#### 2008 AEC-NRC Bilateral Technical Meeting

# Updated Risk-Informed Regulation and Application in Taiwan

Dr. Wei-Wu Chao Atomic Energy Council, R.O.C May 12, 2008

#### OUTLINE

- On-line maintenance (OLM) application
- Allowed outage time (AOT) extension for startup transformer replacement
- Risk-informed In-service Inspection (RI-ISI) pilot study
- Concluding Remarks

#### **OLM Application**

- AEC issued "Nuclear Power Plants Online Maintenance (OLM) Application Guideline" in Aug. 2002, stipulating OLM acceptance criteria and applicable systems
- Chinshan NPP RHR OLM was approved in Aug. 2003, followed by Kuosheng NPP in Sep. 2003 and Maanshan NPP in Oct. 2003

#### OLM Application (cont'd)

- Up to date, Taipower has successfully performed some OLMs, all completed within 60 % AOT
  - For Chinshan NPP, RHR Pump, RHR Booster Pump
  - For Kuosheng NPP, RHR Valve & Instrument, AHU
  - For Maanshan NPP, RHR Valve & Instrument, Containment Spray System, Essential Chilled Water System

#### OLM Application (cont'd)

- Considering lack of OLM experience in Taiwan and not implementing maintenance rule, the aforementioned Guideline dictated the scope for OLM to be limited to 4 categories of systems: Residual Heat Removal, Emergency Cooling Water, Emergency Chiller, Core Spray System
- This guideline also regulates that OLM applications will be reviewed in case-by-case bases

#### OLM Application (cont'd)

- Based on the experience gained from previous successful OLMs, Taipower is proposing to extend OLM scope for further systems
- Taipower has implemented Maintenance Rule starting from 2008, which shall control OLM activities and risk management
- Plant-wide OLM is expected in the near future

# AOT extension for startup transformer replacement

- Permanent risk informed Technical Specification (RI-TS) change can follow USNRC Regulatory Guidance 1.177
- Up to now, no related application was filed by Taipower
- However, one-time extension of 345KV
   Startup Transformer AOT been has requested by Taipower and approved by AEC

## AOT extension for startup transformer replacement (cont'd)

- Chinshan NPP 345kV Startup Transformer experienced severe damage in April, 2007, which required for replacement
  - Taipower requested AOT temporary extension from 3 days to 30 days
  - Taipower's risk assessment proposed the risk was acceptable within 28 days, they also credited other analysis conservatism and requested for 30 days
  - AEC approved a 28 days one-time AOT and requested Taipower to perform detailed contingency analysis and take appropriate measures to manage the risk during maintenance.

## AOT extension for startup transformer replacement (cont'd)

| CHINSHAN<br>ST-B Maint                  |     | Base                  | case     | ST-B Maintenance Case  |          |  |
|-----------------------------------------|-----|-----------------------|----------|------------------------|----------|--|
| IE\RiskMetrics                          | S   | CDF                   | LERF     | CDF                    | LERF     |  |
| internal                                | 3.9 | 93E-06                | 1.56E-06 | 1.50E-05               | 8.09E-06 |  |
| seismic                                 | 5.2 | 27E-06                | 4.46E-06 | 5.32E-06               | 4.50E-06 |  |
| Fire                                    | 7.3 | 38E-06                | 1.25E-06 | 7.72E-06               | 1.31E-06 |  |
| SUM                                     | 1.0 | 66E-05                | 7.27E-06 | 2.80E-05               | 1.39E-05 |  |
| Acceptance<br>Criteria                  |     | <u>CDP</u> < 5.00E-06 |          | <u>LERP</u> < 5.00E-07 |          |  |
| Acceptable Extension Based on CDP/ LERP |     | ~160 days             |          | ~28 days               |          |  |

### RI-ISI pilot study

- NRC Regulatory guide 1.178 provides guidance for using of PRA findings and risk insights for decisions on changes proposed to a plant's inspection program
- The RI-ISI process generally identifies few risk-significant welds for inspection. This translates to fewer inspections to be performed during outages and lower personnel exposures

#### RI-ISI applications in some US plants

| BWRs        |                |        |                       | PWRs            |          |        |                       |
|-------------|----------------|--------|-----------------------|-----------------|----------|--------|-----------------------|
| Plant       | Scope          | Method | Inspection<br>Reduced | Plant           | Scope    | Method | Inspection<br>Reduced |
| Fitzpatrick | Class1&2&<br>3 | EPRI   | 82%                   | Beaver Valley-1 | Class1&2 | WOG    | 81%                   |
| WNP-2       | Class1         | EPRI   | 55%                   | North Anna-2    | Class1   | WOG    | 86%                   |
| Perry       | Class1         | EPRI   | 75%                   | Sequoyah-1      | Class1&2 | WOG    | 83%                   |
| Lasalle-1   | Class1&2       | EPRI   | 65%                   | Watts Bar-1     | Class1&2 | WOG    | 81%                   |
| Ferry-2     | Class1&2&<br>3 | WOG    | 69%                   | India Point-2   | Class1   | EPRI   | 70%                   |

WOG: WCAP-14572 EPRI: TR-112657

11

- Taipower contracted INER (Institute of Nuclear Energy Research) a research project of RI-ISI pilot study for RHR systems at Kuosheng plant
- Adopt similar methodology as being implemented in US

- RI-ISI for Kuosheng RHR system:
  - Current inspection ASME requirement, 113 of 900 welds
  - High risk piping welds, select 2 of 8 for inspection
  - Moderate risk piping welds, select 48 of 473 for inspection
  - Low risk (or no fracture mechanism) piping welds, no inspection for 419 welds
  - Total inspection reduction 58% (from 113 to 50)
  - CDF:3.2E-8/yr , LERF:-2.4E-11/yr

- Based on this pilot study, INER has developed a RI-ISI implementation guideline for Taipower for setting up RI-ISI program
- Taipower is planning plant-wide applications for operating nuclear plants

### **Concluding Remarks**

- Probabilistic Safety Assessment (PSA) has been introduced, developed, improved, refined near three decades in Taiwan
- Early applications were mainly used for betterment of plant systems and safety.
- PSA has been proved to be a useful tool for risk-informed assessment
- Full scale risk-informed applications are expected in near future for both regulatory decisions and utility operations

#### Concluding Remarks (Cont'd)

- Future Risk-Informed Applications
  - Risk-informed in-service inspection (RI-ISI),
     Testing (RI-IST), and technical specification (RI-TS)
  - Plant-wide OLM
  - Performance-based fire protection implementation (NFPA-805)

# The Hind