

Chinshan ISFSI Pre-Op Inspection Plan

May 3, 2010

2010 AEC-NRC Bilateral Technical Meeting

Outline

- Introduction
- Regulatory Requirements
- Inspection Plan for Pre-Op Testing
- Concluding Remarks

Introduction (1)

- Estimated 7,350 metric tons spent fuel will be produced in Taiwan.
- Management Strategy on Spent Fuel
 - Near term: pool storage
 - Medium term: on-site dry storage
 - Long term: deep geological disposal

Introduction (2)

- TPC commissioned INER in July 2005 to implement onsite ISFSI project
- The INER-HPS dry storage system was developed
 - Technology transfer from NAC International.
 - loading and storage of 1,366 spent fuel assemblies (25 casks in total).

Introduction (3)

Components of INER-HPS

Canister(TSC)

OD 1.70 m Ht. 4.84 m Wt. 16.65 t

Transfer Cask(**TFR**)

OD 2.12 m ID 1.72 m Ht. 5.13 m Wt. 46.18 t Concrete Cask (**VCC**)

OD 3.45 m ID 1.89 m Ht. 5.70 m Wt. 112.73 t

Add-on Shield (AOS)

Sq. foot 4.5 x 4.5 m OD 4.20 m Wall thk. 0.35 m Ht. 6.03 m Wt. 81.20 t

Introduction (4)

Approval conditions of ISFSI in Taiwan

Environment

- The Environmental Impact Statement (EIS) for review and approval
- Competent authority: EPA
- The EIS has been approved in November 2008.

Nuclear Safety

- The Safety Analysis Report of ISFSI to apply for Construction License
- Competent authority: AEC
- The Construction License of Chinshan ISFSI has been issued in December 2009.

Introduction (5)

Slopeland Exploitation

- The Soil and Water Conservation Plan to apply for Exploitation Permit
- Competent authority: local government (Taipei county)
- The safety review is ongoing
- Predicting the review work will be finished in the end of May 2010.

Regulatory Requirements (1)

- Operational safety
 - Countering safety-related DBA (design basis accident)
 - ✓ Construction License (PSAR)
 - ✓ Pre-operational testing
 - ✓ Operating License (FSAR)
- Security
 - Be typically designed and evaluated against a DBT (design basis threat)
- Safeguards
 - According to IAEA criteria

Regulatory Requirements (2)

Operational safety

- Nuclear Materials and Radioactive Waste Management Act
- Regulations on the Review and Approval of Applications for Construction License of Radioactive Wastes Treatment, Storage and Final Disposal Facilities.
- 3. Guidelines on the Safety Analysis Report for the Application of Spent Nuclear Fuel Dry Storage Facility.

Regulatory Requirements (3)

Security

- Physical security plan for Chinshan NPS, (Standard Operation Procedure No.106)
- Draft technical basis for updating the ISFSI security requirements. (74 FR 66589, Dec. 16, 2009)

Safeguards

- IAEA safeguards criteria
- Operational Regulations Governing Nuclear Safeguards, AEC

Regulatory Requirements (4)

- Facility Safety
 - Radiological protection shall ensure the annual effective dose ≤ 0.25 mSv
 - □ TPC's design criteria ≤ 0.05 mSv/annual
 - Surveillance program shall meet the Technical Specifications of ISFSI.
 - ✓ I/O difference of temp. sensors ≤92°F (33°C)
 - ✓ Site-boundary radiation detection (0.05mSv)
 - ✓ Security monitoring system
 - ✓ A response surveillance is required after the occurrence of an off-normal, accident, or natural phenomena event within 4hrs

Regulatory Requirements (5)

- A dry run training exercise is demanded
 - Even after the completion of the construction of ISFSI, the ISFSI shall not be formally operated, until the AEC has approved and issued an Operating License
 - Before applying for Operating License of ISFSI, the applicant shall submit a pre-operational testing program to the AEC

Inspection Plan for Pre-Op testing (1)

- FCMA has developed a series of inspection guidance
 - Determine by direct observation and independent evaluation
 - ☐ TPC must demonstrate the ability to perform preoperational requirements specified in the SAR and Technical Specifications.
 - TPC must demonstrate the ability to both load and unload a cask before beginning the loading campaign.
 - □ TPC must integrate all the participants in the demonstration, including operations and radiation protection.
 - Reference from NRC IP 60854, 60856, 60857

IP 60854- Preoperational Testing of an ISFSI

P 60856- Review of 10 CFR 72.212(b)

P 60857- Review of 10 CFR 72.48

Inspection Plan for Pre-Op testing (2)

- A dry run training exercise on loading, closure, handling, unloading, and transfer of the INER-HPS system shall be conducted prior to the first use of the system to load spent fuel assemblies.
- TPC scheduled the Pre-op testing programs according to the Technical Specifications for the INER-HPS system.
- Pre-op testing including dry run and hot test will be performed around Jan. 2011 so far.

Inspection Plan for Pre-Op testing (3)

- The dry run shall include
 - Fluid operations/welding (canister mock-up)
 - pressure testing
 - vacuum drying
 - Helium backfilling
 - Welding and weld inspection
 - Leak testing for the confinement
 - Heavy load movement
 - Moving the VCC into its designated loading area
 - Moving the TFR containing the empty TSC into the pool
 - TFR+TSC movement through the designated load path

Inspection Plan for Pre-Op testing (4)

- ☐ Transfer of the TSC to the VCC
- Transport of the VCC to the ISFSI
- Installing the AOS
- ☐ TSC removal from the VCC

Wet operations (SFP and dummy fuel movements)

- Insertion and removal of a dummy fuel assembly in the most extreme canister locations
- Installing the shield lid and handling of the TFR under the pool
- Operating procedures shall accurately reflect the dose and contamination limits imposed by the technical specifications
- ☐ Canister unloading, including reflooding and weld removal

Inspection Plan for Pre-Op testing (5)

- Hot test (2 casks loading with genuine fuel)
 - The heat transfer characteristics and performance of the INER-HPS system shall be recorded by air inlet and outlet temperature measurements.
 - Comparison of the calculated temperatures of the INER-HPS system heat load to the measured temperatures shall be presented.

Concluding Remarks

- Pre-op testing shall verify the functionality of all equipment, the procedures used for loading and unloading activities, and personnel qualifications before actual movement of spent fuel.
- IP 60854 provides sufficient materials to carry out the inspection activities.
- Lessons learned from technical exchange with NRC Staff is definitely valuable resource to upgrade the safety of loading campaign.

Thanks for your attention.

Inspection Plan for Pre-Op testing (2)

- Personnel training
 - Job-training on Welding and NDT courses
 - ASME Code training courses
- Lessons learned from technical exchange
 - Canister manufacture inspection workshop presented by Japanese experts in Dec. 2007
 - Workshop on inspection on spent fuel dry storage facility presented by NRC experts in Dec. 2008.