行政院原子能委員會

委託研究計畫研究報告

表面改質鋰錳氧化物之全固態薄膜鋰電池研究 Surface modified of LiMn₂O₄ for all-solid-state thin film lithium battery

計畫編號:107A023

- 受委託機關(構):國立雲林科技大學電子工程系
- 計畫主持人:陳錫釗
- 聯絡電話: (05)534-2601 ext4342
- E-mail address : hcchen@yuntech.edu.tw
- 協同主持人:無
- 研究期程:中華民國 107 年 02 月至 107 年 12 月
- 研究經費:新臺幣45萬2千元
- 核研所聯絡人員:陳駿昇
- 報告日期: 107年12月20日

目 錄

目 錄 [
中文摘要1
ABSTRACT
壹、計畫緣起與目的 3
貳、研究方法與過程5
一、射頻磁控濺鍍五氧化二鉭薄膜在 ITO/GLASS 5
二、陰極電弧法製備二氧化錯在 ITO/GLASS6
三、半電化學元件特性分析6
(一)SEM 量測分析 6
(二) XPS 量測分析 7
(三)可見光光譜儀分析穿透率變化(ΔT)及光學密度差(ΔOD)
與著色效率
(四)循環伏安分析及交流阻抗分析 8
参、主要發現與結論10
一、主要發現 10
(一)SEM 量測分析 10
二、結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・16
(一)五氧化二鉭作為離子傳導層16
(二)二氧化鋯為離子傳導層 16
肆、參考文獻
伍、會議或論文發表與競賽成果 21
一、投稿 SCI 文章摘要 21
二、投稿 OPTIC2018 國際會議摘要 23
三、競賽獲獎 24
(一)中國工程師學會107年度工程論文競賽獲得電子組第一名

【特優獎】	24
(二)參加 2018 光寶創新競賽技術創新組獲得【最佳潛力獎】	25

中文摘要

近年來,二氧化鋯因為材料穩定、電化學能力佳、無毒、價格 便宜,所以漸漸被用於電化學元件材料上,因此,我們希望使用此 材料作為全固態鋰錳氧化物電池的表面改質材料,可以跟目前市面 上常見的五氧化二鉭的電化學能力比較。五氧化二鉭雖然皆具有高 離子傳導性、較高的光學穿透率、良好的化學與熱穩定性等優點, 但有價格昂貴的缺點,從而增加電池的成本。相較於二氧化鋯,不 僅有良好的離子傳導率和光學穿透率,價格比五氧化二鋰靶材更便 宜。故本研究完成射頻磁控濺鍍法濺鍍五氧化二鉭,及以陰極電弧 法製備二氧化鋯,搭配常用的氧化鎢作為電致變色層,找出五氧化 積時間來控制)、二氧化鋯之最佳製鍍壓力。實驗結果顯示, ZrO, 在鍍膜壓力為 45 mTorr 時與氧氫比為 0.27 時,經由折射率與微觀形 貌得知製備出的 ZrO,較為鬆散, 而在電致變色特性上有最大的著、 退色穿透率變化為(ΔT=55.43%)以及循環伏安分析與交流阻抗分析 上有最大滯環面積為(Q=23.5mC)與最低電阻值 19.37kΩ,經由公式 可推算出此參數下的離子傳導率為 0.344x10⁻⁶S/cm, 綜觀上述, 二氧 化鋯有望可以取代五氧化二鉭作為較低成本的離子傳導層材料。

關鍵字:射頻磁控濺鍍、陰極電弧法、五氧化二鉭、二氧化鋯、固 態電解質層

Abstract

In recent years, zirconium dioxide (ZrO_2) has been used as a material for electrochemical devices because of its stable material, good electrochemical performance, nontoxicity, and low price. Therefore, this study completed the RF magnetron sputtering method of sputtering tantalum pentoxide, and the cathode arc method to prepare zirconium dioxide, with the commonly used tungsten oxide as the electrochromic layer, to find the tantalum pentoxide (Ta_2O_5) sputtering good oxygen argon flow ratio (control the same thickness), film thickness (controlled by deposition time), optimal plating pressure of zirconium dioxide. From experimental results that ZrO_2 is at 45 mTorr when the coating pressure is 45 mTorr. When the ratio of oxygen to argon is 0.27, the prepared ZrO_2 is looser through the refractive index and the microscopic morphology, and the maximum change in the electrochromic property, the change in the fading transmittance is ($\Delta T=55.43\%$) and the cycle. The volt-Amperance analysis and AC impedance analysis have the largest hysteresis area (Q=23.5mC) and the lowest resistance value of 19.37 k Ω . The ionic conductivity under this parameter can be calculated by the formula to be 0.344×10^{-6} S/cm. Zirconium dioxide is expected to replace tantalum pentoxide as the ion conducting layer material.

Keyword: RF magnetron sputtering, cathodic arc method, tantalum pentoxide(Ta₂O₅), zirconium dioxide(ZrO₂), solid electrolyte layer

壹、計畫緣起與目的

人們為了追求生活品質以及更加舒適與便利的生活環境促使科 技及工業的迅速發展,同時也造成地球上能源的大量損耗、生態環 境的嚴重破壞、廢氣的排放汙染等問題產生,導致全球暖化問題日 益嚴重。然而除了開發新能源外,如何善用與節約太陽能等替代性 能源也是另一種減緩的方式。為了因應上述節約能源,綠色技術的 意識逐漸受到重視[1],故政府也積極推動政策希望能提升國內再生 能源與其產業技術之發展,因此節能產品開發成為未來重要的方向。

藉由電致變色作為驅動機制的節能元件中為目前較受到重視的 節能產品,主要是擁有以下幾項獨特的優點:(1)低電壓驅動、(2) 具記憶效應、(3)可受電壓控制穿透度、(4)良好的響應時間及(5)循環 壽命較長,另外與其他節能的元件差別在可利用外加低電壓促使電 致變色元件產生光學之穿透度變化和具有可逆性,以及可以調變及 控制不同入射波長電磁輻射之入射量用以隔檔輻射熱來源,透過此 方式達到室內濾光、明暗控制等的功能應用,使得電致變色元件在 實用產品上極具有優勢的發展潛力[2,3]。

目前全固態鋰電池可以透過改質方式來提升電化學能力,改質 的方法可分為兩大類,第一種為掺雜金屬離子(鋁、錳、鐵、鈦、釠、 鉻、鉍、鈷、鎳、銅、鋅及鑭...等)於正極材料的結構中[4],來穩定 鋰錳氧化物的結構穩定性與電化學能力。第二種為表面改質,將金 屬氧化物包覆於表面,另一種為有機物表面處理法。表面處理主要 是為了抑制電極與電解質的分解及保護活性物質結構,進而提高活 性物質電化學能力。表面改質材料如 Li₃PO₄[5] 、Mn₂O₃[6]、TiO₂、 Ta₂O₅等。

-3-

然而,二氧化鋯因為材料穩定、電化學能力佳、較高的離子導 電率、無毒、價格便宜,所以漸漸被用於電化學元件材料上,因此, 我們希望使用此材料作為全固態鋰錳氧化物電池的表面改質材料, 可以跟目前市面上常見的五氧化二鉭的電化學能力比較。五氧化二 鉭雖然皆具有高離子傳導性、較高的光學穿透率、良好的化學與熱 穩定性等優點,但有價格昂貴的缺點,從而增加電池的成本。相較 於二氧化鋯,不僅有良好的離子傳導率和光學穿透率,價格比五氧 化二鋰靶材更便宜,如圖1所示。

金屬	品种	单位	价格	周涨跌	周涨跌幅	年初至今
锆 -	错英砂	元/吨	9000	250	2.86%	26, 76%
	硅酸锆	元/吨	11100	500	4. 72%	18.09%
钛	海绵钛	元/吨	70000	0	0.00%	40.00%
	钛精矿	元/吨	1350	-50	-3.57%	8.00%
42	电解链	元/吨	11300	-200	-1.74%	-28.25%
<u>95</u>	二氧化锰	元/吨	10900	0	0.00%	0.00%
绪	错锭	元/吨	7250	0	0.00%	5.84%
陞	氧化钽	元/公斤	1505	60	4. 15%	2.03%
锢	锢	元/公斤	1260	20	1.61%	-11.58%
繘	镉锭	元/吨	14300	550	4.00%	6. 72%
徽	精铋	元/吨	68500	-250	-0.36%	-3. 52%
1.15	锑	元/吨	57000	-1000	-1.72%	15.00%
部	锑锭	元/吨	55500	-1000	-1.77%	12, 12%

数据来源:wind、百川资讯、广发证券发展研究中心

圖 1.2017 六月金屬漲跌狀況[7]

有鑑於此,本研究將著重於二氧化鋯半電化學元件之研究探 討,希望能提高二氧化鋯之效率並取代五氧化二鉭,進而降低材 料成本。最後透過電致變色的電化學能力比較二氧化鋯與五氧化 二鉭的優缺點,找出適合全固態鋰錳氧化物電池的表面改質材料。

貳、研究方法與過程

本計畫分三個階段射頻磁控濺鍍完成二氧化鋯固態電解質與效率提升,其中第一階段為射頻磁控濺鍍五氧化二鉭(Ta₂O₅)於 ITO/Glass上,並找尋最佳參數;第二部分為射頻磁控濺鍍二氧化鋯 (ZrO₂)於ITO/Glass上,並找尋最佳參數;第三部分為製作成半電化 學元件,將兩者比較與分析光學特性以及電化學特性。

一、射頻磁控濺鍍五氧化二鉭薄膜在 ITO/Glass

射頻磁控濺鍍五氧化二鉭薄膜,如圖 2 所示。執行步驟如 下所示:

Step 1: 開啟 Sputter 機台、冷卻水系統與 N₂ 氣瓶打開, 通入 N₂ 把腔體破真空。

Step 2: 將清洗完畢的 ITO/Glass 基板固定於載台。

Step 3: 使用機械幫浦將腔體抽真空至 3x10-3 Torr。

- Step 4: 通入氫氣與氧氣作為濺鍍氣氛,利用質流控制器控制氫 氣與氧氣比例。
- Step 5: 改變射頻磁控濺鍍參數沉積 Ta₂O₅ 薄膜,並尋找最佳參數。
- Step 6: 濺鍍完成後,等待機台冷卻並取出試片,即可獲得 Ta₂O₅ /ITO/Glass。

圖 2. 射頻磁控濺鍍五氧化二鉭在 ITO/Glass 二、陰極電弧法製備二氧化鋯在 ITO/Glass

本實驗透過陰極電弧法製備二氧化鋯薄膜的機台是由行政 院原子能委員會-核能研究所(物理組)所提供,其蒸鍍裝置為行 政院原子能委員會-核能研究所(物理組)之裝置,裝置與運作示 意圖如圖 3 所示,搭配機械幫浦、魯式幫浦和渦輪真空幫浦, 所使用到的氣體為氫氣與氧氣。

圖 3. 陰極電弧裝置與運作示意圖

三、半電化學元件特性分析

(一) SEM 量測分析

本實驗藉由 FE-SEM 的成像來觀察薄膜表面粗糙度以及 薄膜厚度,所使用之 FE-SEM 儀器為 JEOL 公司所製造,型號 為 JSM-6701F,如圖 4 所示。

圖 4. 冷場發射掃描式電子顯微鏡

(二) XPS 量測分析

本實驗所使用的 X 光電子能譜儀之型號為 JEOL-JAMP9500F,如圖 7 所示,X 光源為雙陽極 MgK-a/A1K-a,加速電壓為0.5~30KV,能量解析度為0.8%。 主要用分析不同的氧氫流量比對所製備之五氧化二鉭或二氧 化鋯薄膜的化學鍵結,是否會因為氧氫流量比的增加而束縛能 會有所改變。

圖 5.X 光電子能譜儀

(三)可見光光譜儀分析穿透率變化(ΔT)及光學密度差(ΔOD)與著 色效率

Step 1:將 ZrO2 or Ta2O5/Glass 試片放置光譜儀中間,進行量

測 ZrO2 or Ta2O5 薄膜折射率,並記錄與分析。 Step 2: 以恆電位儀施以+1V~-1V 進行著色(Tcoloring)、退色 (Tbleaching), 當施以-1v進行著色, 著色後, 放置光 譜儀量測穿透率;當施以+1V 進行退色,退色後,放 置 光 譜 儀 量 测 穿 透率 , 依 照 △OD=log(Tbleaching/Tcoloring)計算出光學密度以及 穿透率差,並記錄。

圖 6. 半電化學元件光學特性量測

(四)循環伏安分析及交流阻抗分析

- Step 1: 將試片半電化學元件置放於工作電極, 輔助電極為白金電極, 參考電極為飽和甘汞電極, 並放置 0.1M 過氯酸鋰+碳酸丙烯之溶液。
- Step 2: 測量循環伏安分析時將恆電位儀之電位設定電壓為 +1V~-1V,掃描速率為 5mV/sec,量測試片的氧化還 原反應,觀察其電流變化情形,並記錄。
- Step 3: 測量交流阻抗時將恆電位儀之頻率設定為 10KHz~ 1Hz,觀察其交流阻抗圖,並記錄。

參、主要發現與結論

一、主要發現

(一) SEM 量測分析

由圖 8 Glass/ITO/WO₃/Ta2O₅ 半元件之 SEM 俯視面圖可看 出氧氫流量比為 0.1 時,所濺鍍出的五氧化二鉭薄膜較為疏鬆, 而當氧氫流量比逐漸增加至 0.15 及 0.2 時,所製備出的五氧化 二鉭薄膜逐漸形成較緻密的樣貌,其原因為當氧氫流量比較大 時,相對於五氧化二鉭所需要的氧氣較為足夠,且薄膜需沉積 至統一厚度時,雖然濺鍍速率較慢,但有較足夠的時間使薄膜 在成長階段有較少的孔洞,進而有較緻密的結構。由圖 9 Glass/ITO/WO₃/Ta2O₅ 半元件之 SEM 橫切面圖可看出不同的氧 氫流量比所製備之五氧化二鉭薄膜均可得到柱狀組織結構,其 中當氧氫流量比為 0.05 時有較大顆粒的出現,而在氧氫流量比 為 0.1 時,較大顆粒的出現較多,意味著薄膜之間的孔隙較大, 氧氫流量比為 0.15 及 0.2 時,逐漸形成較為緻密的柱狀薄膜結 構,使得薄膜之間的孔隙較小。

由圖 10 Glass/ITO/WO₃/ZrO₂ 半元件之 SEM 俯視面圖可看 出工作壓力為 15mTorr 時,所沉積出的二氧化鋯薄膜較為緻密, 而當工作壓力逐漸加大時,薄膜的表面也逐漸呈現較疏鬆的結 構,其原因為當作工作壓力逐漸增加時,雖然沉積速率較為快 速,但原子或離子的碰撞機率也相對的較高,使得被轟擊出的 原子或離子失去足夠的動能沉積於基板上,故較大的工作壓力 所製備出的二氧化鋯薄膜會較鬆散,且當工作壓力愈大時,薄 膜的附著性也逐漸降低。

-10-

由圖 11 Glass/ ZrO₂之 SEM 橫切面圖可看出不同的工作壓 力下所製備之二氧化鋯薄膜可得到部分柱狀組織結構,其中當 工作壓力為 15mTorr 和 25mTorr 時有較為緻密的柱狀薄膜結 構,使得薄膜之間的孔隙較小,導致離子難以嵌入或嵌出於電 致變色層,當工作壓力持續增加至 35mTorr 與 45mTorr 時可以 看到二氧化鋯薄膜呈現較為鬆散的結構,意味著有較多孔隙可 以讓離子更好嵌入或嵌出於電致變色層,然而當工作壓力增加 到 55mTorr 與 65mTorr 時有出現脫膜的情形,這是因為陰極電 弧法是屬於蒸鍍方式,當壓力較大時,薄膜的附著性會隨之下 降,使得薄膜有部分脫落或剝落,而這種狀況也會影響到離子 嵌入或嵌出於電致變色層的路徑,使得更多阻礙,導致較難著 色或退色。

圖 8.五氧化二鉭薄膜厚度為 300nm,氧氣流量比為(a)0、(b)0.05、 (c)0.1、(d)0.15、(e)0.2 之 Glass/ITO/WO₃/Ta₂O₅半元件的 SEM 俯視

圖

圖 9.五氧化二鉭薄膜厚度為 300nm,氧氟流量比為(a)0、(b)0.05、 (c)0.1、(d)0.15、(e)0.2 之 Glass/ITO/WO₃/Ta₂O₅半元件的 SEM 横切

面圖

圖 10.二氧化鋯薄膜厚度為 1um,工作壓力為(a)15mTorr、(b) 25mTorr、(c) 35mTorr、(d) 45mTorr、(e) 55mTorr、(f) 65mTorr 之 Glass/ITO/WO₃/ZrO₂半元件的 SEM 俯視圖

圖 11.二氧化鋯厚度為 1um,工作壓力為(a)15mTorr、(b) 25mTorr、 (c) 35mTorr、(d) 45mTorr、(e) 55mTorr、(f) 65mTorr之 Glass/ZrO₂ 的 SEM 横切面圖

二、結論

(一)五氧化二鉭作為離子傳導層

- 1.在沉積速率分析上,當氧氫壓比為 0.1 時有最佳速率參數為 1.44nm/min,經由 SEM 的橫切面圖,有較多大顆粒的出現 和有較低的折射率,也意味著薄膜結構較為鬆散,能使得 Li⁺離子更容易嵌入、嵌出於電致變色層,且透過 X 光繞射 儀分析為非晶態,最後經由 X 光電子能譜儀分析 Ta4f_{7/2} 及 Ta4f_{5/2}兩者峰值間距相差皆為 1.9eV 以及氧原子與鉭原子比 例為 2.49。
- 2.透過射頻磁控濺鍍在不同氧氫比條件下製備出的五氧化二 鉭薄膜的初鍍皆有非常好的透明度,符合應用在智慧窗户的 基本要求,穿透率都在75%以上,且在光學穿透變化率分析 上,當氧氫比為 0.1 時有最大的穿透率變化 52.9%、最高的 光學密度差 0.53 以及有較卓越的著色效率 21.1cm²/C,而在 循環伏安分析和交流阻抗分析中,有最大滯留面積約為 37.64mC 與最低的阻抗值 14.3kΩ,這表示有較多反應之電荷 嵌入或嵌出薄膜中,則代表著五氧化二鉭薄膜有較大的孔隙 率可以讓離子更加容易的嵌入或嵌出,也表示薄膜較為鬆 散。
- (二)二氧化鋯為離子傳導層
 - 1.在沉積速率分析上,當工作壓力為為45mTorr時有最佳速率 參數為200nm/min,經由SEM的俯視圖,可以看出薄膜結 構較多孔隙,也意味著薄膜結構較為鬆散,能使得Li+離子 更容易嵌入、嵌出於電致變色層,且有較低的折射率,而透

過 X 光繞射儀分析為非晶態,最後經由 X 光電子能譜儀分析 Zr3d_{5/2} 及 Zr3d_{5/2} 兩者峰值間距相差皆為 2.3eV 以及氧原子 與鉭原子比例為 2.01。

2.透過陰極電弧法在不同工作壓力條件下製備出的二氧化錯 薄膜的初鍍皆有非常好的透明度,符合應用在智慧窗戶的基 本要求,穿透率都在 75%以上,且在光學穿透變化率分析 上,當工作壓力為 45mTorr 時有最大的穿透率變化 55.43%、 最高的光學密度差 0.55 以及有較卓越的著色效率 35cm²/C, 而在循環伏安分析和交流阻抗分析中,有最大滯留面積約為 23.5mC 和最低的阻抗值 19.37kΩ,這表示能有較多反應之電 荷嵌入或嵌出薄膜中,則代表著五氧化二鉭薄膜有較大的孔 隙率可以讓離子更加容易的嵌入或嵌出,也表示薄膜較為鬆 散。

總結上述實驗結果,透過陰極電弧法製備二氧化鋯薄膜 作為全固態半電致變色元件中的離子傳導層,有良好的著、 退色效果以及較低的交流阻抗,有望可以取代五氧化二鉭作 為較低成本的離子傳導層材料。

-17-

肆、參考文獻

- 1. Americas United States Equity Research, May (2013).
- C. M. Lampert and C. G. Granqvist, "Large-area chromogenics: materials and devices for transmittance control, 22-24 September 1988, Hamburg," SPIE institutes for advanced optical technologies, 1989
- 何國川, ""電化學與無窗簾時代", "化工, vol. 第37卷, pp. 32-41 頁, 1990.
- D. Arumugam, G. P. Kalaignan, K. Vediappan, C. W. Lee, "Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn₂O₄ cathode materials for rechargeable lithium batteries," Electrochimica Acta, vol. 55, no. 28, pp. 8439-8444 (2010).
- X. Li, R. Yang, B. Cheng, Q. Hao, H. Xu, J. Yang, Y. Qian, "Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55°C," Materials Letters, vol. 66, no. 1, pp. 168-171 (2012).
- J. H. Lee, K. J. Kim, "Superior electrochemical properties of porous Mn₂O₃-coated LiMn₂O₄ thin-film cathodes for Li-ion microbatteries," Electrochimica Acta, vol. 102, pp. 196-201 (2013).
- 7. http://www.sohu.com/a/153430371_619390
- P. Kelly and R. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, 2000.
- 9. S.-C. Wang, K.-Y. Liu, and J.-L. Huang, "Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device," Thin 138 Solid Films, vol.

520, pp. 1454-1459, 2011.

- 10. G. Bakradze, "Initial oxidation of zirconium: oxide-film growth kinetics and mechanisms," 2011.
- W. Li, X. Liu, A. Huang, and P. K. Chu, "Structure and properties of zirconia (ZrO₂) films fabricated by plasma-assisted cathodic arc deposition," Journal of Physics D: Applied Physics, vol. 40, p. 2293, 2007.
- J.-K. An, N.-K. Chung, J.-T. Kim, S.-H. Hahm, G. Lee, S. B. Lee, et al., "Effect of Growth Temperature on the Structural and Electrical Properties of ZrO₂ Films Fabricated by Atomic Layer Deposition Using a CpZr [N (CH₃) ₂] ₃/C7H8 Cocktail Precursor," Materials, vol. 11, p. 386, 2018.
- P. Guo, Y. Xue, C. Huang, Z. Xia, G. Zhang, and Z. Fu, "Optical properties and elemental composition of Ta₂O₅ thin films," in Photonics and Optoelectronics, 2009. SOPO 2009. Symposium on, 2009, pp. 1-4.
- E. Atanassova, T. Dimitrova, and J. Koprinarova, "AES and XPS study of thin RF-sputtered Ta₂O₅ layers," Applied Surface Science, vol. 84, pp. 193-202, 1995.
- F. Z. Tepehan, F. E. Ghodsi, N. Ozer, and G. G. Tepehan, "Optical properties of sol–gel dip-coated Ta₂O₅ films for electrochromic applications," Solar energy materials and solar cells, vol. 59, pp. 265-275, 1999.
- E. Atanassova and D. Spassov, "X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si," Applied surface science, vol. 135, pp. 71-82, 1998.
- 17. O. Kerrec, D. Devilliers, H. Groult, and P. Marcus, "Study of dry and electrogenerated Ta₂O₅ and Ta/Ta₂O₅/Pt structures by XPS,"

Materials Science and Engineering: B, vol. 55, pp. 134-142, 1998.

伍、會議或論文發表與競賽成果

一、投稿 SCI 文章摘要

Electrochromic and nanostructure performances of Tantalum Pentoxide and Zirconium Dioxide films deposited with sputtering and cathodic arc for the ion-conduction layer

Hsi-Chao Chena, b,*, Der-Jun Jan c, Jyun-Huei Lin a, and Min-Chuan Wangc aGraduate School of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

bDepartment of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

cPhysics Division, the Institute of Nuclear Energy Research , Taoyuan County 32546, Taiwan * Corresponding author: hcchen@yuntech.edu.tw

Abstract:

This research investigated the electrochromic and nanostructure performances of Tantalum Pentoxide (Ta2O5) and Zirconium Dioxide (ZrO2) films as the ion conduction layer for an all-solid-state electrochromic device (ECD). The Ta2O5 film was commonly prepared by radio frequency (RF) magnetron sputtering with different oxygen/argon ratio while the ZrO2 film was prepared by a cathodic arc with different deposition pressure. The deposition rate, scanning electron microscopy (SEM), optical property, optical density (OD) variation, coloration efficiency (CE), and cyclic voltammetry (CV) were examined. The results exhibited the Ta2O5 film deposited with an oxygen/argon ration of 0.1 had the maximum colored/bleached variation of $\Delta T=52.9\%$ @550nm and the maximum CV cladding area of Q=37.64mC, and this film had the resistance of $14.3k\Omega$ and the ionic conducting rate of 3x10-7 S/cm. On the other hand, the ZrO2 film deposited with the deposition pressure of 45 mTorr had the maximum colored/bleached variation of $\Delta T=55.43\%$ @550nm and maximum CV cladding area of Q=23.5mC, and this film had the resistance of 19.37 k Ω and ion conducting rate of 3.44x10-6 S/cm. However, the economic ZrO2 film deposited with the cathodic arc method has the potential to replace the traditional Ta2O5 film deposited with sputtering for the all-solid-state ECD.

Key words : Tantalum Pentoxide (Ta2O5), Zirconium Dioxide (ZrO2),

electrochromic device (ECD), sputtering deposition, cathodic arc deposition, electrochromic property.

hcchen	
寄件者: 寄件日期: 收件者:	eesserver@eesmail.elsevier.com 代理 Electrochimica Acta <eesserver@eesmail.elsevier.com> 2018年12月5日星期三 上午 4:07 hcchen@yuntech.edu.tw; bath.chen@msa.hinet.net</eesserver@eesmail.elsevier.com>
主旨:	A manuscript number has been assigned: EA18-8249

Ms. Ref. No.: EA18-8249

Title: Electrochromic and nanostructure performances of Tantalum Pentoxide and Zirconium Dioxide films deposited with sputtering and cathodic arc for the ion-conduction layer Electrochimica Acta

Dear bath,

Your submission entitled "Electrochromic and nanostructure performances of Tantalum Pentoxide and Zirconium Dioxide films deposited with sputtering and cathodic arc for the ion-conduction layer" has been been assigned the following manuscript number: EA18-8249.

You may check on the progress of your paper by logging on to the Elsevier Editorial System as an author. The URL is <u>https://ees.elsevier.com/electacta/</u>. Your username is: <u>hcchen@yuntech.edu.tw</u> If you need to retrieve password details, please go to: <u>http://ees.elsevier.com/electacta/automail_query.asp</u>

Thank you for submitting your work to this journal.

Kind regards,

Ann Beresford-Laycock Managing Editor Electrochimica Acta

The Electrochromic and Optical Properties of Zirconium Oxide Film Deposited by Cathode Arc Method

Yi Ren Chen1, Jyun-Huei Lin1, Der-Jun Jan3, Hsi-Chao Chen1,2*

1. Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan

 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan 3.Physics Division, the Institute of Nuclear Energy Research, Taoyuan County 32546, Taiwan *Author e-mail address: M10713305@yuntech.edu.tw, hcchen@yuntech.edu.tw

Abstract: Zirconium oxide (ZrO2) was deposited by cathode arc as the ion-transmission layer for the tungsten oxide electrochromic (WO3) film. The ZrO2 thin film deposited with different chamber pressure from 15 to 65 mTorr for the Glass/ITO/WO3/ZrO2 films. The chamber pressure of 45 mTorr has the maximum transmission variation of 55.43%.

The Electrochromic and Optical Properties of Zirconium Oxide Film Deposited by Cathode Arc Method

Yi Ren Chen¹, Jyun-Huei Lin¹, Der-Jun Jan³, Hsi-Chao Chen^{1,2*}

Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
 Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
 Physics Division, the Institute of Nuclear Energy Research, Taoyuan County 32546, Taiwan
 *Author e-mail address: <u>M10713305@yuntech edu.tw</u>, <u>hcchen@yuntech.edu.tw</u>

Abstract: Zirconium oxide (ZrO₂) was deposited by cathode arc as the ion-transmission layer for the tungsten oxide electrochromic (WO₃) film. The ZrO₂ thin film deposited with different chamber pressure from 15 to 65 mTorr for the Glass/ITO/WO₃/ZrO₂ films. The chamber pressure of 45 mTorr has the maximum transmission variation of 55.43%. *Keyword–Zirconium oxide, cathode arc deposition, electrochromic.*

1. Introduction

The ion-conducting layer in the electrochromic element has the problem of encapsulation leakage, and then gradually the organic polymer is replaced with an inorganic oxide. The advantages of inorganic oxide can solve the potential problem of encapsulation leakage and the bubbles formation to improve the life time and environmental impact. Since, these inorganic oxides of $TiO_2[1]$, $Ta_2O_5[2]$, ZrP[3], $LiNbO_3[4]$ and ZrO_2 are used for the ion-conducting layer in the electrochromic element. Especially, the ZrO_2 also has the goods of hazelnut conductivity, high dielectric constant, optical transmittance, and the economic price.

The economy Zr target was used to replace the expensive metal oxide target, and look for the deposition parameter of the chamber pressure and oxide pressure to get the optimal ZrO_2 thin film for electrochromic element. The SEM images of the ZrO_2 were verified the microstructures with different chamber pressure. The optical property was checked by spectra-microscopy. Finally, the ZrO_2 was used to promote the electrochromic efficiency and the transmittance variation to get the good ionic conductivity to replace Ta_2O_5 film.

三、競賽獲獎

(一)中國工程師學會 107 年度工程論文競賽獲得電子組第一名 【特優獎】「電漿磁控濺鍍鋰錳氧化物全固態薄膜鋰電池研究」

中國工程師學會學生分會 107年度工程論文競賽獎狀

國立雲林科技大學陳錫釗教授擔任呂青龍與陳羿任同學 之指導教授,參加本會學生分會『107 年度工程論文競賽』 獲選為電子組『特優獎』得獎人,特此證明。

THIS IS TO CERTIFY THAT PROF. HSI-CHAO CHEN, PROFESSOR OF NATIONAL YUNLIN UNIVERSITY OF SCIENCE AND TECHNOLOGY, HAS BEEN GRANTED THE 2018 AWARD OF STUDENT ENGINEERING PAPERS COMPETITION OF THE CHINESE INSTITUTE OF ENGINEERS FOR HIS INSTRUCTION TO CING-LONG LYU AND YI-REN CHEN, OF NATIONAL YUNLIN UNIVERSITY OF SCIENCE AND TECHNOLOGY.

解富盛

中國工程科學會教育委員會主任委員 Dr. Fuh-Sheng Shieu Chairman, Committee of Education Chinese Institute of Engineers

25 May, 2018

電子組

(二)參加 2018 光寶創新競賽技術創新組獲得【最佳潛力獎】 「具 Fabry-Perot 色彩選擇之鈣鈦礦太陽能電致變色節能窗」

LITE-ON AWARD 2018

By authority of LITE-ON Technology Corp. hereby confers upon

陳錫釗 Hsi-Chao Chen Certificate for the contribution to the creation of Merit Award Perovskite solar energy-saving electrochromic windows with Fabry-Perot color selection

August 30th, 2018

Rond Soong

Raymond Soong Chairman LITE-ON Technology Corp.

陸、作者及所屬單位

類 別	姓 名	現任職務	在本計畫內擔任之具體工作性質、項目及範圍
主持人	陳錫釗	副教授	擔任本計畫的主持人,並追蹤以及督導計畫執行
兼任助理	林均徽	碩士生	 參與製程濺鍍 Ta2O5,並分析其薄膜特性與參 數研究。 參與製程濺鍍 ZrO2,並分析其薄膜特性與參 數研究。 參與 Ta2O5 和 ZrO2 半電化學元件的特性與量 測。 參與實驗量測與數據彙集整理。
兼任助理	郭書瑋	碩士生	 冬與濺鍍 Ta₂O₅和 ZrO₂ 製程。 冬與實驗量測與數據彙集整理。 冬加會議論文與文章撰寫。
兼任助理	蘇威榕	碩士生	 協助濺鍍 Ta₂O₅和 ZrO₂ 製程。 協助實驗量測與數據彙集整理。 協助會議論文與文章撰寫。
兼任助理	陳羿任	碩士生	 冬與製程濺鍍 Ta2O5 及 ZrO2,並分析其薄膜特 性與參數研究。 分析 Ta2O5 和 ZrO2 半電化學元件的特性與量 測。 參與實驗量測與數據彙集整理。
兼任助理	呂育儒	碩士生	 協助實驗量測與數據彙集整理。 參與會議論文與投稿文章撰寫。
兼任助理	李忠諭	碩士生	 1. 幫忙實驗量測與數據彙集整理。 2. 協助會議論文與投稿文章撰寫