

Findings from Spent Fuel Pool Criticality Analysis

2011 USNRC/TAEC Bilateral Technical Meeting Washington DC, USA 3~4 May 2011

Outline

- Introduction
- Findings from SFP Criticality Analysis
- Need of Assistance from USNRC
- Future Works

Introduction

- How does INER get involved in SFP criticality analysis?
 - Commitment to ROCAEC for more tangible independent reviews
 - Dedication to R&D as a research facility
 - Early preparation for the upcoming new & more challenging SRP/NUREG
 - Boral degradation --- Blisters found on test coupons in Chinshan & Kuosheng NPPs

Introduction (cont'd)

- What did INER do?
 - Set up a task force of analysis, including
 - ➤ 2 senior engineers with neutronics background & experiences in nuclear analysis of LWRs and Monte Carlo calculations
 - ➤ 1 junior yet promising engineer with neutronics background
 - Built up a preliminary analysis model and
 - Performed calculations & studies for Chinshan & Kuosheng SFP criticality safety (focusing on BWRs currently)

Findings from SFP Criticality Analysis

Safety margin & acceptance criteria

 The tighter the safety margin, the more flexible the acceptance criteria (meaning that fuel bundles can be put into SFP more freely); e.g., Chinshan NPP used up all margin but <u>Kuosheng</u> NPP took 15mk of margin

Computing tools

- In general, one deterministic code (e.g., CASMO-3/4) and one stochastic code (e.g., KENO, MCNP) will be used
- The deterministic code will be mostly used as the production tool
- A conservative bias against the stochastic code will be determined
 - Depending on the models, the deterministic code will normally give underestimated values (against the actual values calculated by the stochastic code without taking any approximation)

Next

Acceptance Criteria for Kuosheng Storage Racks

- Any of the currently used BWR FAs designs with enrichment ≤ 3.4 wt% can be accommodated within the Kuosheng storage racks.
- Cases below the straight line in SCCG* could be accommodated in Kuosheng storage rack.
- Any FAs design with latticeaverage uniform enrichment
 ≤ 4.8 wt% could be accommodated within
 Kuosheng storage rack if Gd content ≥13G2 or 8G3

*SCCG: Standard Cold Core Geometry (Uncontrolled lattice with a pitch of 6" and at 20°C)

Go Back

Institute of Nuclear Energy Research

Findings from SFP Criticality Analysis (cont'd)

Critical experiment benchmarks

Data are not easily and readily available, especially for SFP with neutron absorbers, e.g. Boral

Uncertainties & Bias

- For conservatism, a negative bias will be taken as zero; while a negative uncertainty should be still accounted for
- Manufacturing tolerances are provided by rack vendors
- There is no standardized or specific rule now for the determination of uncertainties & bias
 - Different vendors can use different sets of tolerances and/or abnormal event/accident scenarios
 - Depletion uncertainty plays a major role but is also very confusing (Kopp letter does not say specifically how to apply that 5% in details)

$$K_{max} = K_{Nominal} + \Delta K_{Total} = K_{Nominal} + \sum \Delta K_B + \sqrt{\sum (\Delta K_U)^2}$$
 [1]

Findings from SFP Criticality Analysis (cont'd)

Issue of Boral degradation

- The impact of Boral degradation to SFP criticality analysis is unknown now
- No SFP criticality analysis includes the scenario of losing Boral to a various degree
 - Minimum Boral areal density is used in the models

Need of Assistance from USNRC

- The mechanism, safety impact and regulation for degradation of neutron-absorbing material permanently installed in spent fuel pool.
- The latest guidance and Standard Review Plan in "On Site Spent Fuel Criticality Analyses NRR Action Plan" & the reaction of fuel vendor proposed to new guidance and Standard Review Plan.
- Data of criticality experiments for benchmark according to latest guidance and SRP for spent fuel pool.

Future Works

- More extensive/intensive studies on SFP criticality analysis, including:
 - Model refinement & improvement
 - More analyses, especially to cope with the new SRP
 - Code benchmarks against critical experiment data
- Build up a licensing model for SFP criticality analysis

Thank for your attention!

