper separator plates Copper -cadmium separator plates Simple square lattice	11 11 11 11 11 11 11 11 11 11
91 92 93 94 Case No. 95 96 97 98 99 100	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314SLG P3314SS1 P3314SS2	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31	1.68 1.89 1.89 1.89 1.892 1.892 1.684 1.684 1.684 1.892 1.892 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper -cadmium separator plates Copper separator plates Copper -cadmium separator plates Simple square lattice Steel separator plates	11 11 11 11 11 11 11 11 11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314SLG P3314SS1 P3314SS2 P3314SS2	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.684 1.684 1.684 1.892 1.892 1.892 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper -cadmium separator plates Copper -cadmium separator plates Copper -cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103	P3314CD1 P3314CD2 P3314CU2 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314SU6 P3314SS1 P3314SS2 P3314SS3 P3314SS4	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.684 1.684 1.684 1.892 1.892 1.892 1.892 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS3 P3314SS4 P3314SS5	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.892	4 1.60 2 1.60 2 1.60 2 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS5 P3314SS5 P3314SS5	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 2.35 4.31 4.31 4.31 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.892	4 1.60 2 1.60 2 1.60 2 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS5 P3314SS5 P3314SS6 P3314V1	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 4.31 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.684 1.892	14 1.60 12 1.60 12 1.60 12 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS2 P3314SS3 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314W1 P3314W2	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684	14 1.60 12 1.60 12 1.60 12 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4 P3314CU4 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS3 P3314SS5 P3314SS5 P3314SS5 P3314S5 P3314W2 P3314W2 P3314W2	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.892 1.684 1.892	14 1.60 12 1.60 12 1.60 12 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314SS1 P3314SS2 P3314SS2 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314W1 P3314W2 P3314ZR P3602PA	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Batel separator plates Water holes Water holes Zircaloy-4 separator plates	11 11
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU3 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314CU5 P3314SS1 P3314SS2 P3314SS2 P3314SS3 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314SS6 P3314W1 P3314W2 P33142R P3602BA P3602BA	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Boral-B separator plates cad a contine wills	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	P3314CD1 P3314CD2 P3314CU1 P3314CU2 Case designation P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314CU5 P3314CU6 P3314SS1 P3314SS2 P3314SS1 P3314SS2 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314SS6 P3314W1 P3314ZR P3602BA P3602BS1 P3602BS1	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Boral-B separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314SS1 P3314SS1 P3314SS2 P3314SS5 P331	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Boral-B separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Codmium separator plates active and effecting walls	11 12 22 22 22 22 22 22 22 22 22 22 22 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314SS1 P3314SS2 P3314SS2 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314SS6 P3314W1 P3314W2 P3314ZR P3602BA P3602BS1 P3602CD1 P3602CD1	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS3 P3314SS5 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314W1 P3314SS5 P3314ZR P3602BA P3602BS1 P3602CD2 P3602CD2 P3602CU1	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.684 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892	14 1.60 12 1.60 12 1.60 12 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314SLG P3314SS1 P3314SS2 P3314SS2 P3314SS5 P3314CU2 P3602BS1 P3602CU2 P3602CU2	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.684 1.892 1.684	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Description Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper separator plates, steel reflecting walls	11 22 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S5 P3314S5 P3314S5 P3314S5 P3314S5 P3314S5 P3314S5 P3314S5 P3314S5 P3314ZR P3602BA P3602BA P3602BS1 P3602CD1 P3602CU2 P3602CU1 P3602CU2	4.31 2.35 4.31 2.35 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Boral-B separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S2 P3314S5 P3302CD2 P3602CD2 P3602CU2 P3602CU2 P3602CU2 P3602CU2 P3602CU3	4.31 2.35 4.31 4.31 4.31 4.31 4.31 2.35 2.35 4.31 2.35 4.31 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Copper separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	P3314CD1 P3314CD2 P3314CU1 P3314CU2 P3314CU2 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314SS1 P3314SS2 P3314SS2 P3314SS2 P3314SS5 P3304SS1 P3602CD1 P3602CD2 P3602CU1 P3602CU2 P36	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU4 P3314CU4 P3314CU4 P3314CU5 P3314CU4 P3314CU5 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S2 P3314S5 P	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 4.31 4.31 2.35 4.31	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.892 1.684 1.892	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Codmium separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU6 P3314S1 P3314S1 P3314S1 P3314S2 P3314S5 P331	4.31 2.35 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31 2.35 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.684 1.684 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.684 1.684 1.684 1.684	H ₂ O/fuel volume 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper cadmium separator plates Copper cadmium separator plates Copper cadmium separator plates Simple square lattice Steel separator plates Steel separator plates Boral-B separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314SS1 P3314SS2 P3314SS2 P3314SS5 P3314SS5 P3314SS5 P3314SS5 P3314SS6 P3314SS6 P3314V1 P3314ZR P3602BA P3602BS1 P3602CD1 P3602CD1 P3602CU2 P3602CU2 P3602CU2 P3602CU2 P3602CU2 P3602CU4 P3602CU1 P3602CU2 P3602CU4 P3602CU1 P3602CU2 P3602CU1 P3602CU2 P3602CU1 P3602CU2 P3602CU1 P3602CU1 P3602CU2 P3602CU1 P3602CU1 P3602CU2 P3602CU1 P3602CU	4.31 2.35 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 2.35 4.31 2.35 2.35 2.35 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.684 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684	14 1.60 12 1.60 12 1.60 160 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Comium separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S2 P3314S5 P3314CU2 P3602CD1 P3602CU1 P3602CU2 P3602CU3 P3602CU3 P3602CU1 P3602CU3 P3602CU1	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.684 1.684 1.684 1.684 1.684 1.684 1.684	14 1.60 12 1.60 12 1.60 160 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Copper cadmium separator plates, steel reflecting walls Copper cadmium separator plates, steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S2 P3314S5 P3302CD1 P3602CU	4.31 2.35 4.31 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684 1.892 1.684 1.684 1.892 1.684	14 1.60 12 1.60 12 1.60 12 1.60 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Cadmium separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls	11 12 22
91 92 93 94 Case No. 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	P3314CD1 P3314CD2 P3314CU2 P3314CU2 P3314CU2 P3314CU3 P3314CU4 P3314CU5 P3314CU5 P3314CU5 P3314CU6 P3314CU6 P3314S1 P3314S2 P3314S2 P3314S2 P3314S5 P3302CD1 P3602CU1 P3602CU3 P3602	4.31 2.35 4.31 4.31 4.31 4.31 2.35 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 4.31 2.35 2.35 4.31 2.35 2.35 4.31 2.35	1.68 1.89 1.89 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684 1.892 1.684	14 1.60 12 1.60 12 1.60 160 1.60 1.60	Cadmium separator plates Cadmium separator plates Copper separator plates Copper separator plates Copper separator plates Copper separator plates Copper-cadmium separator plates Copper-cadmium separator plates Copper-cadmium separator plates Simple square lattice Steel separator plates Steel separator plates, steel reflecting walls Borated steel separator plates, steel reflecting walls Copper separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Copper-cadmium separator plates, steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls Steel reflecting walls	11 12 22

Case No.	Case designation	Enrich. (wt %)	Pitch (cm)	H ₂ O/fuel volume	Description	Reference number
125	P3602N32	4.31	1.892	1.60	Steel reflecting walls	22
126	P3602N33	4.31	1.892	1.60	Steel reflecting walls	22
127	P3602N34	4.31	1.892	1.60	Steel reflecting walls	22
128	P3602N35	4.31	1.892	1.60	Steel reflecting walls	22
129	P3602N36	4.31	1.892	1.60	Steel reflecting walls	22
130	P3602N41	4.31	2.540	3.883	Steel reflecting walls	22
131	P3602N42	4.31	2.540	3.883	Steel reflecting walls	22
132	P3602N43	4.31	2.540	3,883	Steel reflecting walls	22
133	P3602SS1	2.35	1.684	1.60	Steel separator plates, steel reflecting walls	22
134	P3602SS2	4.31	1.892	1.60	Steel separator plates, steel reflecting walls	22
135	P3926L1	2.35	1.684	1.60	Lead reflecting walls	12
136	P3926L2	2.35	1.684	1.60	Lead reflecting walls	12
137	P3926L3	2.35	1.684	1.60	Lead reflecting walls	12
138	P3926L4	4.31	1.892	1.60	Lead reflecting walls	12
139	P3926L5	4.31	1.892	1.60	Lead reflecting walls	12
140	P3926L6	4.31	1.892	1.60	Lead reflecting walls	12
141	P3926SL1	2.35	1.684	1.60	Simple lattice	12
142	P3926SL2	4.31	1.892	1.60	Simple fattice	12
143	P392601	2,35	1.684	1.60	Uranium reflecting walls	12
144	P3926U2	2.35	1.084	1.60	Uranium reflecting walls	12
145	P3926U3	2.35	1.084	1.60	Uranium reflecting walls	12
140	P392004	4.51	1.092	1.60	Uranium reflecting walls	12
147	P3026U6	4.51	1.892	1.60	Uranium reflecting walls	13
140	P392000	4.31	1.892	1.50	Borated H-O	13
149	P4267B1	431	890	1.59	Borated H ₂ O	13
151	P4267B3	431	1 715	1 090	Borated H ₂ O	13
152	P4267B4	4 31	1.715	1.090	Borated H ₂ O	13
153	P4267B5	4.31	1.715	1.090	Borated H ₂ O	13
Case No.	Case designation	Enrich. (wt %)	Pitch (cm)	H ₂ O/fuel volume	Description	Reference number
154	P4267SL1	4.31	1.890	1.59	Borated H ₂ O	13
155	P4267SL2	4.31	1.715	1.090	Borated H ₂ O	13
156	P49-194	4.31	1.598	0.509	Simple hexagonal lattice	14
157	P62FT231	4.31	1.891	1.60	Boral flux traps, no void material	20
158	P71F14F3	4.31	1.891	1.60	Boral flux traps, void material fuel rods	21
159	P71F14V3	4.31	1.891	1.60	Boral flux traps, void material Al plates	21
160	P71F14V5	4.31	1.891	1.60	Boral flux traps, void material Al rods	21
161	P71F214R	4.31	1.891	1.60	Boral flux traps, no void material	21
162	PAT80L1	4.74	1.6	3.807	Boral separator plates, lead reflecting walls	23
163	PATROL2	4 74	1.6	3 807	Boral separator plates, lead reflecting walls	23
164	PAT80SS1	4.74	1.6	3.807	Boral separator plates, steel reflecting walls	23
165	PAT80SS2	4 74	16	3 807	Boral separator plates, steel reflecting walls	23
166	W3269A	57	1 422	1 93	Ag-In-Cd rods	15
167	W3269B1	37	1.105	1 432	Ag-In-Cd rods	15
169	W2260B2	37	1.105	1.432	A g-In-Cd rode	15
160	W2260D2	3.7	1.105	1.432	Ag-In-Cd rods	15
109	W226965	3.7	1.105	1,452	Ag-In-Cu rods	15
170	W2269C	2.72	1.524	1.494	Simple course letting	15
171	W32095L1	2.12	1.524	1.494	Simple square lattice	15
172	W32695L2	5.7	1.422	1.93	Simple square fattice	15
173	W3269W1	2.72	1.524	1.494	Water holes	15
174	W3269W2	5.7	1.422	1.93	Water holes	15
175	W3385SL1	5,74	1.422	1.932	Simple square lattice	16
176	W3385SL2	5.74	2.012	5.067	Simple square lattice	16
177	YDR14PL2	2.00	-	8.23	Homogenized $U(2)F_4$ in paraffin	27
	YDR14PL3	3.00	-	4.05	Homogenized U(3)F4 in paraffin	27
178	101011100					
178 179	YDR14UN2	2.00	•	5.95	Homogenized $U(2)F_4$ in paraffin	27

資料來源: NUREGCR-6361, "Criticality Benchmark Guide for Light-Water-Reactor Fuel in

Transportation and Storage Packages," NRC, Washington, DC, March 1997

3.3 核臨界實驗驗證

本節參考臨界實驗相關文獻[27],說明如何應用臨界實驗資料驗證計算機程 式,得到此計算機程式之偏差值(Bias)及不準度。首先考量預計算之問題的屬性, 選定適當的核臨界計算程式,常見的有 MCNP 及 KENO 等程式,接著了解計算 問題的類型,若屬於中濃縮度鈾燃料可以參考文獻[28],討論 MCNP5 計算鈾濃 縮度 2.35wt%~17wt%臨界實驗時,所造成的偏差值(Bias)及不準度;若屬於乾式 貯存相關臨界實驗,可參考 NUREG/CR-6361[24]。表 7 為臨界實驗相關參數, 在眾多的臨界實驗中,依其需要挑選系統中可裂原素種類及其型式、水鈾比、濃 縮度、緩速劑及反射體材料形狀等因素,整理計算核臨界問題時的各相關參數, 再挑選適當的臨界實驗進行計算。挑選適合的臨界實驗組合後,以程式進行相關 的模擬計算,並透過適當的統計方法分析,得到計算機程式的偏差值(Bias)及不 準度。

	衣/8	而介貝砌伯關今致	
	Parameter	Process data	
	Fissile material	²³⁵ U in UO ₂ F ₂	
	Fissile form	UO_2F_2 compound form (normal condition) UO_2F_2 solution (upset condition)	
	Moderation (H/X)	20 (normal condition) 600 (abnormal – estimated optimum moderation)	
	Enrichment (% U-235)	1–5% (analyzed at 5%)	
	Uranium concentration	Minimal to 3000 g/l	
	Moderating material	Water	
	Other materials	Predominant elements are Na, F, C	
	Reflecting material	Unreflected (light steel) – normal condition Water reflected – abnormal condition	
	Geometry	Cylinders and arrays	
	Heterogeneity/Homogeneity	Homogeneous system	
	Neutron energy	Unknown, estimated to be intermediate to thermal energy spectrum	
資料來源:S.H.	Finfrock, "MCNP5 Critic	ality Validation and Bias for Intermediate	
Uranium Systems	s," CHPRC-00455, Decem	ber 2009	

表 7 臨界實驗相關參數

本節就文獻 Criticality Experiments with Subcritical Clusters of 2.35 and 4.31wt% ²³⁵U-Enriched UO₂ Rod in Water with Steel Reflecting Walls[29]中,由

Pacific Northwest Laboratory 的 Berman 及 E.D. Clayton 在 Battelle-Operated Critical Mass Laboratory 中做一系列實驗,本節以挑選其中實驗說明以 MCNP 程 式驗證過程。

3.3.1 臨界實驗問題描述

臨界實驗裝置為長 x 寬 x 高為 300x180x210 立方公分之長方形槽型,裝填 4.31wt%²³⁵U燃料。圖 10 為燃料棒幾何尺寸及材料組成,圖 11 為實驗裝置照 片,圖 12 為實驗裝置俯視圖及側視圖,圖 13 為不鏽鋼反射牆的幾何尺寸及材 料組成。在中央燃料叢集的 y 方向的兩旁放置 Boral 材料的吸收板,其厚度為 2.92 公厘(包含護套厚度 0.38 公厘)。兩燃料叢集之間的間距大小為 7.823 公分,燃料 叢集與 x 方向的反射牆之間的間距大小為 1.956 公分,反射牆的厚度為 17.85 公 分。臨界實驗燃料中²³⁵U 的濃縮度為 4.31wt%,燃料棒的間距為 1.892 公分。表 8 為中子吸收板材料組成,表 9 為 4.31wt%²³⁵U 燃料實驗設置狀態。

		Boral ^o				6061		Тур	e 304L Stainless S	iteel		
(wt%) ^a	Boral A	Boral B	Boral C	Copper-Cadmium	Copper	Aluminum	Zircaloy-4	No Boron	1.1 wt% Boron	1.6 wt% Boron	Cadmium	Boroflex
huminum	6239 + 28	61.21°	59.26°			97.15 ±0.21						
Roton	28 70 ±0.25	30.36°	31.88 ^c	0.005					1.05 ±0.08	1.62 ± 0.10		32.74 ± 0.05
Carbon	797 ±0.41	8.43°	8.86 ^c	0.002	0.340							21.13 ± 0.03
Hydroaen												2.65 ± 0.31
Cadmium				0.989 ± 0.003							99.7 ± 0.3	
Calaium												
Chromium	0.05					0.21	0.13 +0.04	18.56 ±0.10	19.03 ±0.10	19.60 ±0.10		0.03 ± 0.02
Capper	0.09			98.685 ± 0.300	99.60 ± 0.14	0.12		0.27 ±0.05	0.28 ±0.05	0.26 ±0.05		
Lion	0.33 +0.04	0.02	0.05	0.020	0.004	0.82	0.21 ±0.03	68 24 ± 0.34	68.04 ± 0.34	66.40 ± 0.33		0.05 ± 0.06
Magnesium	0.05	0.01	0.01		0.002			===				
Managan	0.05			0.009		0.21		1 582 ± 0.05	1.58 ± 0.05	1.69 ± 0.05		
Maliganese	0.05							0.26 ± 0.05	0.49 ± 0.05	0.31 ± 0.05		
Codium	0.02	0.02	0.02		0.002							
Niekal	0.02			0.010				11.09 ± 0.06	9.53 ± 0.05	10.12 ± 0.05		
Oxygen				0.019	0.030							21.01 ± 0.01
Cilling	0.20		0.06	0.004	0.020	0.82						22.39 ± 0.24
Shicon	0.20			0.250			1.50 ±0.27					
Sulfur	0.03				0.002	0.06						
Titanium	0.03					0.61						
Zino	0.10			0.007							0.3	
Zirconium							98.16 ± 0.35					
Density (g/cm ³)	2.49	2.50	2.47	8.910	8.913	2.692	6.32	7.930	7.900	7.770	8.650	1.731
Densky (g/cm)	2.47		0.011 + 0.012	0.367 + 0.008	0.646 + 0.008	0.635 + 0.001	0.653 + 0.000	0.495 1.0.015	0.200 + 0.004	0.709 + 0.006	0.061 ± 0.003	0.226 + 0.004
Thickness ^d (cm)	0.713 ± 0.011	0.292 ± 0.013	0.231 ± 0.013	0.337 ± 0.008	0.337 ± 0.008	0.023 ± 0.001	0.032 ± 0.008	0,465 ± 0.015	0.276 ± 0.006	0.276 ± 0.000	0.001 1 0.003	0.452 ± 0.004

資料來源: Bierman, S.R., and Clayton, E.D.[29]

Neutron Absorb	per ^a	19.02 mm	Critical
Material	Thickness (mm)	Square Pitch Fuel Clusters ^b	Fuel Clusters ^c (mm)
None		3-12 × 16	158.4 ± 0.2
Type 304L stainless steel	3.02 ± 0.13	3-12 × 16	137.5 ± 0.6
Type 304L stainless steel with 1.1 wt% boron	2.98 ± 0.06	3-12 × 16	98.3 ± 0.4
Boral B	2.92 ± 0.13	3-12 X 16	83.0 ± 0.3
Boroflex	5.46 ± 0.18^{d}	3-12 X 16	83.7 ± 0.2
Cadmium	0.61 ± 0.03	3-12 X 16	89.4 ± 0.6
Copper	3.37 ± 0.08	3-12 X 16	134.7 ± 0.4
Copper-cadmium	3.57 ± 0.08	3-12 X 16	105.7 ± 0.2

*Error limits are one standard deviation.

^aAbsorber plates, 302 mm wide X 915 mm long, each centered on middle fuel cluster at outer cell boundary.

^bNumber and size of fuel clusters, rods long X rods wide, aligned in a row.

Perpendicular distance between the fuel clusters, rod surface to rod surface.

"Includes 1.60-mm-thick Plexiglas on either side of 2.26- \pm 0.04-mm-thick Boroflex.

資料來源: Bierman, S.R., and Clayton, E.D.[29]

3.3.2 程式模擬臨界實驗設置

依據上述資料,將實驗設施的幾何尺寸及材料組成依程式與法寫入,若使用 MCNP 程式,輸入檔分成 Cell、Surface 及 Data 部分,Cell 與 Surface 部分依照 文獻中提供之燃料棒、燃料晶格及系統的幾何尺寸輸入,Data 卡片中 Material 依照文獻材料組成輸入,MCNP 程式在 Material 部分有重量百分比及原子密度比 兩種輸入方式,其中特別注意原子密度的計算。另外 Data 則放中子在各 Cell 間 的權重及射源位置描述。另外需特別考慮程式的靈敏度,在 MCNP 程式中可選 擇模擬粒子個數、忽略週期數及有效週期數,在計算臨界實驗相關問題,需考量 程式靈敏度及計算結果的保守性。 如表 10[28]模擬許多同類型臨界實驗後,計算其中子增殖因數後,需使用 適當的統計方法,得到計算機程式的偏差值(Bias)及不準度。表 10 為文獻[28] 以 MCNP 程式計算中濃縮度鈾燃料所得中子增殖因數,其中 K_{norm} 為程式計算的 K_{MCNP} 與臨界實驗值 K_{bench} 的比值,統計誤差 σ^2_{total} 為 σ^2_{bench} 及 σ^2_{MCNP} 相加。

	表 10 以程	式計算;	各臨界	て實驗で	中子增殖	因婁	文	
Case Name	kbench	σ _{bench}		KMCNP	σ _{MCNP}		k _{norm}	σ _{total}
ICT-002-001	1.0014	0.0039).9936	0.0007		0.9922	0.0040
ICT-002-002	1.0019	0.0040).9975	0.0008		0.9956	0.0041
ICT-002-003	1.0017	0.0044	().9986	0.0007		0.9969	0.0045
ICT-002-004	1.0019	0.0044	().9933	0.0008		0.9914	0.0045
ICT-002-005	1.0014	0.0043).9931	0.0007		0.9917	0.0044
ICT-002-006	1.0016	0.0044).9875	0.0007		0.9859	0.0045
LCT-002-001	0.9997	0.0020	().9929	0.0020		0.9932	0.0028
LCT-002-002	0.9997	0.0020).9947	0.0019		0.9950	0.0028
LCT-002-003	0.9997	0.0020).9994	0.0019		0.9997	0.0028
LCT-002-004	0.9997	0.0020).9983	0.0020		0.9986	0.0028
LCT-002-005	0.9997	0.0020).9942	0.0019		0.9945	0.0028

3.3.4 統計方法

1998年時由橡樹國家實驗室(ORNL)發展出USLSTATS[30]程式,其中採 USL-1 (Confidence Band with Administrative Margin)及 USL-2(Single Sided Uniform with Close Approach)兩種計算模式,以統計分析方法來產生次臨界上限 值(Upper Subcritical Limit)。程式為自動化程式,使用者輸入臨界實驗提供的數 據,其中包含臨界實驗計算的有效中子增殖因數、燃料濃縮度(wt % 235U)、燃 料棒間距及促成分裂之中子能量昏度(Energy of average neutron lethargy causing fission, EALCF)等等參數,程式結合統計誤差、模擬程式偏差值及實驗偏差值作 線性回歸分析,求得次臨界上限值(USL)。而此程式在計算類似問題時,計算之 中子增殖因數加上統計誤差,仍然小於 USL,表示程式有相當的保守性。

$K_s + \Delta K_s \le USL$

一般針對核子設施在正常及異常狀況下,計算其有效中子增殖因數是否低於 次臨界上限值,以驗證核子設施是否處於次臨界狀態。而分析計算結果中由於臨 界實驗值與模擬程式計算差值及統計誤差,所產生的平均偏差值(mean of the bias) 與該值的標準偏差(standard deviation of the mean)會應用在次臨界限值分析的 結果上。

分析模擬程式計算值與臨界實驗值誤差來源分析,一般而言,針對緩和劑與 燃料比(H/U、Vm/Vf)、中子能譜(促成分裂之中子能量昏度、平均中子能群)進 行分析。而系統幾何與材質組合與其他參數則對次臨界上限值影響不大。

USLSTATS 程式說明:

依據 USLSTATS 使用手册中介紹,該程式藉由以下參數產生適當的次臨界 上限值:

- P, proportion of population falling above lower tolerance level (P=0.995)
- 1- γ , confidence on fit (1- γ =0.95)
- α , confidence on proportion P ($\alpha = 0.95$)
- X_{min}= minimum value of parameter X for which USL correlations are computed
- X_{max}= maximum value of parameter X for which USL correlations are computed
- σ_{smaple} = estimate in average standard deviation of all input values of K_{eff}
- ΔK_m = administrative margin used to ensure subcriticality.

在表 11 USLSTATS 分析結果中,各參數以函數逼近方式表示。在圖 14-圖 17 有效中子增殖因數與 USLSTATS 回歸分析比較中可見,以程式計算之各有效 中子增殖因素以圓點表示,長虛線為臨界實驗中各有效中子增殖因數組成之線性 回歸曲線(Kc(x)),虛線部份為信心下限帶(lower confidence bend)(Kc(x)-W), 其中W為使用者輸入之實驗參數及信心指數的統計結果。實驗數據中較大的標 準差及更高的信心指數則有較大的W值。W值的定義如下:

 $W=\max\{w(x)=|x-\min,x-\max\}$

其中 w(x)為各有效中子增殖因數計算之標準差及回歸分析逼近之標準差組 合成的曲線函數,而 w(x)數值則取決於臨界實驗的數目。一般來說,W 建立於 95%信心指數上計算。

表 11 USLSTATS 分析結果							
Trending Parameter	USL Equation (Method 1)	Trending Parameter Range	USL at X=0 intercept				
EALF	0.9353 + (-4.4477E+02)*X	3.46E-08 <= X <= 2.78E-06	0.934				
V_m/V_f	0.9348 + (3.7479E-05)*X (X < 126.06) 0.9395 (X >= 126.06)	0.0000 <= X <= 146.48	0.935				
²³⁵ U/U	0.9338 + (2.7358E-02)*X	2.35E-02 <= X <= 0.17000	0.934				
H/(U+Pu)	0.9386 + (2.5141E-06)*X	39.943 <= X <= 1437.5	0.939				

第四章、燃耗額度(BURNUP CREDIT) 驗證

如果考量用過燃料之燃耗效應,所得之臨界值,比使用新燃料(未用過的燃料,其燃耗值為 0),計算分析所得的臨界值低,此時所獲得的臨界餘裕或降低的反應度,則稱為 Burnup Credit (燃耗額度),但這多的餘裕,僅是因為計算分的假設不同所獲得的。但是燃耗效應不一定增加餘裕,也可能是減少餘裕,因為如有中子毒物的存在,燃耗增加時其毒物的數量也會減少,此時反應度會增加, 使得餘裕減少。

臨界計算如果考量燃耗效應,其考慮的因素為組成的改變,因為燃耗後其燃料的組成(包含燃料及中子吸收物)會有所改變。因此,計算分析必須考慮,燃耗的正確性,燃料組成(燃耗後)之正確性,以及臨界值(燃耗後)的正確性三者。另外是應用方面,由於臨界分析考量的是臨界安全,因此管制單位考慮的是臨界值的保守性,因此如何選擇分析條件,及統計分析的誤差,確保臨界值的保守。本章首先討論燃耗額度的程式驗證,決定偏差值及不準度。

4.1 Kopp Memo

1996年西屋公司的 topical report 中使用 Burnup Credit,為了新的審查的因應,Larry Kopp[12]寫了一個 NRC 備忘錄,並在核能工業廣泛應用,同時適用於 PWR 及 BWR。就是使用燃耗計算分析時,必須使用 5%的不準度來處理燃耗的 偏差及不準度。舉例來說:當新燃料的增值因素為 1.25 但是在燃耗值 48Mwd/kg 時,其增值因素降為 0.85 約降 40%Delta-k,但是依照 Kopp Memo 則必須考慮 40%*5%=2% Delta-k 的不準度,因此增值因素是提高至 0.87。因為在爐心營運處 理燃耗的情形,其誤差或不確定度應該是在 5%之內。但是這個工程師的專業假 設,卻沒有任何說明如何決定是 5%,缺乏論證基礎。因此近年來遭到挑戰,希 室能更保守來處理 uncertainty 的問題。 2010 年底 NRC 更改 Kopp memo 的意思[15],而指 5%的 Δk 之燃耗 uncertainty 是使用在同位素的誤差,而非使用在同位素及反應度的誤差上。要求審查者必須 注意用過燃料必須考量 actinides 和 fission products。雖然有提及 actinides 可以參 考 Haut Taux de Combustion (HTC) critical experiments,但未提及 Fission products 的處理,因此報告通常會增加 Fission product 影響的 5%,但實際上這項影響之 Δk 遠小於燃耗所造成的 Δk ,因此結果與 Kopp memo 類似。

4.2 燃耗額度驗證

對於不使用 burnup credit 的情形,臨界驗證主要是3個步驟:

a. 選擇 UO₂ 新燃料的臨界驗證實驗

b. 使用臨界模擬程式分析臨界實驗

c. 使用統計方法決定模擬分析的偏差(bias)及不確定度(uncertainty)

由於 OECD-NEA 完成一本 "International Handbook of Evaluated Criticality Safety Benchmark"[23] 其中包括 UO₂ 及 MOX 的臨界實驗。因為臨界實驗的數量 增加,所以在應用上,選擇哪些實驗來驗證,必須進行敏感度分析來選擇適合應 用的臨界實驗。敏感度分析可以使用 SCALE 的 TSUNAMI 的模組。此模組可產 生各相關係數 C_k來決定臨界實驗與實際應用間的相關性,最好是 0.8 以上[31-32]。 所以如果是新燃料的臨界計算,似乎不需要 TSUNAMI 的模組,但是用過燃料的 計算,也就是 Burnup credit 的應用上,TSUNAMI 的模組顯示要將納入 MOX 燃 料的分析,除此之外,燃耗 (Depletion) 過程中,程式所造成的偏差及不準度, 也需要考量。燃耗的程式主要是考慮同位素的組成的變化,包含中子活化,衰變 等過程。公式 34。

$$\frac{dN_A(t)}{dt} = -(\sigma_A^a \phi + \lambda_A) N_A(t) + \sigma_C^{\gamma} \phi N_c(t) + \lambda_B N_B(t) \quad (\ \& \ \exists \ 34)$$

說明臨界分析有無燃耗額度考量的不同,如果無燃耗額度分析,臨界程式僅 要與二氧化鈾燃料的臨界實驗比較,找到偏差與不準度,再針新燃料的特性進行 臨界分析,獲得用過燃料擺放的限制條件,如圖 18 虛線圓所標示。但是如果針 對燃耗額度分析,那麼臨界實驗需要加入 MOX 的臨界實驗及超鈾元素和分裂產 物的臨界實驗,整合求得臨界的偏差及不準度,作為臨界程式分析之用。但是燃 耗的偏差及不準度會造成化學組成的變化,因此利用化學組成的實驗,來獲得燃 耗程式的偏差及不準度。整合燃耗及次臨界分析,獲得用過燃料貯存的裝載曲線 或限制條件。

對於以上複雜的程序,NRC 首先用 Kopp Memo 來規範,但是目前傾向於 有依據的實驗驗證。以下將針對實驗驗證的方法做說明。

4.2.1 化學組成及本領的實驗(Chemical assays and worth experiments)

ORNL(橡樹嶺國家實驗室)建議 NRC 使用兩個偏差及不準度:同位素含 量的誤差與不準度及反應度本領的不準度。所以化學含量的實驗資料而決定化學 組成偏差及不準度,原則上是將用過燃料移出爐心並切下燃料的一小塊,並由化 學組成(分裂產物)來決定其燃耗,再來的實驗就是這些化學組成的反應度本領 的實驗(worth experiments)。OECD SFCOMPO database[33]就是其中之一的資料 庫,但是早期實驗並不是所有的化學組成,而使以U及 Pu 為主的超鈾元素,目 前資料庫開始增加分裂產物資料。利用這些實驗,臨界程式+燃耗程式可以驗證 燃耗額度的偏差與不準度。

燃耗額度的考量,首先保守的考量是僅選擇主要超鈾元素,目前建議的超鈾 元素,包含 U234, U235, U238, Pu238, Pu239, Pu240, Pu241, Pu242, Am241, 但是 如考量分裂產物,則燃耗額度可以增加,因此建議如果考量分裂產物,則同位素 中分裂產物及及不重要的超鈾元素包含 Mo95, Tc99, Ru 101, Rh103, Ag109, Cs133, Sm147, Sm149, Sm150, Sm151, Sm152, Nd143, Nd145, Eu151, Gd155, U236, Am243, Np 237 等。圖 19 顯示,考慮分裂產物及超鈾元素,比僅考慮超 鈾元素可以擺放的條件更為彈性。

燃耗額度的偏差與不準度最簡單的想法是,採用同位素的修正因子 (Correction Factors),經由計算與實驗其同位素含量比值來求得,針對每個燃耗 額度的同位素由偏差及不準度來保守的調整含量,再以這些調整輸入臨界安全分 析(如圖 20)。目前法國是採用這種作法,美國在 ANSI 8.27. "Burnup Credit for LWRs"有提到此修正因子,這個方法的壞處是過於保守,因為假設每一個同位 素都不是保守的預測,但其實不然。

目前美國在貯存上是採用直接不同的比較(direct difference)[35]在一個燃 料中其化學組成,由實驗得知,然後輸入臨界分析計算其k值,還有 depletion code 預期的同位素化學組成,也輸入臨界分析計算k值,這兩者k值差異是來自所有 的同位素組成的差異,如果可以有n個化學組成的k值差異,因此獲得這k值差 異的平均值。而這個偏差是燃耗的函數(如圖 21)。此方法的問題,是實驗並未 將所有的化學組成都有分析,因為有些產物對反應度的影響很小,舉例來說 actinides 似乎是對於反應度影響較大的分裂產物,因此如果只考慮 actinides 似 乎合理。

Criticals for Burnup Credit", 2003 [35]

BWR 的作法稍有不同,雖然也是依據實驗數據評估同位素含量在燃耗下的 偏差與不準度。但對於安全分析的 K 值的不準度與偏差是針對燃耗過程中的反 應度峰值做分析其偏差與不準度,因此將不會有燃耗的關係,其峰值多發生在 11GWD/MTU 附近,這時可燃的中子吸收物 Gd 多半已經燃耗殆盡。

除了 Direct Difference, ORNL 利用 Monte Carlo 法,對於每個同位素做化學 組成誤差的分佈 ,所有的化學組成實驗的結果皆作為偏差分佈的計算,然後將 燃耗與偏差分佈函數的關係建立(如圖 22),並利用分佈函數進行 Monte Carlo 法, 隨機選取其偏差值,最後可以得到平均的偏差及不準度。ORNL 發現,他所計算 的例子,因為同位素的含量誤差造成約 1.6%k 的誤差。以用過燃料池為例, 50GWD/MTUC 的誤差,為 0.7%的偏差及 1.8%的不準度,這也和 direct difference 的方法結果類似。這種方法的缺點是費時,如果有 10 種濃縮度,目前計算時間

約2500個小時。

資料來源: G. Radulescu, et al., An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analysis – Isotopic Composition Predictions, International Conference on Nuclear Criticality, ICNC 2011, 19th-23td September 2011, Edinburgh, Scotland, Paper and Presentation material [36]

利用蒙地卡羅法來分析同位素的分佈,再進行燃耗額度的不準度分析,PWR

及 BWR 的燃耗額度之偏差及不準度,分別表示在表 12 及表 13,注意 BWR 並 無燃耗的偏差及不準度,而是指反應度峰值的偏差及不準度。

		6				
Burnup ^a	Initial wt %	keff bias ^c	keff bias	Initial wt %	keff bias c	keff bias
(GWd/MTU)	235U ^b		uncertainty ^d	235U ^b		uncertainty d
5	2.08	0.0043	0.0154	2.28	0.0038	0.0148
10	2.23	0.0040	0.0152	2.49	0.0034	0.0150
18	2.63	0.0050	0.0150	3.12	0.0031	0.0145
25	2.93	0.0050	0.0145	3.55	0.0034	0.0154
30	3.21	0.0052	0.0145	4.00	0.0028	0.0148
40	3.68	0.0064	0.0167	4.70	0.0034	0.0168

表 12 PWR Storage Rack 的燃耗額度偏差與不準度

^aAssembly average burnup.

^bFuel initial enrichment value is so that the *keff* value for the assembly average burnup is0.99.

^cPositive *keff* bias values are typically not credited in criticality safety analyses.

^dUncertainty in *keff* at a 95% probability, 95% confidence level.

資料來源:NUREG/CR-7108[37]

表 13 BWR Storage Rack 的燃耗額度偏差與不準度

Fuel compositions ^{<i>a</i>}	<i>keff</i> bias ^b	<i>keff</i> bias uncertainty ^c
Actinide nuclides	0.0010	0.0287
Actinide and fission product nuclides	0.0017	0.0316

^aNuclide concentrations correspond to fuel peak reactivity achieved during irradiation.

^bPositive *keff* bias is typically not credited in criticality safety analyses.

^cUncertainty in *keff* at a 95% probability, 95% confidence level.

資料來源: NUREG/CR-7108[37]

4.2.2 EPRI 對於 PWR 的處理方式

2011年 EPRI 針對反應器中燃料的反應度隨燃耗變化進行一系列研究,透過 比較傳統以解析方法(Analytical Method)為主的模擬計算程式與實驗結果進行分 析,其結果列於 2011 年發行之 Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty 技術報告中[38]。超過 600 個實際運轉壓水式反應器爐心中 中子通率分布圖資料來自於 Catawba 與 McGuire 電廠共44 個週期的運轉資料, 其中使用 Studsvik Scandpower 公司發行之 CASMO 與 SIMULATE-3 進行反應器 的模擬分析,配合實際量測資料,構成約 2500 個實驗燃耗從 0 到 55 GWD/MTU 的實驗驗證資料庫。利用爐心營運的程式計算反應器內的功率分布,並與儀器所 量得的功率比較,並將分為 sub-batch (燃料型式、濃縮度,中子吸收物),利用 擾動的技巧,降低兩者誤差的 rms(root-means-squre),給予一個倍數因子(Mb, multiplicative factor) 修正燃耗,找出修正後的因子會使 rms 降到最低。由於是 熱功率時(hot full power)的量測及計算,所以從熱功率至冷卻,其間的誤差是採 用臨界分析程式 Scale 程式的 Tsunami 模組來確認 HFP 至冷卻的偏差與不準度。

利用分析的結果修正 CASMO 的程式,再以修正過的程式(biased code system),產生驗證數據庫,這數據庫的偏差與不準度與程式相關,但驗證數據 不會因程式系統而有所不同(not sensitive to the code)。驗證報告中包含11種不 同的運算條件,討論其中子增殖因數隨六個不同燃耗值(10,20,30,40,50,與60 GWD/MTU)變化情形。此66種情況在分為三種不同的冷卻時間,分別為100小 時後、五年後及15年後。因此,驗證報告共提供11*6*3=198種情況之中子增 殖因數以計算其變化量。

2012年出版之 Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation 技術報告[39]使用 2011 年發行之 Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty 技術報告的驗證數據庫,進行 PWR 燃料反應度 隨燃耗變化的討論。報告中使用美國 NRC(Nuclear Regulatory Commission)資助 ORNL 起源發展 SCALE 6.1 (Standardized Computer Analyses for Licensing Evaluation)模組化中 KENO-V.a 程式及美國 Los Alamos 國家實驗室發展的 MCNP(Monte Carlo Neutron and Photon Transport Code System)程式進行臨界分析, 報告中以此兩程式搭配 ENDF/B-V 與 ENDF/B-VII 進行計算分析及驗證。

燃耗額度的考量下,在 ANSI/ANS-8.27 報告[40]定義次臨界的要求,Kp必須要小於相同組態之核臨界實驗計算之中子增殖因數 Kc。

$$K_p \le K_c - \Delta K_p - \Delta K_c - \Delta K_m \quad (\triangle \ddagger 35)$$

考慮反應度隨燃耗變化情形時,可以增加核種組成成分之不準度及燃耗 點的不準度,方程式修正為:

 $K_{p} + \Delta K_{p} + \Delta K_{i} + \Delta K_{b} \le K_{c} - \Delta K_{c} - \Delta K_{x} - \Delta K_{m}$ (公式 36) 其中:

K_p: 為此系統經由程式計算所得之中子增殖因數

△K_p:為計算中子增殖因數K_p之不準度

△Ki: 在燃耗過程中計算核種組成成分之不準度所造成計算中子增殖因數

Kp之偏差值及不準度,此數值△Ki由化學定量分析方法得之

△Kb:為計算之燃耗點的不準度造成計算中子增殖因數Kp之不準度

K_c:為經由臨界實驗計算所得之中子增殖因數

 ΔK_c :為計算中子增殖因數 K_c 之不準度

ΔK_x:在臨界實驗中計算核種組成成分對反應度貢獻之不準度所造成中子 增殖因數 K_c之偏差值及不準度

 ΔK_m :為計算其他未知因素造成的不準度,為一安全餘裕

如將燃耗的因素所產生的誤差一同考量(化學組成及燃耗點),就是將 Δ K_i與 Δ K_x換成 Δ K_d,

 $K_p + \Delta K_p + \Delta K_b \le K_c - \Delta K_c - \Delta K_d - \Delta K_m \qquad (\Delta \not \exists 37)$

方程式中△K_d 表示偏差值與不準度來自於用過核燃料與新燃料之間的差異性。可以利用 EPRI 的 Benchmark 所提供的燃耗的 k 及程式所計算的 k 比較而得。

以報告的內容看,大量的計算及實驗資料的比對,EPRI的方法對於 Depletion 所造成的Δk 是直接可以適用於 Burnup credit. 其偏差與不準度包括了同位素和 其本領,所以不用化學組成實驗及本領測試實驗。

4.2.3 BWR 的處理方式

目前 BWR 仍採用化學組成的誤差來討論燃耗額度的不準度,但是不同的是 BWR 所需要的是燃耗過程中反應度峰值的不準度(如圖 23)。

類似 EPRI 處理 PWR 的方式,也開始有人討論,因為商業用的 BWR 有許 多臨界測試是在冷爐時所做的,如果可以利用這些數據,將可以驗證燃耗額度的 偏差與不準度。困難的是 BWR 的燃料十分複雜,很難用臨界程式來模擬,因此 如果利用爐心營運程式來模擬這些實驗數據,再經由爐心營運程式產生較簡化的 驗證數據,提供臨界程式驗證燃耗額度,看來也是一個方法。

4.3 燃耗額度研究相關的資料

由於燃耗額度對於貯放的臨界影響很大,所以 NRC 也請研究單位主要是 ORNL 進行相關的分析,顯示部分相關的研究報告及其摘要。

報告	報告名稱	內容簡介									
NUREG/CR-6665	Review and Prioritization Reviewed application areas										
	of Technical Issues	Reviewed previous technical studies									
	Related to Burnup Credit	Reviewed/identified parameters/phenomenon									
	for LWR Fuel	Reviewed technical and licensing issues									
		Proposed research and prioritization									
		Status of burnup credit programs in other									
		countries									

表 14 與燃耗額度相關的研究報告

報告	報告名稱	內容簡介
NUREG/CR-6683	A Critical Review of the	Investigated the practice of equating the reactivity
	Practice of Equating the	of spent fuel to the reactivity of fresh fuel, referred
	Reactivity of Spent Fuel to	to as reactivity equivalencing for PWR SFP
	Fresh Fuel in Burnup	conditions
	Credit Criticality Safety	Looked at normal and accident conditions, as well
	Analyses for PWR Spent	as various storage configurations
	Fuel Pool Storage	Demonstrated practice to be acceptable, when
		used properly
		Demonstrated inaccurate and non-conservative
		reactivity estimates when used improperly
NUREG/CR-6747	Computational Benchmark	Defined representative high-capacity cask
	for Estimation of	Estimated additional reactivity margin available
	Reactivity Margin from	from fission products and minor actinides, per
	Fission Products and	ISG-8 recommendation
	Minor Actinides in PWR	
	Burnup Credit	
NUREG/CR-6748	STARBUCS: A Prototypic	STARBUCS sequence to automate burnup credit
	SCALE Control Module	analyses for UO2 SNF systems
	for Automated Criticality	Performs integrated depletion analysis,
	Safety Analyses Using	cross-section processing, and Monte Carlo
	Burnup Credit	calculations for 3-D systems
		Relevant input options to represent :
		- Irradiation conditions
		- Cooling time
		- Nuclides relevant to burnup credit
		- Axial and radial variation of burnup
		- Isotopic composition uncertainties
		Used extensively at OKNL to study burnup credit
NUDEC/CD 6761	Denometric Study of the	Issues
NUKEG/CK-0/01	Effect of Purnoble Doison	Investigated effect of BPRs on reactivity for
	Dode for DWP Durnup	various BFR designs & exposure conditions
	Cradit	
NUREC/CR 6760	Study of the Effect of	Investigated affect of IBAs on reactivity 7rB.
NUKEO/CK-0/00	Integral Burnable	Investigated effect of IBAS on feactivity, ZIB ₂ ,
	Absorbers for PWR	$00_2 - 00_2 - 0_3, 00_2 - E_{12} - 0_3, A_{12} - 0_3 - D_4 - 0_4$
	Burnun Credit	
NUREG/CR-6759	Parametric Study of the	Investigated effect of Control Rods on reactivity
	Effect of Control Rods for	for CR/APSR designs & exposure conditions
	PWR Burnup Credit	Tor erern bit designs & exposure conditions
NUREG/CR-6781	Recommendations on the	Examined reactivity behavior as a function of
	credit for cooling time in	cooling time to assess the possibility of modifying
	PWR Burnup Credit	guidance recommendation
	Analysis	Second to commentation

報告	報告名稱	內容簡介
NUREG/CR-6801	Recommendations for	Examined effect of axial burnup on reactivity
	Addressing Axial Burnup	Examined available database of profiles to:
	in PWR Burnup Credit	- Identify profiles that maximize, keff
	Analyses	- Assess its adequacy for use in safety analyses
		- Investigate existence of trends with fuel type
		and/or reactor operations
NUREG/CR-6800	Assessment of Reactivity	Examined impact of depletion & criticality
	Margins and Loading	analysis assumptions on loading curves
	Curves for PWR	Quantified large impact of ICFs
	Burnup-Credit Cask	Confirmed need for FP credit
	Designs	
NUREG/CR-6811	Strategies for Application	Examined strategies for addressing uncertainties
	of Isotopic Uncertainties	in predicted isotopic comps.
	in Burnup Credit	- Reviewed/applied methods and data
		- Bounding methods
		- Best estimate methods
		- Monte Carlo sampling
		- Sensitivity coefficient analysis
NUDEC/CD 6051	Consitivity and	- Direct isotopic differencing
NUKEG/CK-0931	Uncertainty Analysis of	Examined neutronic similarities between a SNF
	Commercial Reactor	state points
	Criticals for Burnup Credit	state-points
NUREG/CR-6955	Criticality Analysis of	Examined effect of fuel misloading on keff
Nonelo, en 0755	Assembly Misload in a	A variety of fuel-misloading configurations were
	PWR Burnup Credit Cask	investigated to understand impact
NUREG/CR-6979	Evaluation of the French	Examined applicability/usefulness of French
	Haut Taux de Combustion	critical experiments (Valduc) for actinide
	(HTC) Critical Experiment	validation
	Data	- 156 configurations with designed to mimic
		4.5 wt% 235U initial enrichmentfuel burned to
		37.5 GWd/MTU in storage & transport
		conditions
NUREG/CR-6998	Review of Information for	Reviewed information and issues relevant to
	Spent Nuclear Fuel	pre-shipment burnup measurements when using
	Burnup Confirmation	burnup credit in PWR SNF storage & transport
		casks
		The report provides a review of:
		- Role of burnup measurements in the
		regulatory guidance (ISG-8) for demonstrating
		compliance with burnup loading criteria
		- Burnup measurement capabilities and
		experience
		- Accuracy of utility burnup records
		- Fuel movement and misloading experience
		- Consequences of misloading assemblies in
		 Fuel movement and misloading experience Consequences of misloading assemblies in casks designed for burnup

報告	報告名稱	內容簡介
NUREG/CR-7108	An Approach for Validating Actinide and	Fission Products Validation, Isotopic Composition Predictions
	Fission Product Burnup	
	Credit Criticality Safety	
	Analyses – Isotopic	
	Composition Predictions	
NUREG/CR-7109	An Approach for	Fission Products Validation, Criticality (keff)
(2011)	Validating Actinide and	Predictions
	Fission Product Burnup	
	Credit Criticality Safety	
	Analyses—Criticality	
	(keff) Predictions	
EPRI 1021050	Burnup Credit	practical methodology for actinide-only and
	Methodology	fission product burnup credit in concert with a
		methodology to validate the isotopic and reactivity
		calculations.
EPRI 1022909	Benchmarks for	The benchmarks consist of 11 conditions at six
	Quantifying Fuel	different burnups and three different cooling
	Reactivity Depletion	times. The total number of cases is 198 burned
	Uncertainty	cases and 6 fresh fuel cases.
EPRI 1025203	Utilization of the EPRI	Fuel sub-batch reactivities are inferred using more
	Depletion Benchmarks for	than 600 in-core pressurized water reactor (PWR)
	Burnup Credit Validation	flux maps taken during 44 cycles of operation.
		Using Studsvik Scandpower's CASMO and
		SIMULATE-3 reactor analysis tools.

資料來源:本研究整理

第五章、臨界安全分析考量

當計算程式經過驗證,下一步就分析臨界安全,不管是用過燃料或是新燃料, 其原則是找到最大臨界值發生的情形,也就是所謂 Bonding Case 或是 Limiting Case,包含正常、不正常以及事故等情形,以便找到安全的規範。新燃料僅要考 量燃料的組成設計與環境,但用過燃料使用燃耗額度,那麼燃耗額度相關參數就 也要考量進去。

5.1 燃料組成與環境

Т

Г

如果不考量燃耗,而以新燃料為分析,則燃料組成不會改變,因此影響的參 數僅是燃料的組成及環境影響。而增值因素所受的影響,是產生中子的分裂材料, 會吸收中子的吸收材料,緩和中子速度的緩和材料,以及貯存環境的大小及形狀 所造成中子散失等考量。因此燃料的濃縮度,燃料棒的尺寸大小,燃料結構,中 子吸收物及反射體等,皆是影響增值因素的參數(如表 14)。

表	14	燃料組	成與	環境	的考	;量
· / •		7 m 1 1 m	··· · · ·			

類別		考量參數
Nuclear	Fuel	Type of nuclear fuel material (chemical composition)
Material		Isotope composition of nuclear fuel material
		Quantity of nuclear fuel material
		Concentration or density of nuclear fuel material
		Nonuniformity of nuclear fuel material (distribution of
		concentration)
		Heterogeneity of nuclear fuel material (dimension and pitch)
		Kinds of coexisting materials (chemical composition)
		Concentration or density of coexisting material
		Kind of neutron absorber (chemical composition)
		Concentration or density of neutron absorber
		Temperature
Equipment	and	Material type (chemical composition)
container		Density
		Shape and dimensions

類別	考量參數
Reflector	Kind of reflector (chemical composition Density or concentration of reflector
	Shape and dimension of reflector

5.1.1 H/U Ratio

H/U 的比值是一個可參考的因素,因為 H 可減緩中子的速度,增加中子分 裂的機率,而鈾是分裂產物,越多鈾,可以產生分裂的機率也越大,因此如何達 到。由圖 24 可以得知,H/U 比值的選擇是可以讓系統達到臨界,當濃縮度為 0.88 wt%時,任何的 H/U 比值皆無法達到臨界,濃縮度 5%時,則必須考量 H/U 比值 需維持在1以下,才能保證不臨界。

5.1.2 水的密度

保守計算時,水的密度通常以4°C 最高 1.0 g/cm³ 來做保守計算,但是水有 吸收及緩衝的能力,某些情形下有時低密度的水,反而造成其增值因數k的增加。 圖 25 顯示在儲存的情況下,在密度 0.1 g/cm³ 時,其 Keff 最大。

5.1.3 燃料間距

燃料棒的間距,也是使水鈾比改變的條件之一,但是屬於非均質系統,接近 目前 LWR 燃料棒的設計。由圖 26 得知,燃料棒的間距,對於 k 值的影響,會 有一個最適的距離使得 k 值最大。或是儲存時,各燃料束之間的距離,在以往的 分析中多以工程誤差來探討這影響,也就是以工程誤差調整的間距,求出最大的 K 值,作為 Bonding 的條件假設。但是有人提出考量情形,其間距是同時調整, 抑或只是調整一組,影響的 k 值情形才是最嚴重 (如圖 27),必須要審慎考量。

(a)	(b)			(c)					(d)		
xx	x x	x	x	x	x	x	x	x	x	x	x	x	x
x x	X X	X	х	х	х	х	x	x	×	x	x	x	x
		x	x	x	x	x	x	x	x	x	x	x	x
		X	х	х	х	X	x	x	x	X	Х	x	x
		x	x	x	x	x	x	x	x	x	x	x	x
		Х	Х	Х	Х	Х	x	x	x	x	x	x	x
		L	1	1	1	1					1	1	

燃料設計時,其濃縮度的分佈有徑向,也有軸向的不同分佈,所以分析時是 以平均濃度,或是以實際濃縮度分佈,或是如何選一種設計可以是 K 值最大的 情形,必須審慎考量。工程的誤差是導致濃縮度的不同。

5.1.5 燃料密度

原則上燃料密度越大,其分裂材料越多,因此密度自然會影響增值因素(圖 28)。製造的工程誤差是導致密度不同的主要原因。

5.2 燃耗額度影響參數

燃耗的條件不同,所影響的是燃耗後其化學組成的不同,而導致燃耗額度的不同。主要原因是燃耗的參數會影響中子能譜,而中子能譜會影響其中子吸收的

情形。原則上中子能譜越硬,U238的共振區吸收轉化成 Pu239的情形增加,使 得增值因素 K 增加。

5.2.1 燃料温度

高的燃料溫度會提高鈽的生成,因為 Doppler 效應使得中子能譜變硬,因而 使得其 K 值增加 (如圖 29)。但是燃料溫度不是一個可以直接測量的參數,也 無法直接計算。首先同位素 U238 及 Pu240 的共振吸收能譜的有效溫度是不同的。 而燃料丸的溫度會與燃料表面溫度及熱產生的功率有關,而燃料表面溫度則跟燃 料丸與護套間距及護套的材料有關,原則上當燃耗增加時其,燃料丸與護套間距 會減少,其燃料丸溫度會下降。另外燃料溫度會隨功率下降,因此燃耗增加時, 此時就必須考量燃料的是相對平均功率也下降。燃料束的平均功率與燃耗的關係 如圖 30。

5.2.2 緩和劑溫度(密度)

高溫會使緩和劑密度降低,使中子能譜變硬,而使得鈽的產生量增加(如圖 31)。對於 PWR 來說,是燃料束出口的溫度,雖然溫度有軸向分佈,但這造成 的影響,並不及軸向的燃耗分佈的影響那麼大。而燃料束出口的溫度與入口溫度 及燃料束功率有關,與燃料溫度相同,燃料束的功率與當時燃料的燃耗有關。

對於 BWR 來說最保守地計算, Void 的影響,應該是 Void 0 時其反應度尖峰 值最大,但是資料也顯示當 Void 提高時,反應度的尖峰值會移往較大的燃耗值, 但峰值會下降(如圖 32)。由於僅考慮峰值的大小,所以針 BWR 的分析, Void 0 仍是最保守的假設。

5.2.3 水中的硼 (PWR)

當水中硼濃度提高時,中子能譜會變硬,使鈽產生量增加,進而提高增值因 素 K。因為 PWR 的運轉過程中,其水中硼的濃度會隨燃耗增加而減少,但使用 平均的硼酸濃度來模擬,對於反應度的分析是一很好的選擇[46]。受到 MTC 在 運轉的限制,硼酸在 BOC 的濃度也受到限制,目前分析時所用的平均硼酸濃度, 約為 900 ppm 是最為保守的。

5.2.4 可燃耗的中子吸收物

可燃耗的中子吸收物 (Burnable Absorber, BP), 會使中子能譜變硬,因而鈽 產生增加使得增值因素 K 增加。因此對於 Loading Curve 的影響,如果有 BP 則 會使曲線往上移動,減少專載的彈性 (圖 33)。對於 BWR 來說, 同樣的其結果 造成增值因素的峰值的不同 (如圖 23)。

圖 55 Effect of BFR exposure of burnup-credit foading curves for the GBC-52 cask 資料來源: J. C. Wagner, "Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs", NUREG/CR6800, 2003[47]

與 BP 相同,控制棒會使中子能譜變硬,因而鈽產生增加使得增值因素 K 增加,而且會因插入深度的不同造成燃耗軸向的不同。一般來說, PWR 的控制棒, 在運轉時是抽出來的,應該沒有影響,但是 Holtec 的運送儲櫃,對於是否有控 制棒插入的情形,分析出兩條曲線,如果考量控制棒有插入的情形,則儲存的數 量就要減少。圖 34 是控制棒部分插入的影響。

5.2.6 特定功率及冷卻時間

特定功率越高,中子能譜變硬,但是也產生更多的鈽,但也產生較多的分裂 產物吸收中子,所以高功率在 burnup credit 時,對於分裂產物並不是保守的, actinides 卻為保守的。冷卻時間,則會影響同位素化學組成,一般來說 Pu241 的半衰期是 14 年,因此如果冷卻時間少於此,則 Pu-241 的影響較大,反之則不 然。圖 35 是冷卻時間的影響。

5.2.7 燃耗的分佈(Burnup distribution)

由於 PWR 的軸向的中子洩漏以及頂端溫度較高,因此在頂端其燃耗較小。 在高燃耗的情形下,軸向功率不均匀分佈會較均匀分佈之軸向功率產生較高的 k 值,"end effect"是指使用有軸向分佈的計算-平均分佈的計算之差值,而 end effect 通常會在 30GWD/MTU 時轉正(圖 36),因此保守起見,必須選擇一個 軸向功率分佈作為安全分析(也就是 limiting case)。作法是利用爐心營運程式得 到燃料的軸向分佈,正規化(normalize)這些軸向分佈,在頂端 50-100 公分加起來, 並排序獲得最小的,這個最小的情形就是拿來分析最極端的狀況 (limiting case)。

5.2.8 PWR

對於 PWR 來說,中子能譜的影響有溶於水中的硼;中子吸收物及控制棒; 緩和劑的溫度及密度;燃料的溫度及運轉歷史冷卻時間及特定的功率等。當水中 的硼較多時,中子吸收物及控制棒的附近,緩和劑溫度及燃料溫度高時,其中子 能譜會較硬而且較多的鈽會產生。表 15 是影響因素及影響的情形。

	中子能譜會較硬而且較多的鈽會產	影響情形
	生	
水中的硼	較多	3-3.5 pcm/ppm
中子吸收物及控制棒	附近	
緩和劑的溫度及密度	温度升高及密度下降	35-90pcm/K
燃料的温度	溫度高-Doppler 效應	4-5 pcm/K
運轉歷史冷卻時間及特定的功率	特定的功率高使能譜變硬,但是也	
	產生較多的分裂產物吸收中子,所	
	以高功率在 burnup credit 時,對於	
	分裂產物並不是保守的, actinides	
	卻為保守的。	

表 15 影響 PWR 中子能譜的因素

資料來源: DALE LANCASTER, "Spent Fuel Pool Criticality Concerns, Issues, and Other Considerations", COPAG- 36. 2011[49]

5.2.9 BWR

對於 BWR 來說,其新燃料是可以考慮 Gd 的存在,對燃耗額度必須以此燃料之所發生的最高反應度來計算臨界安全(圖 23),通常燃耗的過程對這個最大 值並無影響,但是如何得到這個最大值,其分析的條件及假設,確十分重要。由 於 BWR 燃料設計複雜,選擇一個燃料晶格(Fuel Lattice)進行分析,是一般的 作法,但如何成為 Bonding Case,必須分析及說明。

Burnup credit 在 BWR 及 PWR 的應用上有相同處也有相異處。程式模擬的 驗證是使用相同的臨界實驗,而其統計的方法也相同,皆必須分析出燃耗過程分 析(depletion analysis)的不確定度(uncertainty),目前都已經完成,但是期待 BWR 與 PWR 的燃耗不確定度,應該是不同的。

第六章、主要發現與結論

臨界安全分析,因為時代環境不同,而需考慮更多的需求。因此法規及審查 在電廠需求下,需要修正達到環境需求。但在安全考量下,更多的瞭解及分析才 能使需求與安全皆能獲得重視並達到平衡。

中子吸收物退化的議題,增加了監測及預測的需求,但貯存的需求,卻是開 始增加系統中有的臨界額度如燃耗額度的議題。對於這項議題,有許多方法及考 量其不確定性,並衍生許多技術及報告,目前仍還在進行式,如何利用較簡易的 方法,獲得偏差及不準度,以及極端狀態(limiting case)的選擇及分析,是目 前大家一致的努力的方向。

中子模擬程式方面,因為計算臨界時,希望能精確的獲得中子通量,臨界的 安全分析主要以蒙地卡羅的方程式為主,如MNCP及KENO是目前的主流程式, 但因為無法模擬比較複雜的設計或是計算時間很長,因此如何利用驗證資料,來 討論程式的適用性及統計分析的保守性,也是重要的議題。

參考文獻

- Lee, A.T.L.; Lee, R.C.S.; Chen, F.H., "Taipower's spent fuel interim storage program" Transactions of the American Nuclear Society; v. 65, pp. 8.G.1-8.G.8, 1992
- TPC, "Overview of 2009 NPP Operation Performance in Taiwan", 2010 AEC NRC Bilateral Technical Meeting, May 3 2010.
- 3. EPRI, "Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications," Electric Power Research Institute (EPRI), Palo Alto, CA, Report No. 1019110, 2009.
- 4. Ken Lindquist, In-service Performance of Boraflex, NRC information meeting-Neutron Absorber Materials, 2009/02/07, Washington 2009
- Ken Lindquist, "In-Service Performance of Boraflex," presentation at EPRI/NRC Information Meeting on Neutron Absorber Materials on 27 February, 2009. (Available from NRC ADAMS).
- The RACKLIFE Boraflex Rack Life Extension Computer Code: Theory and Numerics, TR-107333, Electric Power Research Institute, Palo Alto, CA, August 1997.
- Tom Woody, "Degradation of B₄C Plates at Palisades," presentation at EPRI/NRC Information Meeting on Neutron Absorber Materials on 27 February, 2009. (Available from NRC ADAMS)
- 8. AEC, "Degradation of Boral in Spent Fuel Pools at Chinshan and Kuosheng Plants", 10th TAEC-USNRC Bilateral Technical Meeting May 03-05, 2011
- Ken Lindquist, "In-Service Performance of BORAL®," presentation at EPRI/NRC Information Meeting on Neutron Absorber Materials on 27 February, 2009. (Available from NRC ADAMS).
- K. O. Lindquist, et al., BADGER, a Probe for Nondestructive Testing of Residual Boron-10 Absorber Density in Spent-Fuel Storage Racks: Development and Demonstration, Electric Power Research Institute (EPRI), Palo Alto, CA, TR-107335, October 1997.
- NRC, ML121090500, "Spent Fuel Pool Criticality Management", 2011/Sep/14 Upated
- L. Kopp, NRC memorandum from L. Kopp to T. Collins, "Guidance on Regulatory Requirements for Criticality Analysis of Fuel Storage at Light-Water Reactor Plants," August 19, 1998 (ADAMS Accession No. ML003728001).
- NRC, ML103090055, Information Notice 2011-03, "Non-conservative Criticality safety Analyses for Fuel Storage," US Nuclear Regulatory Commission, Washington, DC, February 16, 2011.
- 14. NRC, ML122275A033, "Industry Plans to Develop Guidance on Performing

Spent Fuel Pool Criticality Analysis", 2012/Sep/26

- 15. NRC, DSS-ISG-2010-01 "Safety Guidance Regarding the Nuclear Criticality Safety Analysis for Spent Fuel Pools (Draft)", 2010
- MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, La-UR-03-1987, Los Alamos National Laboratory, April 24, 2003
- 17. Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39, Version 6.1, June 2011
- 18. Studisvik Scandpower: http://www.studsvikscandpower.com/
- D. Knott, et al., "CASMO-4 Methodology Manual," STUDSVIK/SOA-95/02, Studsvik of America, Inc. (1995)
- Chen, Ang-Yu, Implementation and Application of Adjoint Function Methodology in Variance Reduction of Monte Carlo Calculation, Ph.D. Thesis, Tsin-Hua University, Taiwan, 2008.
- Russell D. Mosteller, et al., "Data Testing of ENDF/B-VI with MCNP: Critical Experiments, Thermal-Reactor Lattice, and Time-of-flight Measurements," Advanced in Nuclear Science and Technology, Vol. 24, 2002
- 22. "Cross section evaluation working group benchmark specifications," BNL-19302 (ENDF-202), Brookhaven National Laboratory, November 1974
- "International handbook of evaluation criticality safety benchmark experiments," NEA/NSC/DOC(95)03, OECD Nuclear Energy Agency, April 1995
- 24. NUREGCR-6361, "Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages," NRC, Washington, DC, March 1997
- 25. The Babcock & Wilcox Company: http://www.babcock.com/
- M. N. Baldwin, et al., "Summary Report: Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel," BAW-1484-7, The Babcock & Wilcox Company, 1979
- 27. Sedat Goluoglu, Calvin M. Hopper, "Application of Validation Methodology for a Generic Validation Problem," American Nuclear Society Meeting, 2005
- 28. S. H. Finfrock, "MCNP5 Criticality Validation and Bias for Intermediate Enriched Uranium Systems," CHPRC-00455, December 2009
- Bierman, S.R., and Clayton, E.D., "Criticality Experiments with Subcritical Cluster of 2.35 wt% and 4.31 wt% 235U Enriched UO2 Rods in water with Steel Reflecting Walls," Nuclear Technology, volume 54, pp131-144, August 1981
- 30. "USER'S MANUAL FOR USLSTATS V1.0" : http://www.ornl.gov/sci/scale/pubs/uslstats.pdf
- SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/TM-2005/39, Version 6, Vols. I-III, Oak Ridge National Laboratory, Oak Ridge, Tennessee (January 2009). Available

from Radiation Safety Information Computational Center at OakRidge National Laboratory as CCC-750.

- D.E. Mueller, et al., Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data, NUREG/CR-6979, NRC, Washington, DC, USA, September 2008.
- SFCOMPO Spent Fuel Isotopic Composition Database, OECD-NEA website: <u>www.oecd-nea.org/sfcompo</u>.
- J. M. Scaglione and et.al "An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses—Criticality (keff) Predictions", NUREG/CR-7109, NRC, Washington, DC, USA, 2012
- 35. NRC, NUREG/CR-6811, "Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit", 2003
- 36. G. Radulescu, et al., "An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analysis – Isotopic Composition Predictions, International Conference on Nuclear Criticality", ICNC 2011, 19th-23rd September 2011, Edinburgh, Scotland, Paper and Presentation material.
- NRC, NUREG/CR-7108, "An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Isotopic Composition Predictions" 2010
- Kord Smith, Shaun Tarves, et al.," Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty", Electric Power Research Institute (EPRI), Palo Alto, CA, 1022909, August 2011.
- D. Lancaster, "Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation", Electric Power Research Institute (EPRI), Palo Alto, CA, 1025203, April 2012
- 40. ANSI/ANS-8.27-2008, "Burnup Credit for LWR Fuel," American Nuclear Society, La Grange Park, Illinois. Draft BWR Appendix.
- 41. JAERI, "Nuclear Criticality Safety Hanbook, version 2, JP0150773, 2001
- 42. Deidra Yearwood, etal. "anomal effects of moderation in transportation and storage arrays-revisted", proceedings of the topical meeting on Physics and Methods in Criticality Safety, USA sep 19-23, 1993
- Subrata Bera, "TIC Benchmark Analysis", presented at Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Italy, 19-30 May 2008
- 44. J. C. Wagner and et.al, "Investigation of Burnup Credit Modeling Issues Associated With BWR Fuel", ORNL/TM1993/193, 2000
- 45. Holtec International, "Increasing the Planar Average Enrichment for BWR fuel in the HI-STORM 100 System", 2005 (NRC doc. ML053460155)

- 46. John Wagner, "Impact of Soluble Boron Modeling for PWR Burnup Credit Criticality Safety Analyses," Trans. Am. Nucl. Soc., 89, 120 (2003).
- J. C. Wagner,"Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs", NUREG/CR6800, 2003
- 48. C. E. Sanders and J. C. Wagner, "Parametric Study of the Effect of Control Rods for PWR Burnup Credit", NUREG/CR-6759, NRC 2002.
- 49. DALE LANCASTER, "Spent Fuel Pool Criticality Concerns, Issues, and Other Considerations", COPAG- 36. 2011