行政院原子能委員會委託研究計畫研究報告

質子佈植應用於長波長 1.31µm VCSEL 之研製 (2/2)

計畫編號:932001INER013 受委託機關(構):國立交通大學 計畫主持人:王興宗 報告日期:93年11月25日

目錄

-`	目錄	1
<u> </u>	圖目說明	2
三、	中文摘要	4
四、	英文摘要	5
五、	計畫目的	6
六、	計畫緣起	7
七、	執行方法與進度說明	8
八、	結論與建議	12
九、	參考文獻	23

圖目說明

圖一(a)、MOCVD所成長含氮量為2%之 InGaAsN SQW 的變溫螢
光光譜(photoluminescence, PL)圖。11
圖一(b)、MBE 所成長含氮量為 5.3 %之 InGaAsN SQW 的變溫螢光
光譜圖11
圖二、InGaAlAs 活性層材料之螢光光譜圖。12
圖三 (a)、InP/InGaAlAs、InAlAs/InGaAlAs 各 35 對 DBR 的反射譜
圖13
圖三(b)、InP/InGaAlAs、InAlAs/InGaAlAs 各 35 對 DBR 的電性(I-V)
圖13
圖四、1550nm 光激發之 VCSEL 結構簡圖13
圖五 (a)、半個 VCSEL 結構的反射譜圖14
圖五 (b)、為半個 VCSEL 結構的 PL 譜圖。14
圖六 (a)、全 VCSEL 結構的反射譜圖。14
圖六(b)、為全 VCSEL 結構的 PL 譜圖。14
圖七(a) 光激發的架構圖。16
圖七(b)、光激發之激發光源強度對 lasing 強度圖,圖中所插入的為
lasing 之光譜圖。16

圖八、完整的 1550 nm VCSEL 結構的質子佈植能量與佈值深度的模

	擬分析圖。	.17
圖九((a)、1550nm InGaAlAs 面射型雷射上視圖	.18
圖九((b)、1550nmInGaAlAs 面射型雷射剖面圖	.18
圖十、	、晶圓鍵結融合之製程簡圖。	.19
圖十-	-、探針顯微鏡系統(probe-station)。	.21
圖十二	ニ (a)、發光孔徑為 30μm 之 1550nmVCSEL 元件的發光圖。	22
圖十二	二(b)、發光孔徑為 30μm 之 1550nmVCSEL 元件 L-I-V 圖。	22

中文摘要

於本計畫中,由於氮掺雜量若過高(>0.5%)的 N-InGaAs,其品質 會劣化非常嚴重,故我們改以有機金屬氣相沈積法(MOCVD)成長 長波長1550 nm 面射型雷射(VCSEL)晶片的下DBR和InGaAsAs 的 主動層,並建立了1550 nm VCSEL 的製程與量測之方法。我們亦成 功的建立了晶圓鍵結融合的技術。基於磊晶品質的考量,我們分別成 長高品質的下DBR 加主動層部分的晶片及上DBR 的晶片,而利用晶 圓鍵結融合的技術成功的製造 VCSEL 的晶片。

以 InGaAlAs 為主動層長在晶格匹配的 InP/InGaAlAs 的下 DBR 上,在鍍上 10 對的 TiO₂/SiO₂ 的上 DBR 後,其 F-P (Fabry-Perot) dip 在 1558 nm,而光激發之 lasing 的波長為 1562nm,其半高寬為 1nm, 而其所需之臨界激發光強度為 30mW,換算臨界電流密度約為 2KA/cm²。 在質子佈植於 1550nm VCSEL 的結構中,所需的能量和 深度關係的經由 Trim 模擬軟體的分析與計算,得到最佳的質子佈植 能量為 550 KeV 為最佳電流侷限能量。另,我們亦架設了長波長 VCSEL 元件的光電特性量測之顯微探針系統,可量測元件之出光功 率-電流-電壓、雷射光之近場發光圖形及發光譜。

英文摘要

In this project, 1550 nm VCSEL (Vertical-Cavity Surface-Emitting Laser) was epitaxy by MOCVD system has been simulated and fabricated using wafer bonding and proton-implanted. The processes and measurement systems of the 1550 nm VCSEL were also been established. Because of the wafer quality of N-InGaAs will degrade when the N content >0.5%, the material of active region in 1550nm is replaced by InGaAlAs, which is lattice matching with InP substrate. By concerning of wafer quality, the wafer consists of bottom-DBR and active region and the wafer only consist of top-DBR were respectively grown. These two wafers were bonded together successfully by wafer bonding.

The VCSEL wafer consists of InP/InGaAlAs bottom-DBR, InGaAlAs active region and 10 pairs of TiO₂/SiO₂ top-DBR was successfully optical pumped by 990nm Ti: sapphire laser. The F-P dip of the VCSEL was about at 1558 nm, the lasing wavelength is 1562 nm and the threshold pumping power is 30mW which is about 2KA/cm² of threshold current density.

To optimize the opto-electronics characteristics of proton-implanted 1550 nm VCSEL, the energy of implanted was about 550 Kev obtained by the Trim simulator. Additionally, the opto-electronic measurement system of long wavelength was established to measure the L-I-V characteristics, near-field pattern and spectrum of the VCSEL.

計畫目的

本計劃預計開發出符合光通訊用之質子佈植型長波長1.55 μm 面 射型雷射(Vertical Cavity Surface Emitting Laser, VCSEL)。長波長的面 射型雷射其發散角小、整合能力高,在光纖通訊的應用上極具低成本 發光源的潛力。目前在短距離的資料通訊中常用 1300nm LED 和 850nm 面射型雷射作為訊號源;而 1300nm 面射型雷射極有機會取 而代之;另外 1550nm 的面射型雷射光源則可應用於長距離的資料傳 輸。由於光纖在 1300nm~1550nm 有較大的距離頻寬乘積,故使用 1300nm~1550nm 之面射型雷射將使資料傳輸量至少增加一倍。此 外,面射型雷射具有低成本的優勢,容易製成多波長二維雷射陣列及 適合和其他元件的整合能力使得單模 1300nm 和 1550nm 面射型雷射 可成為下一代光通訊系統的訊號源。

計畫緣起

目前,國外包括美國、日本、歐洲等研究機構及公司團體熱衷於 長波長面射型雷射的研究。其中 UCSB,Walter Schottky Inst., NTT Photonics Lab., Alcatel, Noval Crystal 及 Sandial Lab.已成功製成以電 流驅動室溫下連續操作的長波長面射型雷射[1] – [4]。其他機構亦均 爭相在此領域發展[5] – [10],並朝向可供多波長的面射型雷射的應用 研究。因此在此時投入相關研究,將可縮短國內研發時程及縮小與各 國研究技術的差距。

在國內的技術及市場現況方面,關於面射型雷射的研究情形,以 交通大學、工研院、電信研究所及台灣大學在 850nm 及 980nm 面射 型雷射的研究已有相當的成果;而業界方面,有光環、勝陽、晶誼、 博達和全新科技在 850nm 面射型雷射商用產品中開發製程與磊晶; 至於長波長邊射型雷射(Edge Emitting Laser, EEL)方面,包括交通大 學、中央大學、成功大學、電信研究所及工研院等已有不錯的水準, 而在市場上包括嘉信光電、聯亞光電及鴻亞科技均已推出 1300nm 和 1550nm 邊射型雷射產品及磊晶片。目前國內正積極投入波長 1300 和 1550nm 面射型雷射的研究。由於近年來光纖網路及通訊快速發展, 對高速度、高頻寬雷射光源將更迫切,因此單波長或多波長之長波長

交大在面射型雷射的研究團隊起步甚早,目前已具備製作 GaAs/InGaAs/A1GaAs 邊射型雷射二極體及面射型雷射二極體的設 計、磊晶、製程及分析能力,是國內相當具有光電半導體元件經驗 的研究團隊,相信在研發長波長 1.55 µm 長波長面射型雷射的過程 中,除了能為國家培育相關的光電人才、增加國家在光電世界的水 準,更可提昇國家在光電及通訊產品的競爭力。

執行方法與進度說明

一、1.55µm VCSEL 磊晶與元件結構設計

由於以 N-InGaAs 材料為主動層的面射型雷射其發光波長至今最 長只能做到 1.45µm 左右,因此本計畫將採用 InGaAsP 及 AlInGaAs 系列成長應變補償多重量子井,並設計模擬最合適的共振腔厚度,再 委托國內各機構之 MOCVD 成長。在磊晶成長之後我們將以 PL、 X-ray、 SEM、 TEM 等量測儀器,分析磊晶層的品質,以決定最適 合長波長面射型雷射的主動層設計。

在 DBR (布拉格反射鏡面)的設計方面,需考慮此鏡面要應用 的材料結構為何。DBR 鏡面的材料形態選擇可分為非晶相介電材料 與半導體磊晶材料的區別;可導電與不可導電的區別;晶格常數匹配 於 GaAs 基板與匹配於 InP 基板的區別。茲將討論如下:

非晶相介電材料的製作容易,可採用 PECVD 或 E-gun 鍍膜。常用的材料可選擇 TiO₂/SiO₂ 組合,但 TiO₂/SiO₂ 組合的材料導熱係數低,並不適合用面射型雷射的操作。因此我們將開發 a-Si/SiO₂、
 a-Si/MgO 等導熱係數高、折射率比值亦高的材料組合,應用到長波長面射型雷射上。

2. 採用傳統 AlGaAs/GaAs 半導體磊晶材料製作 DBR 反射鏡面在傳統面射型雷射已行之多年,若設計不需導電的 DBR 反射鏡面,則

只要精確的控制 MOCVD 成長的每一層厚度,之後再用 spectrometer 及 n-k analyzer 分析其品質。若設計需導電的 DBR 反射鏡面, 則需克服高電阻與高吸收的問題,在 DBR 設計上變得較複雜。本 計畫預計在材料界面以線性漸變的方式,去除因能隙差異造成的不 連續,以及在界面上作δ-攙雜,以降低光吸收。成長完後,除了光 學特性外,還需要測量其電阻值,以求得最合適長波長面射型雷射 的 DBR 反射鏡面。

3. 晶格匹配於 InP 基板上的 InGaAsP 及 AlInGaAs 系列,雖然製作 出的高反射率 DBR 反射鏡面非常厚,但搭配非晶相介電材料還是 可行的結構組合。而新興的 Sb-系列的材料 AlGaAsSb 可晶格匹配 於 InP 基板上,且可以組合出高的折射係數比值,減少高反射率鏡 面的厚度。將可實現在 InP 基板上一次成長完所有的結構。不過此 種材料的成長方式尚未成熟,還需克服攙雜濃度及高電阻值的缺 點,我們將嘗試優化此種材料,製成在 InP 基板上的長波長面射型 雷射。

- 二、質子佈植模擬分析及元件製程建立
 - 1. 模擬分析:

根據前一年度執行計畫的經驗先對將要製作的材料以模擬軟 體先做模擬計算,得到最佳化的佈植能量。

2. 製程建立:

在1550 nm 長波長 VCSEL 製程方面,針對材料特性開發適合 所得到的 1550 nm VCSEL 的製程,包括溼蝕刻溶液的選擇及條 件、乾蝕刻的反應氣體,歐姆電極材料的選擇、為阻擋高能量質 子佈植所造成元件損壞需採用之厚光阻的條件等。

(1) 光罩設計:

為得最佳的元件特性,除了磊晶的重要外,不同的元件尺寸 也將影響 VCSEL 的光電特性。本計畫中,擬將設計各種不同質子 佈植孔徑及不同 Bond-Pad 尺寸。

(2) 晶圓鍵結融合:

由於 1550nm VCSEL 若以直接磊晶成長上、下 DBR 和活性層 (active layer),其磊晶厚度會 > 10μm,而因為 DBR 材料和基板 間所存在的應力累積,會造成磊晶後的元件產生龜裂(crack)。故 可將上、下 DBR 和活性層分別分開成長,以維持材料的品質,再 利用晶圓鍵結融合的方式,使半導體材料間以融合鍵結(Fusion Bonded)的方式接合在一起,其介面可導電及導熱,加上光可穿 透此介面,使得此種方式成為光電元件以及面射型雷射元件的製 作方法之一。

(3) 質子佈植的製程:

由於 1550nm VCSEL 的上 DBR 部分預計將有 6~7μm,,故需 要較大的佈植能量方能達到此深度,較高能量的佈植對雷射發光 孔徑非佈植區的阻隔就增加其製程上的困難度,為解決此問題, 本計畫擬用厚光阻來作為佈植時的阻隔層。

(4) 金屬電極的製作。

三、光電特性量測

對於製程完成尚未封裝的元件進行特性分析,可以得知磊晶設計 或製程對元件特性的影響。因此建立檢測長波長面射型雷射元件特性 的架設,有助於優化元件結構和對元件特性的了解。

本計畫擬針對不同質子佈植的 1550nm VCSEL 元件做一系列的 分析量測,包括光-電流-電壓(L-I-V)特性,雷射光之近場發光圖形 (near-field pattern),溫度特性及元件的穩定度量測等。

結論與建議

一、磊晶與元件結構設計:

1. 以摻 N 之 InGaAs 為主動層:

掺 N 之 InGaAs 之主動層發光波長取決於 N 的掺雜量,針對不 同的氮掺雜量之主動發光層 (single quantum-well, SQW),我們做 了一系列的材料光性量測及分析,,其在 210k 時的中心波長為 1450nm (0.855KeV),但高於 210k 就因 sample 的品質不好而訊號 微弱;圖一(b)為 MBE 所成長含氮量為 5.3 % 之 InGaAsN SQW 的 變溫螢光光譜 (photoluminescence, PL)圖,其在 190k 時的中心 波長為 1500nm,但相同的,溫度高於 190k 之後的訊號就非常微弱 了。根據文獻及我們的實驗研究顯示出氮摻雜量若過高> 0.5%,則 會使品質劣化[11],故波長很難延伸至 1550nm。所以我們改用 InGaAlAs 為主動層。

圖一(a)MOCVD 所成長含氮量為2%之 InGaAsN SQW,(b)MBE 所成長含氮量為5.3%之 InGaAsN SQW 的變溫螢光光譜(photoluminescence, PL)圖。

2. 以 InGaAlAs 為主動層:

我們選擇與 InP 晶格匹配的 InGaAlAs 材料為活性層。首先,我 們將 InGaAlAs 直接成長在 InP 基板上,其發光波長經 PL 螢光光譜 量測中心波長為 1520nm,如圖二所示。

画— mournes 冶性植材和全蛋儿儿语画 云十 8 波区沟 13

3. DBR 材料的選擇:

適合成長在 InP 基板的 DBR 材料組合有 InP/InGaAlAs (折射率 差異 $\Delta n = 0.34$)、InAlAs/InGaAlAs ($\Delta n = 0.3$)、InP/InGaAsP ($\Delta n =$ 0.27)。我們先成長折射率差異較大的兩種組合 InP/InGaAlAs、 InAlAs/InGaAlAs 之 DBR 各 35 對,其反射率如圖三(a)所示皆大於 99%。 InP/InGaAlAs DBR 的半高寬 (FWHM)為 110 nm, InAlAs/InGaAlAs DBR 的FWHM 為 100 nm。圖三(b)為兩種 DBR 的電性量測,由圖中可看出 InP/InGaAlAs DBR 的串聯電阻比較 小,且 DBR 的半高寬比較寬,對發光層波長的漂移容忍度較高, 所以接下來我們選擇用 InP/InGaAlAs 這兩種材料組合的 DBR 來作

為反射鏡。

圖三、InP/InGaAlAs、InAlAs/InGaAlAs 各 35 對 DBR 的(a)反射譜圖, (b) 電性 量測 I-V 圖。

4. 磊晶品質之確認:

我們先在 InP 基板上成長 35 對 InP/InGaAlAs DBR,接著再成 長 2 倍波長厚(2λ)的 InGaAlAs 主動層,而主動層的上下夾 1/2λ 的 InP 當 spacer,接著再鍍上 10 對的 TiO₂/SiO₂ DBR,其完整的結 構如圖四所示。為了確認布拉格反鏡(DBR)和 InGaAlAs 主動層 的磊晶品質,我們先對上列所述的磊晶片進行反射率量測和螢光光

圖四、1550nm 光激發之 VCSEL 結構簡圖

譜(PL)量測。圖五(a)為鍍 TiO₂/SiO₂ DBR 之前,即只有半個 VCSEL 結構的反射譜圖,其反射率頻譜圖的 F-P dip 為 1558nm, 而圖五(b)為半個 VCSEL 結構的 PL 譜圖,其 PL peak 的中心波 長為 1510nm,而半高寬為 54nm,由圖五(a)、(b)兩圖可看出下 DBR 的半高寬有涵蓋主動層的 PL。因此,我們接著量測鍍上 TiO₂/SiO₂ 上 DBR 之後的反射譜和螢光光譜。圖六(a)為全結構(圖四)之 雷射結構的反射率頻譜圖,其 F-P dip 為 1558nm,而雷射結構的 PL 光譜圖如圖六(b)所示,其 peak 的中心波長為 1558nm,而半高 寬為 3.3nm。由圖五(b)和圖六(b)我們可看到由於磊晶片的 Q 值增加,PL 光譜的半高寬也由 54nm 變成 3.3nm,計算結果得全結 構的 Q 值約為 470nm。

圖六(a) 全 VCSEL 結構的反射譜圖,(b) 為全 VCSEL 結構的 PL 譜圖。

接著,我們使用 Ti:sapphire laser 為光源,其波長為 990nm,及 溫控的 InGaAs Detector 對此全結構的 VCSEL 做光激發(optical pumping)的實驗。光激發的架構圖如圖七(a)所示,而光激發的 結果如圖七(b)所示。由圖七(b)我們可以看到此全結構的 VCSEL 有 lasing 的現象,其所需的臨界激發光強度為 30mW,換算臨界電 流密度約為 2KA/cm²,而被激發的雷射光波長為 1562nm,其半高 寬為 1nm。此光激發的實驗確認了我們所成長之 InP/InGaAIAs DBR 及 InGaAIAs 主動層的磊晶品質是不錯的,故此 VCSEL 的結構可以 lasing。

圖七(b)光激發之激發光源強度對 lasing 強度圖,圖中所插入的為 lasing 之光 譜圖。

二、質子佈植模擬分析及元件製程建立

1. 模擬分析:

為了確定質子佈植能正確地佈植在活性層的正上方又不會破 壞到活性層,根據去年度的計畫執行經驗,我們先針對質子佈植所 需的能量和深度做模擬計算,如圖八。由圖可知,上 DBR 到活性 層的深度大約有 6 μm,而質子佈植的能量要大於 550KeV,佈植 深度才會約剛好在活性層的上方,此應為最佳的質子佈植能量,因 為電流阻隔層不會破壞到活性層且深度。但因佈植機能量所侷限, 最大只能達到 480 KeV,故實驗進行時實際上所佈植的能量為 480keV。

圖八、完整的 1550 nm VCSEL 結構的質子佈植能量與佈值深度的 模擬分析圖。

2. 元件製程建立:

(1) 光罩設計:

由於不同的 VCSEL 上電極出光孔徑會影響到雷射光強度,但 光孔徑過大雖使元件的阻值變小,操作電壓變低,但又會讓臨界 電流過大,使元件的操作電流變大,而降低了元件的操作速度, 且增加了電功率的消耗,更降低了元件的生命週期(life-time),所 以依去年計畫的執行經驗,我們設計的元件結構如之上視圖如圖 九(a),而其側視圖如圖九(b)所示。改變電極的尺寸及不同出 圖九(a) 1550nm InGaAlAs 面射型雷射上視圖。

圖九(b) 1550nmInGaAlAs 面射型雷射剖面圖

光孔徑的光罩,以研究其不同的元件特性,其中 bond-pad 有 100x100、150x150、200 x200 及 300x300μm2,而發光圓直徑有 10、20、30μm。

(2) 晶圓鍵結融合(wafer bonding):

因考慮到磊晶片的品質,若在35對的下DBR及InGaAlAs的 活性層之後再繼續成長34對的上DBR,則磊晶片會因應力累積而 使晶片產生龜裂,為維持晶片的品質,我們建立了晶圓鍵結融合 的製程技術。由於上DBR不需成長在InP基板上,故我們另外成 長磊晶技術較成熟、折射率差異較大且散熱及導電性都較佳的 GaAs/AlAs DBR為上DBR,只要25對即可達99%的反射率。我 們將35對InP/InGaAlAs的下DBR及InGaAlAs的活性層晶片和 25對GaAs/AlAs 的上DBR在600°C,氦氣的環境下將這兩片晶 圓鍵結融合成一個完整之VCSEL 晶片,其製程簡圖如圖十所示。

圖十、晶圓鍵結融合之製程簡圖。

(3) 質子佈植的製程:

在質子佈植的 1550 nm VCSEL 製程方面,我們發展了一套完整的製程流程如下:

- (a) 先將面射型雷射的晶片浸泡在丙酮(ACE)中3分鐘,
- (b)然後將面射型雷射的晶片浸泡在甲醇(CH3OH)中3分鐘,
- (c) 再將面射型雷射的晶片用去離子水(D. I. Water)沖3分鐘,
- (d)在去離子水中將欲 wafer bonding 的晶片放在一起,
- (e) 接者用氮氯吹乾。
- (f) 將欲 wafer bonding 的晶片置於爐管中加溫使其鍵結融合在一起。
- (g) 用光阻 AZ5214E 定義金屬電極的圖型(pattern),
- (h)然後用電子槍蒸鍍機蒸鍍金屬 Ti/Au (200Å/2000Å)在面射型雷射的晶片之上。
- (i) 用丙酮將光阻去除,獲得 p-metal。
- (j) 再用電子槍蒸鍍機蒸鍍金屬 Au/Ge/Ni/Au (200Å/400Å/140Å/
 2000Å)在背面的 n-GaAs subutrate 之上。
- (k)然後將鍍完金屬的面射型雷射晶片置入快速熱退火(RTA)系統 以 415℃,30 秒的條件在氮氣環境下進行金屬與半導體的退火 (anneal)處理。
- (l) 接者再用厚光阻定義質子佈植的區域,因為 1550nmVCSEL 的

上 DBR 部分預計將有 6 µm , 所以需以特殊的厚光阻 AZ4620

才能達到此厚度,以避免出光區域受質子佈植損壞。

(m) 質子佈植。

(n)最後用丙酮將光阻去除。

(4) 金屬電極的製作:

因為上、下DBR 分別採用 p-AlAs/GaAs 和 n-InP/InGaAlAs 的 DBR,所以 p-AlAs/GaAs 上面的電極採用與其形成歐姆接觸的 Ti/Au,而 n-InP 基板的電極我們採用與其形成歐姆接觸的 Au/Ge/Ni/Au 來作為電極。

3. 光電特性量測:

在元件製作完成後需測量質子佈植的1550nm VCSEL 元件的特性,包括光-電流-電壓(L-I-V)特性,雷射光之近場發光圖形(near-field pattern),溫度特性及元件的穩定度量測等,所以我們架

圖十一、探針顯微鏡系統 (probe-station)

設了探針顯微鏡系統(probe-station)如圖十一,其中亦可利用光纖將 VCSEL 的光收入光譜儀中,量測元件的發光波長,加上溫控器, 我們亦可觀察元件隨溫度變化的光譜特性。

圖十二(a)為製成之 1550nmVCSEL 元件之發光圖,而(b) 則是此元件之 L-I-V 特性。由 L-I-V 圖看起來此元件的漏電流過大, 造成元件無法 lasing。

圖十二發光孔徑為 30μm 之 1550nmVCSEL 元件的(a)發光圖,(b) L-I-V 特性

建議

元件無法 lasing 的原因可能有:

- wafer bonding 的過程破壞造成元件的品質,此點可利用電子顯微
 鏡詳細觀察 bonding 介面來確定。
- 此元件只用單一能量的質子佈值來做為元件與元件之間的絕緣,但因佈植深度達4µm,故有可能造成電流從接近p電極處漏流。可試用 mesa etching 或多重能量的質子佈植來改善。

參考文獻

- [1] A. Karim, K. A. Black, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek and J. E. bowers, IEEE Photon. Technol. Lett., 12(11), p.1438(2000)
- [2] R. Shau, M. Ortsiefer, M. Zigldrum, J. Rosskopf, G. Bohm, F. Kohler, M. C. Amann, Electron. Lett., 36(15), p.1286(2000)
- [3] Y. Ohiso, R. Iga, K. Kishi, C. Amano, Electron. Lett., 36(1), p.39(2000)
- [4] J. Boucart, C. Starck, F. Gaborit, A. Plais, F. Brillouet, J. Jacquet, L. Goldstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, J. Jacquet, IEEE Photon. Technol. Lett., 11(6), p.629(1999)
- [5] J. P. Debray, N. Bouche, G. Le Roux, R. Raj and M. Quillec, Electron. Lett., 33(10), p.868(1997)
- [6] D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang and K. Carey, IEEE Photon. Technol. Lett., 7(11), p.1225(1995)
- [7] K. Uomi, S. J. B. Yoo, A. Scherer, R. Bhat, N. C. Andreadakis, C. E. Zah, M. A. Koza and T. P. Lee, IEEE Photon. Technol. Lett., 6(3), p.317(1994)
- [8] O. K. Kwon, B. S. Yoo, J. H. Shin, J. H. Baek and B. Lee, IEEE Photon. Technol. Lett., 6(3), p.317(1994)
- [9] J. H. Baek, I. H. Choi, B. Lee, W. S. Han and H. K. Cho, Appl. Phys. Lett. 75(11) p.1500(1999)
- [10] J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren and Bowers, Appl. Phys. Lett. 72(15) p.1814(1998)
- [11] Fang-I Lai, M. Y. Tsai, Y. H. Chang, J. P. Chu, S. Y. Kuo, H. C. Kuo and S.C. Wang, submitted to Jpn. J. Appl. Phys.