第六章第一節審查意見

Let	- ub	(1 01 102	分組	審查代碼	章節	頁碼	狀態		
新	前號	6.1-01-103	臨界	S12	附錄 5.A	5.A6	結案		
	第1次審查意見								
將	合乎	設計要求之中-	子吸收劑妥善	的安裝於燃	料方管的	内侧,是維	護臨界		
安	全之	關鍵要項。報行	吉中列了三類	j中子吸收劑(Boral > bo	orated metal	matrix		
co	mpos	ites (MMC)與 b	porated alumin	num alloy)皆۶	稱為 metal	llic composi	te •		
請	澄清	是否三類中子。	吸收劑在本系	《統中混合使	用?還是	會簡化使用	單純一		
類	?								
			第1次審	查意見答復訪	兑明				
本	系統	中將只使用單約		收板。Boral	、MMC 횾	₹ Borated al	uminum		
all	loy 법	為本案可選擇	的中子吸收型	剄,實際要採	用何種中	子吸收劑,	將依據		
市	場可	得性,於使用言	前提出。						
			第 2	次審查意見					
1.	6.2.B		濟與能取得	的中子吸收物	万 」,請說	记明。			
2.	另請	考量就結構強」	度、熱傳、腐] 蝕等面向,]	北較 Boral	l、MMC 與	Borated		
	alum	inum alloy 三種	材質於壽命	期內(正常、	異常與意	;外情形下)	之持續		
	有效	性,選擇優先化	吏用之中子吸	と收劑材質。					
			第2次審	查意見答復訪	兑明				
1.	如	F之分析有關三	•種中子吸收	· 劑 Boral、boı	rated meta	l matrix cor	nposites		
	(MI	MC)與 borated a	aluminum allo	y 於結構強度	度、熱傳、	腐蝕等面向]大致相		
	當	, 皆符合本案票	;求,6.2.B-2	8「選用 <u>最經</u>	濟與能取	.得的中子吸	٤ 收物」		
	修改	文為「於訂定製	造規範時要	求選定超過或	符合标准	而且適合之	中子吸		
	收产	約」 o							
2.	三利	重材料的基材均	1為鋁,所以:	其結構強度、	熱傳、廢	「蝕特性均类	頁似:		
	A.	結構部分:由	於中子吸收牝	物没有支撑結	構功能,	因此不需考	量中子		

6.1-1

吸收物的結構強度。此外 Ch 6.2 的假設傾倒分析顯示,即使發生傾 倒意外,也可維持密封鋼筒內的提籃結構完整性。

- B. 腐蝕部分:中子吸收物之鋁覆材在製造時即快速氧化,此氧化層會 保護中子吸收材料避免劣化。整個密封鋼筒只在裝填燃料時有短暫 接觸水,如此短暫的時間不致造成腐蝕現象。此外密封鋼筒內會填 充氦氣,也可有效抑制腐蝕現象。
- C. 熱傳部分:由於鋁的熱傳導性很強,所以中子吸收板中的鋁成分含量越多的話,則熱傳效果越好。熱傳分析中假設以B-10 有效面積密度比實際高的中子吸收板分析,由於其鋁含量較少,所以熱傳效果較實際來得差,是為保守假設。

第3次審查意見

同意答覆。然本案 27 組護箱,應採用相同中子吸收劑材質。

第3次審查意見回覆

依照審查意見,本案27 組護箱,採用相同中子吸收劑材質。

第4次審查意見

伯貼	6 1 02 104	分組	審查代碼	章節	頁碼	狀態		
骊 號	0.1-02-104	臨界	S12	6.1	6.1.1-1	結案		
	第1次審查意見							
本報告之臨界安全分析採用 bounding analysis,在燃料平均濃縮度採用了 3.3								
wt%以ì	wt%以涵蓋核二廠乾貯之 GE8x8-2(3.03 wt%)及 ANF8x8-2(3.25 wt%)。但由							
表 6.1.2	-1 顯示,本報	告分析 B8_6	2A 燃料型式	與核二廠	待貯存之燃	料,在		
燃料棒參數、材質並不盡相同。								
因此請	針對全部貯存1	ANF8x8-2 燃	料,用相同分	析工具,	執行臨界安	全分析		
以利了	解增殖因數之影	影響,並提供	一分析案例二	之程式輸入	入檔及輸出材	當。		

第1次審查意見答復說明
B8_62A 在組態上與 GE8x8-2、ANF8x8-2 類似,在反應度上可完全涵蓋在
二者,其參數比較及涵蓋說明已詳述於表 6.1.5-1,詳請參考 6.1-03 之回覆
第2次審查意見
1. 請提供一分析案例之 MCNP 程式輸入檔及輸出檔及簡要說明。
2. 台電公司已另行委託執行平行臨界安全分析,如有針對核二廠燃料之
關分析,應提供作為審查參考。
第2次審查意見答復說明
 依委員意見提供 MCNP 輸入檔(如附件 6.1-02-B1)與輸出檔(如附 6.1-02-B2); MCNP model 輸入檔以下列步驟建立:
A. 首先建立燃料束的幾何模型,包含燃料棒、水棒、燃料上下繫板(~ end-fitting)和燃料匣,並組成 UNIVERSE*1
B. 建立提籃幾何模型並放在密封鋼筒內部預留的空間中,提籃是由和 鋼方管、支撐焊件與中子吸收板及焊接釘(weld post)組成
C. 完成提籃模型後,再將燃料束以 UNIVERSE 的複製功能填滿提籃 的 89 個位置,一起放在密封鋼筒內部的空洞中
D. 密封鋼筒殼層與蓋子則圍繞在提籃外部建立
E. 將密封鋼筒放置到建立好的混凝土/傳送護箱幾何模型
F. 護箱表面往外 20 公分處設置圓柱形反射邊界
G. 初始射源均匀分佈於燃料區域中,射源中子能量以 Watt fissio
spectrum 分佈。每週期計算 2000 顆粒子,總週期 530 並忽略前 3 個週期。
注1. UNIVERSE: MCNP 裡一種類似群組的功能,可將 UNIVERSE) 的全部組成一起做複製、移位等操作
注2. MCNP 模型裡的材料密度與組成主要來自 SCALE material library 其餘材料則是由計算(如 pellet 組成)或是從參考資料中獲得。
2. 針對核二廠燃料之相關分析,依據本公司委託清華大學執行之核臨界,

全平行驗證,計算出 B8_62A 與 GE8x8_2 、ANF8x8_2 燃料於傳送護 箱在意外事故下之核臨界值如下:

	B8_62A	GE8x8_2	ANF8x8_2
U-235 濃縮度(wt%)	3.3	3.03	3.25
K _{eff} *	0.92353	0.89137	0.90408
σ	0.00041	0.00043	0.00043

*(每週期粒子數, 忽略週期, 有效週期數)=(6000,90,550), with corrected geometry.

第3次審查意見

同意答覆。請提供清華大學執行之核臨界安全平行驗證報告。

第3次審查意見回覆

依照審查意見,提供清華大學執行之核臨界安全平行驗證報告如附件 6.1-02-C。

第4次審查意見

同意答覆。

14 115	(1 02 105	分組	審查代碼	章節	頁碼	狀態		
编號	6.1-03-105	臨界	S13	6.1		結案		
	第1次審查意見							
雖然由;	極限涵蓋分析法	去觀點而言,]	B8_62A 燃料	型式涵蓋	核二廠用過	核子燃		
料待貯	存之 GE8x8-2 ,	及 ANF8x8-2	2 二種型式,	但是既然	是針對核二	廠用過		
核子燃	料乾式貯存設於	も進行臨界安	全評估,請打	采用 GE8	x8-2 及 AN	JF8x8-2		
二種燃	二種燃料型式做為設計基準燃料進行分析計算。							
第1次審查意見答復說明								
極限涵	蓋分析法於核-	工界必要且廣	泛應用於安	全分析。	其方法為分	析所有		
可能使	反應度變化的	参數,並判斷	f會造成反應.	度最大的	方向,在此	方向上		

設定一個可涵蓋所有分析對象的極限值,則此極限案例之反應度將會較所

有分析對象高,因此可以此極限案例作為基準進行臨界分析。如此可簡化 問題的複雜度同時保證其涵蓋性、保守性與完整性,如同我們要使用最大 溫度、最大壓力、最大流量、最大風速進行系統安全分析一樣。

本案待乾式貯存燃料 GE8x8-2 與 ANF8x8-2 總數約有 3500 根,且其軸向與 徑向濃縮度與可燃毒物分佈不盡相同,因此有必要尋找一設計基準燃料, 此設計基準燃料必須在反應度上可涵蓋本案所有待乾式貯存燃料,再以此 設計基準燃料進行臨界分析。

B8_62A 在個別設計參數上均可造成正反應度的變化,對於 ANF8x8-2、 GE8x8-2 的涵蓋性於安全分析報告 6.1.5.1 小節討論,可證明 B8_62A 在反 應度上可完全涵蓋本案所有待乾式貯存燃料,因此以 B8_62A 作為設計基 準燃料進行分析。

第2次審查意見

請提供以 B8_62A 作為設計基準燃料所增加的反應度, 俾以了解相對安全餘裕。

第2次審查意見答復說明

表 2 為以 CASMO4 計算三種燃料型式之反應度。為顯示僅考慮尺寸參數的 反應度影響,三種燃料形式之 UO2 濃縮度均為 3.3 wt%均勻分布,燃料丸有 效密度均為 10.52 g/cm³,忽略 Gd,燃耗為 0。各項參數列於表 1,其中灰色 網 底 為 參 數 不 同 的 部 分 。 Δ K 為 K_{eff}(GE8x8-2)- K_{eff}(B8_62A) 與 K_{eff}(AFN8x8-2)- K_{eff}(B8_62A),結果顯示 B8_62A 的反應度較高,證明以 B8_62A 做為設計基準燃料符合保守原則。

燃料棒參數	B8_62A	GE8x8-2	ANF8x8-2
燃料棒間距(mm)	16.299	16.154	16.154
燃料丸直徑(mm)	10.566	10.414	10.30
燃料棒外徑(mm)	12.268	12.268	12.29
燃料護套厚度(mm)	0.7366	0.813	0.89
有效燃料長度(mm)	3810.0	3810	3810

表 1 CASMO4 GE8x8-2、ANF8x8-2 與 B8_62A 燃料參數比較

燃料束參數	B8_62A	GE8x8-2	ANF8x8-2
軸向面平均濃縮度 (wt % U-235)	3.3	3.3	3.3
有效堆疊密度 (g/cm ³)	10.52	10.52	10.52
燃料棒數目	62	62	62
水棒數	2	2	2
水棒外徑(mm)	15.01	15.01	12.29
水棒護套厚度(mm)	0.762	0.762	0.89
燃料匣厚度(mm)	3.048	3.048	3.048

表 2 CASMO4 GE8x8-2、ANF8x8-2 與 B8_62A 燃料 K_{eff}比較

Fuel Type	GE8x8-2	ANF8x8-2	B8_62A
K _{eff} (含中子吸收板)	0.82594	0.82140	0.82744
K _{eff} (不含中子吸收板)	1.37059	1.36836	1.37395
△K(含中子吸收板)	-0.0015	-0.00604	-
△K(不含中子吸收板)	-0.00336	-0.00559	-
		-	

第3次審查意見

編 號	6.1-04-106	分組	審查代碼	章節	頁碼	狀態
		臨界	S13	6.1.3	6.1.3-3~6	結案
第1次審查意見						
請說明中子吸收板總片數(減少 24 片僅係臨界計算條件或製造時即以鋁片						
替代)。臨界評估分析中請加入因意外而造成中子吸收板片數減少的項目。						
第1次審查意見答復說明						

1. 提籃最外圍 24 個位置在製造時即以鋁片替代。

2. 在燃料提籃組裝前,中子吸收板在工廠中使用鉚釘(銲接釘)銲接方式 固定至各相關燃料方管上。這鉚釘銲接的程序須被仔細的檢查,以確保 銲接品質符合要求。QC 人員將確認此製造程序符合相關要求,並簽署 相關製造文件。在燃料提籃組裝前,這些製造文件將會被製造部經理審 查、許可。製造時之檢查與測試計畫表 (Inspection and testing plan) 也 會特別強化中子吸收板安裝與確認。有此一完整的安裝程序與確認步 驟,可保證中子吸收板安裝符合圖面或相關文件之要求。在結構分析中 有進行護箱傾倒分析(在實際上沒有任何物理機制可能導致護箱傾倒, 在此為假設一最嚴重案例進行保守分析),結果顯示即使護箱傾倒也能 保持密封鋼筒的結構完整性,因此不會有意外使得中子吸收板有脫落或 移位的情形。

第2次審查意見

1. 請確認鉚釘斷裂時,中子吸收板是否會位移或粉碎,而增加反應度。

請提出「中子吸收劑」製造品質查核管控措施。

第2次審查意見答復說明

 中子吸收板夾持於中子吸收板保護板與燃料方管之間,以銲接釘(weld post)貫穿以上各原件,並加熱溶解銲接釘的背側以形成一個喇叭頭(flared head)固定,如圖1所示,圖中元件1為燃料方管,元件3為中子吸收板, 元件4為中子吸收板保護板。中子吸收板組成的最嚴苛的受力狀態為60g 垂直負載,在結構評估中已經證實銲接釘承受中子吸收板組成的60g 負 載時,銲接釘不會斷裂,所以中子吸收板不會移位。並且中子吸收板保 護板在燃料方管底部端區域以彎折的形式對中子吸收板形成包覆。

6.1-8

第3次審查意見答復說明

因為中子吸收板重量全被 28 支銲接釘所支撐,若銲接釘全數斷裂,則中子 吸收板將無法依附在燃料方管上。但是依目前銲接釘的設計,足以承受遠高 於任何核二乾貯操作上所可能遭遇的負載,不可能斷裂,說明如下:核二乾 貯燃料提籃的元件分析所使用的是非常保守的 60g 垂直負載與混凝土護箱 傾倒負載,以上兩項負載都是假設性的負載,即便如此,亦假設銲接釘在垂 直與水平方向各承受 60g 負載的狀況,其安全係數仍分別高達到 5.84 與 16.26,所以銲接釘不會斷裂,中子吸收板也不會脫離燃料方管。詳細評估 請參見安全分析報告六.二.(六).4.(2)燃料提籃之貯存意外事故評估一節內 文。

第4次審查意見

同意答復。

伯貼	6 1 05 107	分組	審查代碼	章節	頁碼	狀態		
<i>э</i> 而	0.1-03-107	臨界	S13	6.1.4		結案		
	第1次審查意見							
標準臨	界實驗之選擇會	會影響 USLSI	「ATS 程式所	計算出的	USL,進而	影響貯		
存系統	是否符合次臨界	界安全基準的	判定。本分材	斤中所選月	用的 186 個	實驗所		
涵蓋的	範圍非常大,	有些與核二	廠用過核子	燃料待貯	存之 GE8>	8-2 及		
ANF8x	8-2 二種燃料型	式差異頗大。	。請針對此18	36 個實驗	的適當性做	進一步		
的說明	0							
		第1次審	查意見答復訴	已明				
本案為	一次臨界系統	,無法進行臨	界實驗測量	,因此程	式需要借助	適當之		
臨界實	驗進行驗證。戶	所挑選的臨界	實驗需與本	系統有相	關性,本案	以下列		
篩選條	件挑選適合於本	上 案臨界實驗	驗證的實驗	:				
1. 燃米	科材料:二氧化	鈾						
2. 鈾-2	235 濃縮度小於	~ 5 wt%						
3. 燃米	斗棒幾何形狀為	圓柱形						

4. 燃料束為方形陣列

5. 含中子吸收板

6. 緩和劑為水

USLSTATS 能以統計的方法計算出 USL 與反應度相關參數的關係式,如表 6.1.4-4。從該表中可得知,沒有任何參數對於 USL 呈現明顯的相關性。由 於沒有任何參數與 keff 在統計上有顯著的相關趨勢,因此可將所有實驗參 數利用 USLSTATS 程式計算出 USL,再從中取最小的 USL 做為臨界安全 分析上限,如此為最保守的做法。

第2次審查意見 請說明 USLSTATS 計算方式及△β。 第2次審查意見答復說明 USLSTATS 為 NRC 所建議之臨界實驗驗證計算 USL 工具,與 NUREG-6361 一同發佈。USLSTATS 之方法說明請見附件 6.1-05-A。 第3次審查意見 同意答覆。 請於附件 6.1-05-A 加註名詞代號說明, 俾便與章節 6.1.4 比對。 第3次審查意見答復說明 |依照審查意見,於附件 6.1-05-A 加註名詞代號說明,更新成附件 6.1-05-C。 |附件 6.1-05-C 的 B(x)即為安全分析報告公式(5)中的 B 項; W 即為安全分析 報告公式 5 中的 Δβ。 |附件 6.1-05-C 的 β(x)定義為 K_c(x)-1,而安全分析報告公式(5)中的 β 定義為 $|1-K_c$,但是一邊是加上 $\beta(x)$,一邊是減去 β ,所以其實還是一樣。 第4次審查意見 同意答覆。

編號 6.1-06-108 分組 審查代碼 章節 頁碼 狀

				1			
			臨界	S13	6.1.5		結案
			第1	次審查意見			
請打	是供·	安全分析報告	6.1 節臨界評	估 MCNP 輸	入檔詳細	說明。並說	明採用
每i	周期	2,000 顆粒子,	總週期 530	並忽略前 30	個週期進	行臨界計算	的適當
性	0						
			第1次審	查意見答復訪	记明		
3.	MC	'NP model 輸入	檔以下列步	驟建立:			
	A.	首先建立燃料	束的幾何模型	2,包含燃料;	棒、水棒	、燃料上下	繫板(含
		end-fitting)和炒	然料匣,並組	成 UNIVERS	SE*1		
	B.	建立提籃幾何	模型並放在容	密封鋼筒內部	預留的空	間中,提籃	是由碳
		鋼方管、支撐	焊件與中子吗	及收板及焊接	釘(weld p	oost)組成	
	C.	完成提籃模型	後,再將燃料	束以 UNIVE	RSE 的複	製功能填滿	提籃內
		的 89 個位置	,一起放在密	封鋼筒內部的	内空洞中		
	D.	密封鋼筒殼層	與蓋子則圍縛	達在提籃外部	建立		
	E.	將密封鋼筒放	置到建立好的	的混凝土/傳送	護箱幾何	「模型	
	F.	護箱表面往外	20 公分處設	置圓柱形反身	寸邊界		
	G.	初始射源均气]分佈於燃米	斗區域中,身	† 源中子;	能量以 Wat	tt fission
		spectrum 分佈。	每週期計算	2000 顆粒子	- ,總週期	月 530 並忽日	略前 30
		個週期。					
	注3	. UNIVERSE :	MCNP 裡一	種類似群組的	的功能,可	「將 UNIVE	RSE 內
		的全部組成一	·起做複製、	移位等操作			
	注4	. MCNP 模型裡	目的材料密度	與組成主要來	ミ自 SCAL	E material l	ibrary ,
		其餘材料則是	由計算(如 p	ellet 組成)或	是從參考	資料中獲得	0
4.	MC	NP 的總粒子婁	炎會在統計誤	差與計算時間	間取捨,總	粒子數太小	會使統
	計訂	吴差太大,而總	粒子數太多と	也會使計算時	間大幅上	升。以每週	期 2000
	顆米	立子,總週期 5. 1 1、	30 並忽略前	30週期進行	計算的的	標準差約在	0.2%以
	内(*	~1mk),而本案	分析結果會	将計算出來的)K _{eff} 加上	. 兩倍的標準	差。另 旦从山
	囚月	1 30 迥别的甲	丁唑重兴风度	忠同不翅於稳	火,囚此	府共排除仕	取俊的

統計結果中。

第2次審查意見

 1.核一乾貯臨界分析,以每週期 5,000 顆粒子,總週期 1,050 並忽略前 50 週 期進行計算的的標準差約在(~0.3mk)以內,請說明。

2.請提出排除前 30 週期之依據,分裂中子射源之空間分布是否已達穩定?

第2次審查意見答復說明

針對本分析之意外事故情節,亦即密封鋼筒外部、內部及護套間隙皆浸水的狀況下,NAC以ENDF-6中子截面資料庫,每週期2000顆粒子,總週期530並忽略前30週期之設定,進行核二乾貯核臨界安全分析,經計算評估後傳送護箱 K_{eff}為 0.92053(σ=0.73mk),混凝土護箱 K_{eff}為 0.92047(σ=0.76mk);而本公司委託國立清華大學所進行之核臨界安全平行驗證分析,係以ENDF-7中子截面資料庫,每週期6,000顆粒子,總週期640並忽略前90週期之設定進行分析,經計算評估後傳送護箱 K_{eff}為 0.92353(σ=0.41mk),混凝土護箱 K_{eff}為 0.92266(σ=0.39mk),故可知增加每週期粒子數、總週期數及忽略週期數將能有效降低標準差。

核一乾貯 MCNP 之總粒子數較多,標準差約為 0.3 mk;而核二乾貯 使用總粒子數較少,標準差約為 0.7 mk。雖然核二乾貯使用之粒子數較少 而有較大之誤差,但相對 2σ 也較大。由於最終分析結果皆以 $K_{eff}+2\sigma$ 為 準,所以此誤差已被充分涵蓋。分析結果顯示系統可能達到最高之 $K_{eff}+2$ σ (傳送護箱 0.92246、混擬土護箱 0.36174)也遠低於 USL 0.9372。

 以核一最高 K_{eff} 值案例說明。下圖為核一計算案例截取 MCNP 輸出檔的 一部分,可看到在 cycle 30 之前的 K_{eff}變化很大, cycle 在 30 之後的 K_{eff} 已接近最終結果。

6.1-13

第3次審查意見

1. 請重新撰述答覆說明。

2. 請重新撰述,以核二廠計算案例說明。

第3次審查意見答復說明

- 安全分析報告 6.1.4 節的 186 組臨界實驗,皆使用每週期計算 2000 顆粒子,總週期 530 並忽略前 30 個週期的設定,並經過統計計算得出β、 △ β 及 USL。本報告所有分析皆使用此組設定,具有一致性,因此中子 batch size 的選定已通過臨界實驗驗證。任何改變週期數及中子數均需經 過臨界實驗之驗證。
- 2. 本案臨界分析使用 SDEF 卡片設定初始中子源, SDEF 可使初始中子源 在空間上均匀分佈於燃料區域中,相對於 KSRC 卡片由使用者指定初始 中子源位置更能以較少的週期數達到穩定空間分佈。附件 6.1-06-C 為核 二廠最高反應度案例的部分 MCNP 輸出檔,附件中前面的表格是不同 skip cycle 數統計出來的 k 值,而後面的圖則是將 k 與 skip cycle 數作圖。 從表中可看到 skip cycles 0、30、100 的 k 分別為 0.92036、0.92096、 0.92109,並不具有統計意義上的差距(Δk<σ)。另外如果分成前後半 段,前半段(skip 30 cycles, active 250 cycles)與後半段(skip 280 cycles, active 250 cycles)的 k 值分別是 0.92108 與 0.92085,與最終結果 0.92096 也只有很微小的差距,顯示計算結果的穩定性。從後面的圖中也可看到 如果 skip cycle 數太多,則會使 active cycle 太少,使得統計結果開始出 現偏差。

第4次審查意見

	分組	審查代碼	章節	頁碼	狀態
編號 6.1-07-109	臨界	S13	6.1.5		
	第1:	次審查意見			

6.1.5 節中針對統計方面的論述不夠正確。例如製造公差會影響反應度的不 準度(△ks),如何能說不具統計意義?

第1次審查意見答復說明

MCNP 程式本身有統計誤差,而在 6.1.5 節分析中,個別參數變化對於反應 度的變化差異很小,在統計上無法辨別此差異是為參數變化影響或者是程 式本身的統計誤差,因此無法確認參數變化對反應度的影響。例如 6.1.5.4 小節中,水棒尺寸的變化造成 k 值改變僅 1.1σ,在計算均值的兩個標準差 範圍內,此差異由統計觀點不具意義。

第2次審查意見

表 6.1.5-11、表 6.1.5-12 過於簡化,請比照表 6.1.5-10 分列 k_{eff}及σ值比較。

第2次審查意見答復說明

表 6.1.5-11 之重點在於顯示各項製造公差的 $\Delta k_{eff}/\sigma$,表中所有製造公差的 $\Delta k_{eff}/\sigma$ 皆小於+2.0,即沒有任何製造公差對於核反應度具有統計意義的影響。表 6.1.5-12 顯示以最多燃料含量與最大水鈾比設置時, $\Delta k_{eff}/\sigma$ 為 2.55,反應度變化略微大於2個標準差,但在3個標準差範圍之內。而與USL 0.9372尚有 0.01204 之安全餘裕(表中 0.01244 為誤植,將在下版 SAR 中修正,如 附件 6.1-07-B)。

由於表 6.1.5-10 為最終系統可能達到的最高反應度,因此詳細呈現 k_{eff} 與 σ ; 而表 6.1.5-11 與 6.1.5-12 屬於靈敏度分析,主要目的在呈現 $\Delta k_{eff}/\sigma$ 。

第3次審查意見
請再補述表 6.1.5-11 之保守假設,已涵蓋製造公差說明。
第3次審查意見答復說明
表 6.1.5-11 為探討燃料束幾合尺寸製造公差對於反應度的影響。以 B8_62A
正常尺寸為 Nominal Case,對於各項可能影響反應度的尺寸參數,以 Nominal
Case 為基準再加上/減去製造公差(Maximum/Minimum), 並以 MCNP 計算比
較其反應度變化。結果顯示個別之燃料棒晶格間距、燃料棒外徑與燃料丸外
徑會有正的反應度變化,但皆低於2σ。由於各項製造公差為獨立事件,以
傳統的統計方法將各項反應度變化以平方相加開更號,並忽略負的反應度變

化,得到所有製造公差造成的反應度變化為 1.82σ。本報告保守將各項會促 使反應度變大的製造公差彙整在一個案例,則會有 2.55σ的反應度上升。無 論是傳統統計方法或是彙整成一個案例,反應度上升皆在 3σ以內,與 USL 尚有許多安全餘裕。

第4次審查意見

厸	贴	6 1 09 110	分組	審查代碼	章節	頁碼	狀態
骊	犺	0.1-08-110	臨界	S13	6.1.5	6.1.5-6&6.1.5-11	結案
			第	1次審查意	見		
表	6.1	.5-11、表 6.1.	5-12 過於龍	휫化。請詳 約	田說明燃	料束製造公差所	造成反
應	度的	不準度。此外	,請列出9	5/95 可信度	標準下的	的最大反應度。	
			第1次	審查意見答	復說明		
6.1	.5.1	0小節為探討	然料束製造	公差對於反	應度的影	響。首先將各項	製造公
差	參數	分别探討,比	較未含製造	公差正常值	(Normal)	與製造公差的上	下限值
(M	axin	num 🔻 Minimu	m)的反應度	, 如表 6.1.	5-11。可	得到使反應度最	大的設
置	如下	:					
1.	燃	料棒晶格間距	以製造公差	上限值設置			
2.	燃	料棒外徑以製	造公差下限	值設置			
3.	燃	料護套厚度以	製造公差下	限值設置			
4.	燃	料丸直徑以製	造公差上限	值設置			
5.	有	效燃料長度以	製造公差上	限值設置			
合	併以	上使反應度最	大的製造公	、差設置,百	可得到合	併所有製造公差	可能造
成的	的最	大反應度上升	,結果如表	£ 6.1.5-12 °	表 6.1.5-	11 與 6.1.5-12 所	列為加
上市	兩個	標準差的結果	0				
95/	95 ī	可信度標準是)	用來衡量大	樣本數的偏	差度,例	如進行量化大量	臨界實
驗	驗證	之偏差與不道	岸度,用來	量化程式的	可靠度身	與精確度,可用?	來決定
US	L。;	本分析則是使	用 NRC 所建	建議之 USLS	STATS 方	法取代 95/95 方:	法來決

定USL。

第2次審查意見

表 6.1.5-11、表 6.1.5-12 過於簡化,請比照表 6.1.5-10 分列 k_{eff} 及σ值比較。

第2次審查意見答復說明

回覆同 6.1-07:

表 6.1.5-11 之重點在於各項製造公差的 $\Delta k_{eff}/\sigma$,表中顯示所有製造公差的 $\Delta k_{eff}/\sigma$ 皆小於+2.0,即沒有任何製造公差對於核反應度具有統計意義的影響。表 6.1.5-12 顯示以最多燃料含量與最大水鈾比設置時, $\Delta k_{eff}/\sigma$ 為 2.55,反應度變化略微大於2個標準差,但在3個標準差範圍之內。而與USL 0.9372尚有 0.01204 之安全餘裕(表中 0.01244 為誤植,將在下版 SAR 中修正,如附件 6.1-07-B)。

由於表 6.1.5-10 為最終系統可能達到的最高反應度,因此詳細呈現 k_{eff} 與 σ ; 而表 6.1.5-11 與 6.1.5-12 屬於靈敏度分析,主要目的在呈現 $\Delta k_{eff}/\sigma$ 。

第3次審查意見
請再補述已涵蓋製造公差之方法論說明。
第3次審查意見答復說明
回覆同 6.1-07 第三次審查意見回覆說明。
B8_62A 的幾合尺寸在反應度上皆可涵蓋 GE8x8-2 與 ANF8x8-2,即 B8_62A 有更大的水鈾比及更多的鈾含量。GE8x8-2 與 ANF8x8-2 即使加上製造公差 也尚在 B8_62A 的涵蓋範圍內,而表 6.1.5-11 更將 B8_62A 再往外延伸加上 製造公差,比實際待貯存燃料要保守許多。
第4次審查意見

伯貼	6.1-09-111	分組	審查代碼	章節	頁碼	狀態
编號		臨界	F04	3.1.1	3.1.1-6	結案
第1次審查意見						

請考量使用 NUREG-1536 Revision 1 修訂版 第7章和第9章。

另使用之中子毒素濃度(有效面積密度)至少為 0.02 g/cm2 10B, 然較美國核 管會核准之 Final Safety Evolution Report 6.3.2 之最低有效面積密度 0.027 g/cm2 10B 為低,請說明。

第1次審查意見答復說明

- 對於臨界分析,NUREG-1536之新舊版之主要在差異在允許PWR 燃料 於某種條件下可有 burnup credit;但由於核能二廠是BWR 電廠,不考慮 burnup credit,因此不受影響。
- 2. NRC 核准之版本中,B-10 有效面積密度以 0.027 g/cm² 計算可得到 B8_62A 最大允許貯存濃縮度為 3.8 wt%。而本案待乾式貯存燃料束最大 面平均濃縮度僅 3.25 wt%,經考量後以 0.02 g/cm² 作為本案分析所使用 之 B-10 有效面積密度,已經有足夠的安全餘裕。在最新版的 MAGNASTOR FASR Rev.2 中已納入 B-10 有效面積密度 0.02 g/cm²和 0.0225 g/cm²的分析,分析結果皆符合相關法規要求。

第2次審查意見

請提供最新版的 MAGNASTOR FASR Rev.2 之 B-10 有效面積密度 0.02 g/cm²和 0.0225 g/cm²的分析

第2次審查意見答復說明

下圖為截取自 MAGNASTOR FASR Rev. 2 之 B-10 有效面積密度 0.027 g/cm²、0.0225 g/cm²和 0.02 g/cm²的可允許最高濃縮度分析結果。

MAGNASTOR System FSAR Docket No. 72-1031

April 2012 Revision 2

Table 6.1.1-4 BWR Fuel Assembly Loading Criteria (Enrichment Limits)

	Max. Initial Enrichment ^a (wt % ²³⁵ U)					
	Absorber ^b 0.	027 ¹⁰ B g/cm ²	Absorber 0.0	225 ¹⁰ B g/cm ²	Absorber 0.	02 10 B g/cm ²
	87-Assy	82-Assy	87-Assy	82-Assy	87-Assy	82-Assy
	Basket	Basket	Basket	Basket	Basket	Basket
B748A	4.0%	4.5%	3.7%	4.5%	3.6%	4.4%
B7_49A	3.8%	4.5%	3.6%	4.4%	3.5%	4.3%
B7_49B	3.8%	4.5%	3.6%	4.4%	3.5%	4.2%
B8_59A	3.9%	4.5%	3.7%	4.5%	3.6%	4.3%
B8_60A	3.8%	4.5%	3.7%	4.4%	3.5%	4.2%
B8_60B	3.8%	4.5%	3.6%	4.3%	3.5%	4.2%
B8_61B	3.8%	4.5%	3.6%	4.3%	3.5%	4.2%
B8_62A	<mark>3.8%</mark>	<mark>4.5%</mark>	<mark>3.6%</mark>	<mark>4.3%</mark>	<mark>3.5%</mark>	<mark>4.1%</mark>
B8_63A	3.8%	4.5%	3.6%	4.3%	3.4%	4.2%
B8_64A	3.8%	4.5%	3.6%	4.3%	3.5%	4.2%
B8_64B	3.6%	4.3%	3.4%	4.1%	3.3%	4.0%
B9_72A	3.8%	4.5%	3.6%	4.3%	3.4%	4.1%
	3.7%	4.3%	3.4%	4.1%	3.4%	4.0%
B9_76A	3.5%	4.2%	3.4%	4.0%	3.3%	3.9%
	3.7%	4.4%	3.4%	4.2%	3.3%	4.0%
B9_80A	3.8%	4.5%	3.6%	4.3%	3.5%	4.2%
B10_91A	3.7%	4.5%	3.6%	4.3%	3.5%	4.1%
B10_92A	3.8%	4.5%	3.6%	4.3%	3.5%	4.1%
B10_96A	3.7%	4.3%	3.5%	4.1%	3.4%	4.0%
B10_100A	3.6%	4.4%	3.5%	4.1%	3.4%	4.0%

^a Maximum planar average.

^b Borated aluminum neutron absorber sheet effective areal ¹⁰B density.

NAC International

6.1-8

第3次審查意見

4台	ᆄ	611	0.112	分組	審查代	碼	章節	頁。	碼	狀	態
ௌ	犺	0.1-10	0-112	臨界	F04		6.1.5	6.1.5	5-5	結	案
				第	1次審查意	見					
本日	申請	案為	3.3 wt% 2	235U,請	分析中子呀	8收板	10B 有	效面积	責密度	ミ分別	川為
0.02	27、	0.022	5和0.02	g/cm2 時,	之最大反	應度ke	ff 的計	算結界	灵,確	霍認其	に 相
對分	安全	餘裕。)								
				第1次	審查意見答	復說明]				
6.1.	5.8	中,	B-10 有效	面積密度	分別為 0.0	27、0.)225 禾	0.02	g/cm ²	² 時不	、超
過	USL	的最	高可允許注	農縮度分別	川為 3.8 wt%	% ` 3.6 [•]	wt%和	3.5 wt ^o	%,皆	「較本	、案
待葬	乞式	貯存煤	然料最高濃	【縮度 3.25	wt%高,[因此可	確認其	安全餘	裕。		
				第	2 次審查意	見					
仍請	青提住	共 3.3	wt% ²³⁵ U	時, ¹⁰ B	有效面積智	密度分	別為 0.	027、0	.0225	5和(0.02
g/cr	n ² 時	,最	大反應度	keff 的計算	算結果,俾	便了解	相對安	子全餘裕	谷。		
				第2次3	審查意見答	復說明]				
3.3	wt%	U-23	5 時, ¹⁰ B	有效面積容	密度分别为	0.027	0.022	5和0.0	02 g/c	cm ² ₽	寺之
反原	惠度,	與安全	餘裕列於	下表:							
					B10 Conte	nt (g/cı	n ²)				
			0.	02	0.02	225		0.0	27		
	C	ask	keff + 2σ	Margin	keff + 2σ	Marg	n kef	$f + 2\sigma$	Mar	gin	
	Tra	nsfer	0.92246	0.01474	0.91401	0.023	19 0.9	90497	0.03	223	
	V	CC	0.36019	0.57701	0.35919	0.578	01 0.3	35449	0.58	271	
				第	3 次審查意	見					
同意	意答	覆。									
					I			Ĩ			

伯貼	6 1 11 112	分組	審查代碼	章節	頁碼	狀態
编號	0.1-11-113	臨界	F04	6.1.5	6.1.5-1	結案

第1次審查意見

本案設計壽命為 50 年,請計算分析中子吸收板中 10B 在 20 及 50 年時之耗 乏,以驗證其持續有效性。

第1次審查意見答復說明

根據屏蔽分析 SAS2H/ORIGEN-S 所得之最大燃料中子射源為 3.49x10⁷ (n/s/assy),假設此射源強度在 50 年間維持不變,並將燃料束視為點射源, 硼片中的 B-10 原子在 20 年後減少率 3.0×10⁻⁷,在 50 年後減少率為 7.6×10⁻⁷, 所以因中子吸收而造成中子吸收物的消耗是可忽略的。

笜	2	坎	窯	杏	音	見
71	_	へ	町	므	ら い	ノロ

同意答復。

伯貼	6 1 10 114	分組	審查碼	章節	頁碼	狀態
骊 號	0.1-12-114	結構	S14	6.1		結案
		第1	次審查意見			
對於護	箱系統之臨界安	子全,應加	強對於包覆。	中子吸收	材之查核與	1驗收作
業,以	確實避免發生人	因失誤造成	中子吸收材色	包覆量不	足或脫落。	
		第1次審	杳意見答復 訪	明		
			三心儿 召 反 的	5 /1		
中子吸	收劑相關測試與	接受标准已	於 5A 1.1.6	小節中說	明。中子呀	& 收劑需
經 B10	面積密度、尺寸	、熱傳導性	(如有需要)、	機械強度	度(如有需要)及目視
檢查等	項目之檢查,並	满足该小筒	的容說明之	要求,始	可判斷合格	}。 而相
關測試	皆於中子吸收劑	製造工廠內	1進行,本公	司將審查	相關測試報	段告,確
保所有	測試結果符合 5A	A 1.16 小節	所述的要求。			
在燃料	提籃組裝前,中	子吸收板在	E工廠中使用	鉚釘(銲	接釘)銲接	医方式固
定至各	相關燃料方管上	。這鉚釘錯	早接的程序须:	被仔細的	檢查,以確	留保銲接
品質符	合要求。QC 人員	員將確認此	製造程序符合	相關要求	、並簽署相	騆製造
文件。	在燃料提籃組裝	前,這些製	造文件將會	被製造部	經理審查、	許可。
製造時	之檢查與測試計	畫表 (Insp	ection and te	sting plar	n) 也會特別	1強化中
子吸收	板安裝與確認。	有此一完整	冬的安裝程序	與確認步	驟,可保證	圣中子吸

收板安裝符合圖面或相關文件之要求。				
第2次審查意見				
本題併 6.1-04 辦理。				
第2次審查意見答復說明				
遵循委員意見。				
第3次審查意見				
同意答覆。				

附錄 A. USLSTATS

USLSTATS 與 NUREG-6361 一同發佈, 如報告所述有兩個 method:

1. USL Method 1: Confidence Band with Administrative Margin

2. USL Method 2: Single-Sided Uniform Width Closed Interval Approach

本案使用 Method 1 計算 USL

Method 1 USL 公式為:

 $USL(x) = 1 - \Delta K_m - W + \beta(x)$

其中 <u>ΔK</u>_m =法規限值 0.05 W = max{w(x)|_{Xmin}, X_{max}}

 $\beta(\mathbf{x}) = \mathbf{K}_{c}(\mathbf{x}) - 1$

$$w(x) = t_{1-\gamma_1} s_p \left[1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_{\ell=1,0} (x-x_\ell)^2} \right]^{\frac{1}{2}}$$

(Confidence Band)

 $t_{1-\gamma_1}$ =the Student-t distribution stastic for $1-\gamma_1$ and n-2 degree of freedom (查表) (1- γ_1 =0.95 is confidence level)

 s_p =the pooled standard deviation for the set for criticality calculations

 $s_p^2 = s_{k(w)}^2 + s_w^2$

 $s_{k(w)}^{2}$ is the variance of regression fit

 s_{w}^{2} is the within-variance of criticality calculation datas.

其中w(x)即為 $\Delta\beta$,包含臨界實驗不準度與fit回歸線的不準度

以圖 A-1 解釋其計算步驟:

- 將所有臨界實驗的 K_{eff} 與參數(如濃縮度、水鈾比、叢集距)做圖,如圖
 A-1 之實點
- 2. 將這些點 fit 成一直線,此直線稱為 K_c(x)

6.1-23

- 以公式算出 Confidence Bend w(x),在圖中劃出 K_c(x)-w(x)。可觀察到離 平均值越近的地方 confidence band 越小,離平均值越遠的地方 confidence band 越大。
- 4. 為保守起見取 confidence band 最大的地方,得 $K_c(x)$ -W
- 5. 不考慮 positive bias,因此將 K_c(x)超出1的部分修正
- 6. 最後減去 K_m(0.05),即得到 USL(x)。

USL 是 x 的函數,本分析為保守起見,以最低點做為本案的 USL。

圖 A-1 USLSTATS

